
Reasoning about Sets using Redescription Mining

Mohammed J. Zaki
Department of Computer Science
Rensselaer Polytechnic Institute

Troy, NY 12180, USA

zaki@cs.rpi.edu

Naren Ramakrishnan
Dept. of Computer Science
Virginia Tech, Blacksburg

VA 24061, USA

naren@cs.vt.edu

ABSTRACT
Redescription mining is a newly introduced data mining
problem that seeks to find subsets of data that afford mul-
tiple definitions. It can be viewed as a generalization of
association rule mining, from finding implications to equiv-
alences; as a form of conceptual clustering, where the goal is
to identify clusters that afford dual characterizations; and as
a form of constructive induction, to build features based on
given descriptors that mutually reinforce each other. In this
paper, we present the use of redescription mining as an im-
portant tool to reason about a collection of sets, especially
their overlaps, similarities, and differences. We outline algo-
rithms to mine all minimal (non-redundant) redescriptions
underlying a dataset using notions of minimal generators of
closed itemsets. We also show the use of these algorithms in
an interactive context, supporting constraint-based explo-
ration and querying. Specifically, we showcase a bioinfor-
matics application that empowers the biologist to define a
vocabulary of sets underlying a domain of genes and to rea-
son about these sets, yielding significant biological insight.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - Data Mining; I.2.6
[Artificial Intelligence]: Learning

General Terms: Algorithms.

Keywords: redescription, data mining, minimal genera-
tors, closed itemsets.

1. INTRODUCTION
Redescription mining is a recently introduced data min-

ing problem [7] that seeks to find subsets of data affording
multiple definitions. The input to redescription mining is a
vocabulary of sets (or boolean propositions) over a domain
and the goal is to construct two distinct expressions from
this vocabulary that induce the same subset over the do-
main. Besides constituting a new class of patterns, we can
think of redescriptions as a useful way to reason about over-
laps, similarities, and differences in the given vocabulary.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’05, August 21–24, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-135-X/05/0008 ...$5.00.

France

Brazil

Chile

UK
USA

RussiaCanada

Argentina

Cuba

China

G

RB

Y

Figure 1: An example input to redescription mining.

To see how, consider the four sets shown in Fig. 1 over
ten objects (in this case, countries). The colors green, red,
blue, and yellow (from bottom right, counterclockwise) refer
to the sets ‘permanent members of the UN security coun-
cil,’ ‘countries with a history of communism,’ ‘countries with
land area > 3, 000, 000 square miles,’ and ‘popular tourist
destinations in the Americas (North and South).’ We will
refer to such sets as descriptors.

Notice that the descriptors of Fig. 1 induce a partition
containing 6 non-empty blocks although, with 10 objects,
we could have had up to 10 non-empty blocks. Another
way to see this deficiency is from the viewpoint of the sets:
four sets can support 24 = 16 different objects but there are
only 10 objects and even these 10 objects are not all dis-
tinct. For instance, {Chile, Brazil, Argentina} are indistin-
guishable from each other, and so are the members of {UK,
France}, {Russia, China}. Empty blocks in a partition are
key to how redescriptions arise in a dataset.

Let us define the boolean propositions G, R, B, and Y

(for ‘green,’ ‘red,’ ‘blue,’ and ‘yellow’) to denote containment
in the above four sets. Consider the countries denoted by
BY ≡ B ∧ ¬Y , i.e., the set of countries with land area
> 3, 000, 000 square miles outside of the Americas (Y and
¬Y denote the negation of Y). We can systematically re-
state this expression as follows:

BY = BY (RG + RG + RG + RG)

= BY RG + BY RG + BY RG + BY RG

= BY RG

= BY RG + BY RG + BY RG + BY RG

= (BY + BY + BY + BY)RG

= RG

BY

BY

BY

BY

RG RG RG RG

BY

BY

BY

BY

RG RG RG RG

BY

BY

BY

BY

RG RG RG RG

BY

BY

BY

BY

RG RG RG RG

BY

BY

BY

BY

RG RG RG RG

BY

BY

BY

BY

RG RG RG RG

BY

BY

BY

BY

RG RG RG RG

BY

BY

BY

BY

RG RG RG RG

RG RG RG RG

BY

BY

BY

BY

BY

BY

BY

RG RG RG RG

BY

Figure 2: Obtaining redescriptions by simple operations on Karnaugh maps. The top row shows one legal
sequence of moves and the bottom row shows another sequence; notice that both maps start from the same
initial configuration. Removed cells are marked with a ‘×’. If the moves are different, we obtain a non-trivial
redescription. In this case, the moves are (i) removing all but one colored cell from both maps, (ii) removing
some uncolored cells from both maps, (iii) removing some uncolored cells from only the top map, followed
by (iv) removing some uncolored cells from only the bottom map. The final maps capture the redescription
between BY (top) and RG (bottom).

The first step is by marginalizing over the variables R and
G, the second step is an application of the distributive law,
the third step is data-specific, and gets rid of conjunctions
that denote empty blocks, the fourth step is again data-
specific but this time introduces empty conjunctions, which
are grouped in the fifth step, and marginalized out finally.
We have arrived at our first redescription:

BY ⇔ RG

i.e., ‘Countries with land area > 3, 000, 000 square miles out-
side of the Americas’ are the same as ‘Permanent members
of the UN security council who have a history of commu-
nism.’ This redescription re-defines the set {Russia, China}.
A redescription is hence a shift-of-vocabulary, or a different
way of communicating the same information. Redescrip-
tion mining can therefore be viewed as a generalization of
association rule mining, from finding implications to equiv-
alences; as a form of conceptual clustering, where the goal
is to identify clusters (here, of countries) that afford dual
characterizations; and as a form of constructive induction,
to build features based on given descriptors that mutually
reinforce each other.

1.1 Understanding Redescriptions
An intuitive way to understand the structure of redescrip-

tion space is via a simple game on Karnaugh maps. The
leftmost part of Fig. 2 depicts the Karnaugh map for four
boolean variables, reproduced in both rows. Each cell in the
map is a conjunction over four boolean variables. A colored
cell indicates a non-empty block for our example dataset in
Fig. 1. For example, the cell (BY , RG) denotes the block
{Russia, China}. We can interpret a map to be the disjunc-
tion of all its cells; since the starting maps are the same,
they both represent the same 10 objects and hence consti-
tute a trivial redescription, i.e., a tautology. The rules of
the game are:

1. A colored cell can be removed as long as it is removed
from both maps. Notice that this will make the maps
represent fewer objects.

2. An uncolored cell can be removed from either (or both)
maps. Notice that this move does not affect the num-
ber of objects represented by the maps.

