
Deep Clustering with Associative Memories

Bishwajit Saha
Department of CS

RPI
Troy, NY, USA
sahab@rpi.edu

Dmitry Krotov
MIT-IBM Watson AI Lab

IBM Research
Cambridge, MA, USA
krotov@ibm.com

Mohammed J. Zaki
Department of CS

RPI
Troy, NY, USA

zaki@cs.rpi.edu

Parikshit Ram
IBM Research

Yorktown Heights, NY, USA
Parikshit.Ram@ibm.com

Abstract

Deep clustering – joint representation learning and latent space clustering – is
a well studied problem especially in computer vision and text processing under
the deep learning framework. While the representation learning is generally dif-
ferentiable, clustering is an inherently discrete optimization, requiring various
approximations and regularizations to fit in a standard differentiable pipeline. This
leads to a somewhat disjointed representation learning and clustering. Recently,
Associative Memories were utilized in the end-to-end differentiable ClAM cluster-
ing scheme (Saha et al., 2023). In this work, we show how Associative Memories
enable a novel take on deep clustering, DClAM, simplifying the whole pipeline and
tying together the representation learning and clustering more intricately. Our exper-
iments showcase the advantage of DClAM, producing improved clustering quality
regardless of the architecture choice (convolutional, residual or fully-connected) or
data modality (images or text).

1 Introduction

Clustering is a common unsupervised task to find hidden structure in unlabeled data. At a technical
level, it critically relies on a notion of (pairwise) distance or similarity to distinguish pairs of data
samples as being “similar” or “different” (Xu & Wunsch, 2005; Saxena et al., 2017; Xu & Tian,
2015). Diverse formulations and methods have been explored to find effective data clustering over
time, including well-known methods like k-means (MacQueen, 1967), fuzzy c-means (Bezdek et al.,
1984), Hierarchical Clustering (Johnson, 1967), Expectation Maximization (Dempster et al., 1977)
and Spectral Clustering (Donath & Hoffman, 1973). When dealing with numerical data S ⊂ Rd

with d dimensions, metrics such as Euclidean distance are commonly used. The insights from
clustering can be unintuitive or misleading without a meaningful distance. Nevertheless, even with
numerical data and an appropriate (meaningful) notion of distance, increasing data dimensionality
(that is, increasing d) makes clustering computationally hard as well as conceptually difficult since
the separation between similar pairs and dissimilar ones can start to vanish (Verleysen & François,
2005; Steinbach et al., 2004; Assent, 2012).

In various domains, both these problems manifest – first, the raw representation of samples can be
extremely high dimensional (consider the number of pixels in an image, or the number of words in
a vocabulary for a bag-of-words representation of documents); second, while we have an ambient
representation, standard notions of vector distances (such as Euclidean one) do not necessarily make
sense – for example, Euclidean distance based on pixels can be large between an image and a slightly
shifted version of it, which can be problematic if the content of the images are translation or rotation
invariant. Deep clustering (Min et al., 2018; Ren et al., 2024; Zhou et al., 2022) tries to address both

Machine Learning and Compression Workshop @ 38th Conference on Neural Information Processing Systems



these issues simultaneously, by both learning a low dimensional latent space, and ensuring standard
distance metrics are meaningful in that space.

For the latent representations to be faithful to the original samples, deep clustering ensures that
there is no significant information loss in the latent space, leading to the common use of autoen-
coders (Rumelhart et al., 1985; Baldi, 2012; Bank et al., 2023) that learn latent representations (via
an encoder) which can be used to reconstruct the original samples (via a decoder). The goal of deep
clustering is to discover a cluster structure in the latent space while ensuring low reconstruction loss.
This is a widely studied problem, especially in image datasets, which is amenable to end-to-end
differentiability (Caron et al., 2018; Chang et al., 2017).

While the autoencoder is usually differentiable, standard clustering schemes (such as k-means or
agglomerative ones) are inherently discrete methods since hard clustering (where each sample
is only assigned to a single cluster) is a discrete optimization problem. To incorporate it in a
differentiable deep learning pipeline, clustering is often “softened” by allowing samples to be
partially assigned to multiple clusters, although various “regularizations” push the soft assignments
to match hard assignments approximately (Xie et al., 2016; Guo et al., 2017a). Recent work (Saha
et al., 2023) handles this dichotomy between hard assignments and differentiability with Associative
Memories (Hopfield, 1982), a neuro-inspired recurrent network, proposing the ClAM clustering
scheme which outperforms both discrete clustering baselines and differentiable soft clustering ones.
See detailed related works in section A in Apendix.

In this paper, we explore the use of associative memories for deep clustering and make the following
contributions, demonstrating how associative memories critically enable a more elegant form of deep
clustering:

• We propose DClAM, an extension of ClAM, that learns representations and clusters in a latent space.
• We demonstrate how associative memories enable a simplified deep clustering DClAM that improves

the learning while being closely related to standard deep clustering.
• We conduct a thorough evaluation on image and text data and multiple encoder architectures,

demonstrating that DClAM significantly improves clustering quality over existing baselines, with
the improvements being agnostic to the encoder/decoder architecture choice.

2 Preliminaries

We denote an input set as S ⊂ Rd in the ambient space, with an input x ∈