Some sample moves are shown in Fig. 2. At the end of the
game, we read off a redescription by relating the disjunctions
of cells remaining in both maps:

(BY RG ∨ BY RG ∨ BY RG ∨ BY RG)

⇔

(BY RG ∨ BY RG ∨ BY RG ∨ BY RG)

simplification of which yields BY ⇔ RG, as before.
The above viewpoint reveals two important insights. First,

we can obtain redescriptions for any combination of the col-
ored cells, by just retaining them in both rows of the game.
Second, even for a single choice of these sets, there are an
exponential number of redescriptions, each of which merely
differs from another in the choice of uncolored cells that were
retained. Interestingly, the form of expressions participat-
ing in a redescription follows in a very natural way from the
subset of colored and uncolored cells that are retained.

In Fig. 2 both maps permit descriptions as conjunctions
because we are retaining all cells in a single row or column.
Fig. 3 presents situations (from different datasets) with ex-
pressions in different forms. The top left part of the figure
represents a disjunction of all cells in the bottom three rows,
or B ∨ Y . The bottom left part of Fig. 3 represents a dis-
junction of all cells in the rightmost two columns, which is
represented quite succinctly as R. These maps hence cap-
ture the redescription B ∨ Y ⇔ R. On the other hand,
the right maps denote the redescription B ∨ Y ⇔ R ∨ G.
The reader can easily design examples where we can neither
simplify into conjunctions or disjunctions, and must instead
adopt a more general bias, such as CNF (conjunctive normal
form). In this paper, due to space constraints, we restrict
the discussion of redescription mining to those relating con-
junctions on both sides (possibly involving negations). But
the above discussion highlights how the framework can be
extended to mining disjunctions and more general forms.

BY

BY

BY

BY

RG RG RG RG

BY

BY

BY

BY

RG RG RG RG

BY

BY

BY

BY

RG RG RG RG

BY

BY

BY

BY

RG RG RG RG

Figure 3: Examples of redescriptions in different bi-
ases. The left maps redescribe a disjunction (top) to
a conjunction (bottom). The right maps redescribe
a disjunction (top) into another disjunction (bot-
tom).

1.2 Practical Usage Contexts
One reason why we adopt the conjunctions bias is its suit-

ability for the application context of geneset exploration in
bioinformatics. Here we are given G, a set of genes and D, a
set of descriptors (gene subsets). Example descriptors are:
‘genes localized in cellular compartment nucleus,’ ‘genes up-
expressed two-fold or more in heat stress,’ ‘genes encoding
for proteins that form the Immunoglobin complex,’ ‘genes
involved in glucose biosynthesis,’ and even ‘genes targeted
by Professor X for further study.’ It can be argued that, in
the post-sequencing era, bioinformatics is suffering from an
information overload of descriptors, as every scientist pur-
sues a preferred way of identifying subsets of genes from the
massive cardinality of the genome. The goal of redescription
mining is to connect these diverse vocabularies, by relating
set-theoretic constructs formed over the corresponding de-
scriptors. For instance, we might find that ‘genes expressed
in the desiccation experiment except those participating in
universal stress response’ are the same as ‘genes significantly
expressed 2-fold positively or negatively in the salt stress ex-
periment.’ The underlying premise is that genesets that can
indeed be defined in (at least) two ways are likely to exhibit
concerted behavior and are, hence, interesting.

Typically a biologist would like to study gene sets by first
identifying a focus set of genes and then systematically slic-
ing and dissecting the set, to answer questions such as:

• What redescriptions do a given set of genes participate
in? What redescriptions does the presence of a given
descriptor induce?

• Starting with two dissimilar (not disjoint) sets of genes,
say X and Y , how can we systematically remove ele-
ments from both sides, so that we obtain a redescrip-
tion? Note that we are only allowed to discard ele-
ments that correspond to unions of cells (colored or
uncolored) in the Karnaugh map.

• Are there genesets that cannot be redescribed into each
other through systematic removals of elements? If so,
what is the best approximation that can be achieved?

• Since redescriptions induce equivalence classes over the

space of possible descriptor expressions, what are the
‘densest’ such classes?

Because systematic projection of elements out of a set in-
volves either set intersection or set differences, we can ad-
dress all of the above questions by mining redescriptions
between conjunctions of descriptors.

1.3 Connections to Association Rule Mining
The astute reader would have noticed the connections be-

tween redescription mining and association rule mining. If
we think of objects (e.g., countries, genes) as transactions
and descriptors (including their negations) as items, then a
colored cell in the Karnaugh map corresponds to a closed
itemset from the association mining literature [11]. This is
because each cell is minimal in its contents (transactions)
but maximal in its use of descriptors (items). In particu-
lar, all such closed sets will contain all descriptors, in either
negated or non-negated form1. A reducible row or column
or submatrix of the Karnaugh map with some uncolored as
well as colored cells corresponds to a non-closed itemset.
For instance, the disjunction of all four cells in the third
row, corresponding to BY , can also be represented by just
the fourth cell, i.e., BY RG. The combination of descriptors
BY is hence not closed (and its closure is given by BY RG).
A row or column or submatrix of the Karnaugh map with
only colored cells that is reducible to conjunctive form (e.g.,
the first two columns in the last row of Fig. 2) is also a closed
itemset; this will undoubtedly cover more transactions and
be described by fewer items. With these observations, we
can effectively relate our goal of mining redescriptions in
conjunctive form to the task of mining closed itemsets (de-
scriptor sets) and then obtaining all reducible submatrices
of the Karnaugh map (again, restricting our bias to con-
junctions) to yield redescriptions. It is interesting that this
natural extension of the association rule framework (from
implications to equivalences) has not been studied before
(The reader should keep in mind that the Karnaugh map
metaphor is used in this paper primarily as a conceptual
tool to understand redescription spaces and that our algo-
rithms do not explicitly reason with cells of the Karnaugh
map, as outlined here.)

1.4 Contributions of this Paper
We hasten to add that such a generalization of the asso-

ciation rule framework is not as easy as it appears. First,
the datasets for redescription mining are highly dense. Since
each gene participates in either a descriptor or its negation,
the datasets are exactly 50% sparse. Studying redescrip-
tions within this context poses a unique set of challenging
problems. One of our contributions is that we explain how
we can curtail the complexity by adopting a constraint-based
approach where we study the lattice of closed descriptor sets
only around genes or descriptors of interest.

Our second contribution is a precise theoretical formu-
lation for a basis for all redescriptions using the notion of
minimal generators of closed descriptor sets. We formulate
three classes of redescriptions: (i) exact, (ii) conditional,
and (iii) approximate. They differ from the viewpoint of

1Throughout this paragraph, it is important to remember
that both the given descriptors and their negations consti-
tute the items; without the negations, the analogies in this
paragraph will not hold.

Jaccard’s coefficient. The Jaccard’s coefficient J between
two sets X and Y is the ratio of the size of their intersection
to the size of their union, i.e., |X∩Y |

|X∪Y |
. An exact redescrip-

tion has J = 1. An approximate redescription has J < 1.
Notice that this can happen when either X or Y is a sub-
set of the other and also when the two sets straddle, i.e.,
X − Y 6= {} 6= Y − X. A conditional redescription can be
viewed as originating as an approximate redescription but
which has been transformed into an exact redescription by
supplying further information. For instance, the redescrip-
tion X ⇔ Y could have J< 1 but X ∩ Z ⇔ Y ∩ Z might
hold at J= 1. In other words, conditional on Z, X and Y

can be redescribed into each other. We write such redescrip-
tions as X ⇔ Y |Z. Note that approximate redescriptions
correspond to the minimal non-redundant exact or inexact
rules described in [11], and thus we focus in this paper only
on exact and conditional redescriptions.

Finally, the algorithmic approach proposed here also dif-
fers significantly from CARTwheels, an alternating algo-
rithm for mining redescriptions presented in [7]. For in-
stance, these two algorithms employ different biases: CART-
wheels uses a disjunction of conjunctions bias, with length
restrictions on the size of the expression (determined by the
size of the CARTs used in the alternation), whereas our ap-
proach uses only a conjunctions bias (for this reason, it is
not possible to compare the results of the two algorithms).
More importantly, CARTwheels’s stochastic search policy
can mine all redescriptions in a dataset only at the expense
of redundancy (i.e., revisiting some redescriptions again and
again). It is hence not suited for interactive and responsive
analysis of very large-scale datasets. Our proposed frame-
work overcomes these drawbacks; we showcase its applica-
tion to studying the transcriptome of the yeast S. cerevisiae
with public-domain datasets (taken from [7]).

2. FORMAL CONCEPTS
Let D = {d1, d2, . . . , dn} be a set of binary-valued at-

tributes or descriptors, and let G = {g1, g2, . . . , gm} be a
set of genes. Without loss of generality, we assume that,
discounting identical genes, m < 2n (if m = 2n there can
be no redescriptions, since all cells are colored; m cannot
be greater than 2n since n descriptors can only afford that
much variability). A dataset S is then a subset of G × 2D

(note that 2D denotes the power-set of D, i.e., the set of all
subsets of D); in other words, the dataset S is a set of tuples
of the form (g, X), where g ∈ G is a gene, and X ⊆ D a set
of descriptors describing the given gene g. As mentioned in
the introduction, the descriptors can be defined over many
vocabularies, such as gene expression, functional categoriza-
tion. A subset of genes G ⊆ G is also called a geneset, and
a subset of descriptors X ⊆ D is also called a dset. For
example, consider the dataset shown in Table 1. Here we
have six genes and seven descriptors; gene g1 participates in
the descriptors {d1,d2,d4,d5,d6}. In what follows, we omit
set notation for convenience and instead represent the de-
scriptors as a conjunction of boolean propositions as shown
in Table 1.

For a dset X ⊆ D, we denote its corresponding geneset as
g(X), i.e., the set of all genes described by X. For a geneset
Y , we denote its corresponding dset as d(Y), i.e., the set
of descriptors common to all the genes in Y . The composi-
tion of the two functions, namely, g that maps from dsets to
genesets, and d that maps from genesets to dsets, is called

Table 1: Sample dataset.
Gene Descriptors

g1 d1d2d4d5d6

g2 d2d3d5d7

g3 d1d2d4d5d6

g4 d1d2d3d5d6d7

g5 d1d2d3d4d5d6d7

g6 d2d3d4

a closure operator [3], given as c(X) = d(g(X)). A dset X

is said to be closed if and only if (iff) c(X) = X [3, 11]. In
other words, dset X must be a fixed point of the closure op-
erator. For instance, X = d1d5 is not closed since c(d1d5) =
d(g(d1d5)) = d(g1g3g4g5) = d1d2d5d6. On the other hand
d1d2d5d6 is closed since c(d1d2d5d6) = d(g(d1d2d5d6)) =
d(g1g3g4g5) = d1d2d5d6. Equivalently, a dset X is closed if
there exists no proper superset Y ⊃ X with g(X) = g(Y).
Note that a dset X is said to be frequent iff its correspond-
ing geneset has enough cardinality, i.e., iff |g(X)| ≥ minsup,
where minsup is some user specified threshold.

Let X be a closed dset. We say that a dset Y is a generator
of X iff 1) Y ⊆ X, and 2) g(Y) = g(X). Equivalently, Y is
a generator of X if c(Y) = X. Y is called a proper generator
iff Y ⊂ X. A proper generator cannot be closed, since by
definition, no closed subset of X can have the same geneset
as X. We say that Y ⊂ X is a minimal generator [1] of X

iff Y is a proper generator of X, and there does not exist
another proper generator Z ⊂ Y of X.

Note that a closed dset X maximally describes its corre-
sponding geneset G = g(X), i.e., X represents the maximal
set of descriptors describing the maximal set of genes G; no
other descriptor can be added to X to describe the same
geneset G, and no other gene can be added to G without
changing the dset X (i.e., without removing some descrip-
tors from X). As mentioned before, in Fig. 2 this corre-
sponds to colored cells and clusters of colored cells that are
reducible (into a conjunctive form). On the other hand,
a minimal generator of X, say Y , minimally describes the
same geneset G, since by definition g(X) = G = g(Y), and
since Y is minimal, no descriptor can be removed from Y ,
and yet describe the same geneset G. In Karnaugh map
terminology, a minimal generator is a submatrix containing
both colored and uncolored cells that can be simplified to a
conjunction representing only the colored cells.

Figure 4 shows all the 10 closed dsets along with their
genesets and their minimal generators, for our example dataset,
arranged in a lattice (i.e., a link exists between two closed
dsets X and Y iff there does not exist another closed dset
Z such that X ⊂ Z ⊂ Y). For example the dset X =
d1d2d4d5d6 maximally describes the geneset G = g1g3g5,
and its minimal generators are, Y1 = d1d4, Y2 = d4d5, and
Y3 = d4d6.

Definition 2.1. Let X, Y, Z ⊆ D be dsets, and let G ⊆ G
be a geneset. A conditional redescription for a geneset G is
a rule of the form G : (X ⇐⇒ Y)|Z, such that i) X 6= ∅
and Y 6= ∅, ii) X ∩Y = X ∩Z = Y ∩Z = ∅, iii) g(X ∪Z) =
g(Y ∪ Z) = G. Here the dset Z is called the condition. The
rule means that the dsets X and Y are equivalent or describe
the same geneset G given dset Z. If Z = ∅, then the rule
is simply an (unconditional) redescription for geneset G; in
this case we get the simpler conditions: i) X 6= ∅ and Y 6= ∅,
ii) X ∩ Y = ∅ and iii) g(X) = g(Y) = G.

dset: d1 d2 d3 d4 d5 d6 d7
geneset: g5
mingen: d1 d3 d4, d3 d4 d5, d3 d4 d6, d4 d7

dset: d2 d3 d4
geneset: g5 g6
mingen: d3 d4

dset: d1 d2 d3 d5 d6 d7
geneset: g4 g5
mingen: d1 d3, d1 d7, d3 d6, d6 d7

dset: d1 d2 d4 d5 d6
geneset: g1 g3 g5
mingen: d1 d4, d4 d5, d4 d6

dset: d2 d3 d5 d7
geneset: g2 g4 g5
mingen: d3 d5, d7

dset: d1 d2 d5 d6
geneset: g1 g3 g4 g5
mingen: d1, d6

dset: d2 d3
geneset: g2 g4 g5 g6
mingen: d3

dset: d2 d5
geneset: g1 g2 g3 g4 g5
mingen: d5

dset: d2 d4
geneset: g1 g3 g5 g6
mingen: d4

dset: d2
geneset: g1 g2 g3 g4 g5 g6
mingen: d2

Figure 4: Closed dsets, genesets, and minimal gen-
erators.

Table 2: Non-redundant redescriptions.
Geneset Redescription
g1g3g4g5 d1 ⇐⇒ d6

g2g4g5 d3d5 ⇐⇒ d7

g1g3g5 d1 ⇐⇒ d5|d4

d5 ⇐⇒ d6|d4

d1 ⇐⇒ d6|d4

g4g5 d1d3 ⇐⇒ d6d7

d1d7 ⇐⇒ d3d6

d3 ⇐⇒ d7|d6

d3 ⇐⇒ d7|d1

d1 ⇐⇒ d6|d3

d1 ⇐⇒ d6|d7

g5 d1 ⇐⇒ d5|d3d4

d1 ⇐⇒ d6|d3d4

d5 ⇐⇒ d6|d3d4

d1d3 ⇐⇒ d7|d4

d3d6 ⇐⇒ d7|d4

d3d5 ⇐⇒ d7|d4

Definition 2.2. Let X, Y, Z ⊆ D and let G ⊆ G G :
X ⇐⇒ Y |Z is a minimal (conditional) redescription for
geneset G iff there does not exist another redescription of
the same geneset G G : X ′ ⇐⇒ Y ′|Z′, such that Z ⊆ Z ′

and X ′ ⊆ X and Y ′ ⊆ Y . A minimal redescription is also
called a non-redundant redescription.

In other words a non-redundant redescription describes a
(maximal) geneset using a minimal number of descriptors.
Table 2 shows all the non-redundant redescriptions for the
given genesets in our example database. Those genesets not
shown, have no redescriptions. For example, there are no
redescriptions involving the geneset G = g5g6. It is mini-
mally described by the dset Y = d3d4, which is a minimal
generator of the maximal descriptor set (i.e., closed) d2d3d4

for G.

3. ALGORITHMS
We now turn to efficient algorithms for mining the set of

all non-redundant redescriptions. The process requires three

main steps: 1) mining the lattice of closed dsets from a given
dataset, 2) computing the minimal generators of the closed
dsets, and 3) non-redundant redescription mining from the
minimal generators. We detail each step below.

3.1 Constructing Closed Dset Lattice
To generate the minimal redescriptions, we need to con-

struct the lattice of dsets. However, current closed set min-
ing algorithms such as Closet+ [9], Mafia [2], and Charm [12]
do not output the lattice explicitly; their output is simply a
list of all the closed sets found. It is possible to generate the
lattice from a collection of closed sets C, but unfortunately,
lattice construction has time complexity O(|C|2) [5], which
is too slow for a large number of closed dsets.

We decided to extend Charm to directly compute the lat-
tice while it generates the closed dsets. The basic idea is that
when a new closed set X is found, we efficiently determine all
its possible closed supersets, P = {Y |Y ∈ C ∧X ⊂ Y }. The
minimal elements in P form the “immediate” supersets or
parents of X in the closed dset lattice. This approach leads
to a very efficient algorithm, which we call CHARM-L [13].

CHARM-L (S ⊆ G × 2D):
1. [∅] = {di : di ∈ D}
2. Charm-L-Extend ([∅], Lr = {∅})
3. return L //lattice of closed sets

Charm-L-Extend ([P], Lc):
4. for each Xi in [P] with increasing |g(Xi)|
5. [Xi] = ∅
6. Update-C (Xi, [P])
7. for each Xj > Xi in [P]
8. X = Xi ∪ Xj , g(X) = g(Xi) ∩ g(Xj) and

C(X) = C(Xi) ∩ C(Xj)
9. Charm-L-Property(X, Xi, Xj)
10. Ln = Subsumption-Check-Lattice-Gen(Lc, Xi, C(Xi))
11. Charm-L-Extend ([Xi], Ln)
12. delete [Xi]

Figure 5: The CHARM-L Algorithm.

Figure 5 gives the pseudo-code for CHARM-L(see [13]
for full details). Let L denote the closed dset lattice, and
Lr the root node of the lattice; we assume that Lr = ∅.
CHARM-L groups all dsets with prefix P , in an equivalence
class, denoted [P]. CHARM-L starts by initializing the
prefix class [∅] with the individual descriptors (line 1). It
then makes a call to the extension subroutine, passing it the
parent equivalence class and the lattice root as the current
lattice node.

Charm-L-Extend takes as input the current lattice node
Lc (initially the root node), and an equivalence class [P].
For each dset Xi ∈ [P] (line 4), we combine it with other
dsets Xj > Xi in [P] (line 7) to form a longer dset. The
routine Charm-L-Property tests inserts the newly created
dset X = Xi ∪ Xj in the new class [Xi]. It also tests if
two closed set properties are satisfied: 1) if g(Xi) ⊆ g(Xj)
we can replace the dset Xi with the larger dset Xi ∪ Xj ,
since whenever Xi describes a geneset, it also involves the
descriptors in Xj , and 2) if g(Xi) ⊃ g(Xj) then we replace
Xj with Xj ∪ Xi for the same reason (see [12] for more
details). These properties allow CHARM-L to efficiently
prune the search tree. The routine Subsumption-Check-

Lattice-Gen checks if the new prefix Xi is a closed set and
if so inserts it into the closed dset lattice.

Whenever CHARM-L generates a new closed dset it as-
signs it a unique closed dset identifier, called cid, and it
maintains for each element Xi ∈ [P] its corresponding cid-
set, denoted C(Xi), which is the set of all cids of already
mined closed dsets that are supersets of Xi. Given C(Xi)
and C(Xj), one can obtain the set of closed dsets that con-
tain X = Xi ∪ Xj by simply intersecting the two cidsets,
i.e., C(X) = C(Xi)∩C(Xj) (line 8). Subsumption-Check-

Lattice-Gen enumerates all closed sets which are not sub-
sumed (i.e., do not have the same geneset as some super-
set), but in addition, it also generates a new lattice node Ln

for the new closed set Xi, and inserts it in the appropriate
place in the closed dset lattice L. This new lattice node Ln

becomes the current node in the next recursive call of the
extension subroutine (line 11). Since the list of closed super-
sets of Xi may change whenever a new closed dset is added
to the lattice, a check is made in line 6 to update C(Xi) for
each remaining element in the class.

Subsumption-Check-Lattice-Gen(Lc, X, C(X)):
1. P = {Z ∈ C|Z.cid ∈ C(X)}

//eliminate subsumed dsets
2. for each Z ∈ P do
3. if |g(X)| = |g(Z)| then return Lc

//Insert X as parent of Lc

4. Ln = X

5. Lc.parents.add(Ln), Ln.children.add(Lc)
//Adjust Lattice

6. Pmin = {Z ∈ P|Z is Minimal}
7. for all Z ∈ Pmin do
8. Ln.parents.add(Z), Z.children.add(Ln)
9. for all Zc ∈ Z.children do
10. if Zc ⊃ Ln then
11. Zc.parents.remove(Z),

Z.children.remove(Zc)
12. return Ln

Figure 6: Subsumption Checking & Lattice Growth.

Subsumption Check and Lattice Generation: To check
if a dset Xi is closed (Figure 5, line 10), we apply Subsumption-

Check-Lattice-Gen shown in Figure 6. This routine takes
as input the current lattice node Lc, the new dset X, and
the cidset C(X). The first task is to check if X is subsumed.
For this we consider all closed dsets P that are supersets of
X (line 1). If X has the same geneset (|g(X)|) cardinality
as any of its supersets Z ∈ P (lines 2), then X is subsumed
(this is true, since for X ⊂ Z, g(X) = g(Z) ⇐⇒ |g(X)| =
|g(Z)|) and we return (line 3). Otherwise, the new lattice
node is initialized as Ln = X (line 4). Each node in the lat-
tice maintains a list of parents (immediate supersets) and
children (immediate subsets). We add the new node Ln as
a parent of the current node Lc, and Lc as child of Ln (line
5). Out of all the closed supersets of Ln = X, the minimal
supersets are found Pmin (line 6). Each minimal superset
Z ∈ Pmin becomes a parent of Ln (and Ln a child of Z)
(line 8). Finally, for every child Zc of Z, if Zc ⊂ Ln then its
parent pointers have to be adjusted; we remove Z from Zc’s
parents (and Zc from Z’s children) (lines 9-10). Finally, we
return the new lattice node Ln (line 12).

Updating C: Consider the Update-C routine in CHARM-

L (Figure 5, line 6). After the recursive call to Charm-L-

Extend (Figure 5, line 11), new closed sets may have been
generated, so we need to update the cidsets for all remaining
elements in class [P]. That is for all dsets Xj ∈ [P], with
Xj ≥ Xi, Update-C adds the cids of all newly generated
closed sets to C(Xj).

3.2 Finding Minimal Generators
Once the set of all closed dsets, C, for a given dataset has

been found using CHARM-L, the next step is to generate
the set of minimal generators, M(X), for each dset X ∈ C.
Note that a minimal generator Z of a closed dset X is a
minimal dset that is a subset of X, but not a subset of any
of X’s immediate closed subsets in the closed dset lattice
L. Let Y = {Y1, Y2, · · · , Yk} be the set of immediate closed
subsets of X in L, and let M(Yi) be the set of minimal
generators of dset Yi. Further define the dset ∆i = X − Yi

to be those elements in X that are not in Yi, and let ∆ =
{∆1, ∆2, · · · , ∆k}. A dset Z is called a hitting set of ∆ iff
Z ∩ ∆i 6= ∅ for all i ∈ [1, k]. A dset Z is called a minimal
hitting set if there does not exist another hitting set Z ′, such
that Z ′ ⊂ Z.

Theorem 3.1. Given dset X, the set of minimal genera-
tors of X, namely M(X) is the same as the set of minimal
hitting sets of ∆.

A similar theorem was independently reported in [6].

//X is a closed dset,
//Y, the set of adjacent closed subsets of X in L
MinimalGenerators(X,Y):
1. H(X) = ∅;
2. ∆ = {∆i = X − Yi|Yi ∈ Y};
3. for each k-tuple (z1, z2, · · · , zk), with zi ∈ ∆i

4. Z = {z1, z2, · · · , zk}; //removes duplicate zi’s
5. H(X) = H(X) ∪ {Z};
6. M(X) = {Z ∈ H(X)|Z is minimal inH(X)};

Figure 7: Finding Minimal Generators.
Our novel algorithm to find minimal generators is shown

in Figure 7, and is based on the above theorem. Given
closed set X and the set Y of its immediate closed sub-
sets (say |Y| = k), we first determine the set of differences
∆ (line 2). Next we construct each possible k-tuple of the
form (z1, z2, · · · , zk) by picking exactly one descriptor from
each difference, i.e., zi ∈ ∆i (line 3). Let Z be the set con-
structed from this k-tuple, i.e., Z = {z1, z2, · · · , zk} (line 4).
Whereas the k-tuple may have duplicate items, Z will, by
set definition, remove any duplicate elements. By construc-
tion, it is clear that Z is a hitting set for ∆. All such hitting
sets are added to a set M(X) (line 5), and finally only the
minimal dsets in M(X) are added to M(X) (line 6), which
thus contains all minimal hitting sets of ∆, which are also
the minimal generators of X.

For example, consider the dset X = d1d2d5d6. As shown
in Figure 4, it has only one immediate closed subset Y1 =
{d2, d5}. Thus ∆1 = d1d6. In line 6, each element in ∆1

will be picked in turn and added to H(X), and since a single
element is minimal, we have M(X) = {d1, d6}, as shown in
Figure 4. For the dset X = d1d2d3d4d5d6d7, with imme-
diate subsets Y = {d2d3d4, d1d2d3d5d6d7, d1d2d4d5d6}, we
have ∆ = {d1d5d6d7, d4, d3d7}. Picking all 3-tuples with

one element from each ∆1 we get the hitting sets H(X) =
{d1d3d4, d1d4d7, d3d4d5, d4d5d7, d3d4d6, d4d6d7, d3d4d7, d4d7}.
The minimal sets in H(X) are given as M(X) = {d1d3d4,

d3d4d5, d3d4d6, d4d7} which are the minimal generators for
X. Figure 4 shows the minimal generators for all closed
dsets.

3.3 Non-redundant Redescription Generation

GenerateRedescriptions (X ∈ C):
for all pairs Y, Z ∈ M(X)

Q = Y ∩ Z;
output : g(X) : Y − Q ⇐⇒ Z − Q|Q

Figure 8: Non-redundant Redescription Generation.

Let C be the set of all closed dsets. Given any closed dsets
X ∈ C and its corresponding geneset G = g(X), as well
as the set of minimal generators of X, given as M(X) =
{Y |Y is a minimal generator of X}, Figure 8 shows the al-
gorithm for generating minimal/non-redundant (conditional)
redescriptions. For each distinct pair Y, Z ∈ M(X), we gen-
erate the rule G : Y − Q ⇐⇒ Z − Q|Q, where Q = Y ∩ Z

is the condition dset. Since we use minimal generators to
produce the rule, we can guarantee that the rule is minimal.

For example, consider the closed dset X = d1d2d5d6 with
geneset G = g(X) = g1g3g4g5 and minimal generators M =
{d1, d6}, as shown in Figure 4. The only possible (un-
conditional) redescription is G : d1 ⇐⇒ d6, as shown
in Table 2. For the closed dset X = d1d2d4d5d6, with
geneset G = g(X) = g1g3g5, and minimal generator set
M = {d1d4, d4d5, d4d6}, we obtain the following conditional
redescriptions: G : d1 ⇐⇒ d5|d4, d5 ⇐⇒ d6|d4, d1 ⇐⇒
d6|d4. All other redescriptions shown in Table 2 are obtained
in a similar manner. Note that an unconditional redescrip-
tion is found for any disjoint pair of minimal generators,
whereas a conditional redescription is found for any non-
disjoint pair of minimal generators.

Observe that (exact) redescriptions always occur in pairs.
When X ⇔ Y holds, so does ¬X ⇔ ¬Y . Due to our sup-
port threshold minsup, however, we may not mine both
forms explicitly. Even if both forms conform to the sup-
port threshold, recall that we mine only those redescriptions
where both sides obey the conjunctions bias; so if X or Y

is a conjunction of more than one descriptor, its negation
would be a disjunction, and hence outside the purview of
our bias.

3.4 Constraint-Based Mining
As described above, our methods are oblivious of the mean-

ing of a descriptor, i.e., the mining process is not aware
which of them are ‘positive’ and which are negated. In gen-
eral a large number of negated descriptors leads to a com-
binatorial blowup in the number of closed dsets. To make
mining tractable we introduce several constraints. The first
constraint enforces the presence of certain descriptors in the
mined redescriptions. The input is in the form of a set of
constraints: {C1, C2, · · · , Ck|Ci ⊂ D, i = 1, · · · , k}. Each
constraint Ci specifies those descriptors that must all be
present in a redescription. Each redescripion output must
satisfy at least one constraint Ci. Thus the set of constraints
are treated as a disjunction over conjunctions of descrip-
tors. We efficiently check each constraint during mining. In
the CHARM-L pseudo-code shown in Figure 5, we do the

Table 3: Datasets used in this paper.
DB NumGenes NumDesc AvgSize
G1 74 824 88
G2 332 1700 81
G3 168 1189 52

following test on each prefix class [P] (before line 4). Let
U =

S

i
Xi ∈ [P], then it suffices to check if U is a super-

set of at least one constraint Cj . If not, U cannot possibly
satisfy any constraint and thus we can discard the entire
search tree under [P]. This leads to very effective pruning.
Another check of the constraints is made before adding a
new closed set to the lattice.

We also introduce a constraint on the genesets. As in the
case of dsets, the input is in the form of sets over G and
the meaning is similar. The check of these gene constraints
are also done effectively while mining as follows: whenever
we obtain a new geneset g(X) in Fig. 5 (line 4), we keep
track of the genes not in the intersection. If at least one
constraint Ci remains unaffected, the new dset is kept for
the next step, or else it is pruned.

We also implemented the ability to impose a length con-
straint on the mined closed dsets. To implement this, it
is not correct to simply stop extending a dset if its length
exceeds some threshold, since this would most likely pro-
duce a non-closed set, leading to wrong minimal generators.
The correct way is to impose the length constraint on the
minimal generators! Note that every minimal generator will
be visited by the CHARM-L algorithm while computing
closed sets. So while we never produce a minimal generator
with length exceeding the constraint, a closed dsets might
be longer. This ensures that the set of dsets with the length
constraint are a subset of those without the constraint.

Finally, we have developed an interactive language, us-
ing MATLAB style scripting capabilities, to support the ex-
ploration of genesets through redescription analysis. The
language contains primitives to define subsets of genes and
descriptors, to request that a redescription be attempted
for a selected set of genes (or involving those induced by
a selected set of descriptors), to impose constraints on the
mining process, manage the resulting mined redescriptions,
and to investigate how the space of possible answers changes
with varying inputs. The next section contains running ex-
amples of how a bioinformatician would use this language.

4. EXPERIMENTAL RESULTS
We now present an application of redescription mining to

studying gene expression datasets from microarray experi-
ments conducted on the budding yeast Saccharomyces cere-
visiae. We utilize the three datasets from [7] (see Table 3)
to study the scalability and performance of our implementa-
tions. The biological results are explained and detailed with
specific reference to one of them, namely G1.

The specific details of the datasets can be had from [7]
but we briefly review their characteristics here. All datasets
define a small set of yeast genes (NumGenes in Table 3) but
relatively greater number of descriptors (NumDesc). The
average number of descriptors per dataset is also high (Avg-
Size). The descriptors are drawn a variety of sources. Some
denote expression levels in specific microarray measurements
taken from Gasch et al. [4] and Wyrick et al. [10]. For
instance, ‘genes negatively expressed one-fold or below in

the 15 minute time point of the 1M sorbitol experiment’ is
one such descriptor. A second class of descriptors asserts
membership of genes in targeted taxonomic categories of
the Gene Ontology (biological processes (GO BIO), cellular
components (GO CEL) or molecular functions (GO MOL)).
A final class of descriptors is based on clustering time course
datasets using a k-means clustering algorithm [8] and using
the clusters as descriptors. All descriptors are given an iden-
tifier as well as mnemonic for ease of interpretation.

4.1 Biological Results
We now present two interactive scenarios of how a biol-

ogist will use our algorithms, with the G1 dataset, as well
as one example of a cluster of genes dense in conceptual de-
scriptor space. For the results presented in this section, we
negated each of the 824 descriptors in the G1 dataset and
added it back to the descriptor pool, so that the algorithm
can be used to mine set differences in addition to intersec-
tions. This yields a 74 × 1648 input boolean matrix. Recall
that, by construction, such a dataset will be exactly 50%
sparse.

> load yeast descriptors;
> descriptors([YOR374W]);
ans = [d127, d183, d184, ...];

> explain(d184);
ans = (GASCH ENV 05004) Heat Shock 20 mins hs-1 >= 5

> genes([d184]);
ans = [g4, g10, g12, ...];

> find(descriptors,’Heat Shock*15*’);
ans = [d146, d181, d183, ...];

> explain(d183);
ans = (GASCH ENV 05003) Heat Shock 15 mins hs-1 >= 5
...
> Jaccards(“d183”,“d184”);
ans = 0.857;

> dsubset = find(descriptors,’GO*MOL*’);
> dsubset = dsubset + [d183 d184];
> gsubset = genes(dsubset);
> constraints = mustinclude([d183 d184]);
> minsup = 15; jac = 1;
> redescribe(gsubset,dsubset,constraints,minsup,jac);
no redescriptions found.
...
> dsubset = [];
> dsubset = find(descriptors,’GO*BIO* | GO*CEL* |
GO*MOL*’);
> dsubset = dsubset + [d183 d184];
> gsubset = genes(dsubset);
> redescribe(gsubset,dsubset,constraints,minsup,jac);
1 redescriptions found.
ans = “d183 d1212 d1284 d1339” is redescribed as “d184
d1133”

> prettyprint(ans);
ans = (GASCH ENV 05003) Heat Shock 15 mins hs-1 >= 5
EXCEPT (GO MOL 1578) mannose transporter
EXCEPT (GO CEL 30312) external protective structure
EXCEPT (GO BIO 06000) fructose metabolism
IS REDESCRIBED AS
(GASCH ENV 05004) Heat Shock 20 mins hs-1 >= 5
EXCEPT (GO MOL 05554) molecular function unknown;
...

Figure 9: Interactive exploration of genesets using
redescription analysis.

4.1.1 Interactive Scenario 1
The first scenario is depicted in Fig. 9 and illustrates a

biologist who explores descriptors around his favorite gene

— YOR374W, an ORF in S. cerevisiae that encodes for an
aldehyde dehydrogenase (an enzyme - E.C.1.2.1.5 - that cat-
alyzes the reaction from {aldehyde, NAD+, H20} to {acid,
NADH}), and which he knows to be very highly expressed
in time point 20 minutes of the Gasch heat shock condition
(more than five fold). Aldehyde dehydrogenase is important
enzymatically because the system must obtain increased en-
ergy from acetaldehyde under strenuous growth conditions.
The biologist begins the analysis by identifying the descrip-
tors that Y0R374W participates in. One of them is descrip-
tor d184 that denotes all ORFs that are expressed more
than five fold in the above time point; it contains 19 genes.
Looking at the nearby time point (15 minutes) the biologist
notices that the corresponding descriptor (d183) contains 21
genes, with 18 in common with d184. The Jaccard’s coeffi-
cient between these descriptors is already high (0.857) but
the biologist is curious to determine if there could be an ex-
act redescription by using the GO vocabularies. This might
be significant if physiologically some response/repair could
be associated with the transition between the time points.
He adds the GO molecular function taxonomy into the ses-
sion but the Jaccard’s coefficient doesn’t improve. Then,
he removes the GO molecular function taxonomy and adds
the cellular component taxonomy and the biological process
taxonomy, in turn. None of the three choices improves the
quality of the redescription. Finally, he adds all three tax-
onomies simultaneously, and the system presents him with
a perfect redescription:

d183 − d388 − d460 − d515 ⇔ d184 − d309

(In Fig. 9 note that the set subtractions represented as con-
junctions of negated descriptors; in this convention, sub-
traction of descriptor d388 is captured as conjunction of de-
scriptor d1212, whose index is 824 plus the original d388):
In other words, to make d183 equivalent to d184, we need to
subtract descriptors d388, d460, and d515 on the left (to re-
move 3 genes) and subtract descriptor d309 on the right (to
remove 1 gene), bringing the commonality to 18, as desired.
As Fig. 9 explains, d388 refers to the GO molecular function
category: mannose transporter, d460 refers to the GO cellu-
lar component category: external protective structure, and
d515 refers to the GO biological process category: fructose
metabolism. d309, on the right side, incidentally happens to
refer to genes whose molecular function, according to GO, is
unknown. The implied message, from the above redescrip-
tion, is that as we go from time point 15 minutes to time
point 20 minutes genes belonging to the above three cate-
gories drop out of the highly expressed (≥ 5 fold) category.

4.1.2 Interactive Scenario 2
The above example showed how we can relate two dif-

ferent time points but the task is relatively easy given the
high degree of initial overlap between the sets. Let us add
more complexity to the mix and, this time, relate not only
a different time point but also a less stringent threshold.
One such descriptor is d141 which is the set of genes ex-
pressed more than (just) two fold in the 10 minutes time
point (not 20 minutes, as in descriptor d184). Since d141
contains 50 genes, it cannot enjoy a Jaccard’s coefficient of
more than 0.38 with descriptor d184. This time, the system
is configured to use all available descriptors. It arrives at
34 redescriptions involving d141 as well as d184, but all of

 0.001

 0.01

 0.1

 1

 10

 100

 0.5 0.4 0.3 0.25 0.2

T
im

e
 (

s
)

Minimum Support (%)

G1

Total
Lattice

Mingen
Rules

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0.5 0.4 0.3 0.25 0.2

C
a
rd

in
a
lit

y

Minimum Support (%)

G1

Closed
Exact
Cond

 10

 15

 20

 25

 30

 35

 40

 0.5 0.4 0.3 0.25 0.2

D
s
e
t
L
e
n
g
th

Minimum Support (%)

G1

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.3 0.2 0.15 0.125 0.1

T
im

e
 (

s
)

Minimum Support (%)

G2

Total
Lattice

Mingen
Rules

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0.3 0.2 0.15 0.125 0.1

C
a
rd

in
a
lit

y

Minimum Support (%)

G2

Closed
Exact
Cond

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.3 0.2 0.15 0.125 0.1

D
s
e
t
L
e
n
g
th

Minimum Support (%)

G2

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.2 0.15 0.1 0.05

T
im

e
 (

s
)

Minimum Support (%)

G3

Total
Lattice

Mingen
Rules

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.2 0.15 0.1 0.05

C
a
rd

in
a
lit

y

Minimum Support (%)

G3

Closed
Exact
Cond

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0.2 0.15 0.1 0.05

D
s
e
t
L
e
n
g
th

Minimum Support (%)

G3

Figure 10: Mining time, rule cardinality, and length of longest closed dset for three datasets.

them are expressed conditionally; example:

d141 − d515 − d608 ⇔ d184|d183

Recall that d515 refers to the fructose metabolism category,
but it cannot possibly help in improving the Jaccard’s co-
efficient as it removes only one gene from d141. Descriptor
d608, on the other hand, refers to the set of genes expressed
four-fold or above in a different experiment (histone deple-
tion). In other words, to go from genes expressed 2-fold
or above to genes expressed 5-fold or above (across time
points), we have to remove the genes associated with fruc-
tose metabolism and that have relatively high positive ex-
pression in histone depletion. The conditional descriptor
d183 can be viewed as a further conjunct on both sides, but
since it already has significant overlap with d183, has only
an incremental ‘trimming’ role to offer (e.g., the removal
of few genes from both sides). The implied message from
this redescription is that the genes that are only moderately
expressed (between 2- and 5-fold) in the heat shock time

points are those that are highly expressed in the histone de-
pletion time point. Further inspection of the 34 redescrip-
tions mined above reveals that all of them contain the only
other aldehyde dehydrogenase represented in the dataset -
YMR170C (NAD(P)+). This brings out the ability of re-
description mining to bring concerted genes together.

4.1.3 Identifying Dense Conceptual Clusters
If we view closed itemsets as biclusters then it is of in-

terest to determine dense conceptual clusters underlying a
given set of constraints. We restricted our attention to
a set of genes clustered together in a k-means descriptor
(d77; HS2 KMC 01) for the Heat Shock experiment. When
queried for all redescriptions (at J = 1 and a minimum
support threshold of 13) that involve this descriptor, we ob-
tained 867 redescriptions! Recall that the total number of
input descriptors is less than double of this number. On
closer inspection, we noticed that all these redescriptions
comprised only 98 descriptors and all were conditional re-

descriptions, with an almost majority having d77 as the con-
ditional. Hence, this means that, coupled with d77, many of
these descriptors forms a minimum generator of the closure
of d77. Sometimes, two or more of these descriptors need
to be conjoined in order to form the minimum generator.
Thus these descriptors, together with the genes they cover
(14 of them, out of the total 74) form a dense bicluster in
the dataset.

4.2 Performance Results
We ran some more experiments to test the performance of

our approach. Here we only consider ‘positive’ descriptors,
since the whole set of descriptors (including negative ones)
can only be mined using constraints. For example, if all
descriptors are used, then the average size would be the
same as NumDesc, for each dataset. Our experiments were
run on a 3.2Ghz Pentium4 machine with 2GB of memory
running Linux, with a 7200rpms 200GB IDE disk.

Figure 10 shows the running time for the various steps
in mining redescriptions, as well as the rule cardinalities
for the different datasets as a function of minimum support
threshold. The left column shows the time, where the leg-
ends ‘Total’ means the total execution time for the entire
algorithm, ‘Lattice’ means the time it takes to build the fre-
quent closed dset lattice, ’Mingen’ means the time it takes
to generate the minimal generators for each closed dset, and
‘Rules’ means the time it takes to extract the self and con-
ditional redescriptions. The middle column shows the car-
dinalities, where the legends ‘Closed’ means the number of
frequent closed dsets mined, ‘Exact’ means the number of
exact redescriptions and ‘Cond’ means the number of con-
ditional redescriptions mined. The right column shows the
longest closed dset found at a given support threshold.

We can observe that for the G1 and G2 datasets most of
the time is spent in mining the closed dsets and constructing
the lattice, whereas the minimal generator time is lower and
rule generation time is even lower. However, as we decrease
minimum support, more closed dsets are found and there is
an increase in the number of exact redescriptions. At the
same time there is an even bigger explosion in the number of
conditional rules. This leads to an increase in the running
time for rule generation. Notice also that for G1 and G2
the longest closed set has size 40. For G3, the effect is even
more pronounced. We find that the number of exact and
conditional rules increases dramatically, and thus the rule
generation time dominates. The times for closed dset min-
ing, lattice generation, and minimal generators is negligible.
The longest dset mined for G3 has length 50!

5. DISCUSSION
We have demonstrated a formal approach to redescription

mining, along with examples of how a biologist would use
such a facility interactively. As biologists are empowered
to create their own vocabularies and descriptors and reason
with them, there will be greater understanding of large scale
bioinformatics datasets.

In future work, we plan to increase the expressiveness of
our formulation in many ways. First, we would like to re-
describe not just in a propositional logic, as described here,
but employing a form of predicate logic. An example from
bioinformatics would be the use of a homology relation to
relate, for instance, descriptors from a yeast vocabulary to
descriptors in a vocabulary designed for mouse genes. This

is a natural generalization of the type of redescriptions con-
sidered here. Second, we would like to create chains of (ap-
proximate) redescriptions, effectively forming a story from
one gene set to another. Given two disjoint sets, for in-
stance, even though there could be no redescription connect-
ing them, there could be a chain of approximate redescrip-
tions going from one to the other. Finally, we would like to
use redescriptions as a basis for knowledge management in
domains rich in descriptors. Towards this goal, we aim to
extend the expressiveness of our mining algorithms towards
other classes of expressions such as disjunctions, and also
more generality, e.g., CNF or DNF.

Acknowledgments
Zaki’s work was supported in part by NSF CAREER Award
IIS-0092978, DOE Career Award DE-FG02-02ER25538, NSF
grant EIA-0103708, and NSF grant EMT-0432098. Ramakr-
ishnan’s work was supported in part by NSF grants IBN-
0219332 and EIA-0103660. We acknowledge the help of
Deept Kumar, who furnished us with the datasets from [7]
and Laxmi Parida, for useful discussions.

6. REFERENCES
[1] Y. Bastide, N. Pasquier, R. Taouil, G. Stumme, and L. Lakhal.

Mining minimal non-redundant association rules using frequent
closed itemsets. In 1st International Conference on
Computational Logic, July 2000.

[2] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: a maximal
frequent itemset algorithm for transactional databases. In
IEEE Intl. Conf. on Data Engineering, pages pp. 443–452,
April 2001.

[3] B. Ganter and R. Wille. Formal Concept Analysis:
Mathematical Foundations. Springer-Verlag, 1999.

[4] A.P. Gasch, P.T. Spellman, C.M. Kao, O. Carmel-Harel, M.B.
Eisen, G. Storz, D. Botstein, and P.O. Brown. Genomic
Expression Programs in the Response of Yeast Cells to
Environmental Changes. Mol. Biol. Cell, Vol. 11:pages
4241–4257, 2000.

[5] L. Nourine and O. Raynaud. A fast algorithm for building
lattices. Information Processing Letters, 71:199–204, 1999.

[6] J.L. Pflatz and R.E. Jamison. Closure systems and their
structure. Information Sciences, 139:275–286, 2001.

[7] N. Ramakrishnan, D. Kumar, B. Mishra, M. Potts, and R.F.
Helm. Turning CARTwheels: An Alternating Algorithm for
Mining Redescriptions. In Proc. KDD’04, pages 266–275, Aug
2004.

[8] A. Sturn, J. Quackenbush, and Z. Trajanoski. Genesis: Cluster
Analysis of Microarray Data. Bioinformatics, Vol. 18(1):pages
207–208, 2002.

[9] J. Wang, J. Han, and J. Pei. Closet+: Searching for the best
strategies for mining frequent closed itemsets. In ACM
SIGKDD Int’l Conf. on Knowledge Discovery and Data
Mining, August 2003.

[10] J.J. Wyrick, F.C. Holstege, E.G. Jennings, H.C. Causton,
D. Shore, M. Grunstein, E.S. Lander, and R.A. Young.
Chromosomal Landscape of Nucleosome-Dependent Gene
Expression and Silencing in Yeast. Nature, Vol. 402:pages
418–421, 1999.

[11] M. J. Zaki. Generating non-redundant association rules. In 6th
ACM SIGKDD Int’l Conf. on Knowledge Discovery and
Data Mining, pages pp. 34–43, August 2000.

[12] M. J. Zaki and C.-J. Hsiao. ChARM: An efficient algorithm for
closed itemset mining. In 2nd SIAM International Conference
on Data Mining, pages pp. 457–473, April 2002.

[13] M. J. Zaki and C.-J. Hsiao. Efficient algorithms for mining
closed itemsets and their lattice structure. IEEE Transactions
on Knowledge and Data Engineering, 17(4):462–478, April
2005.

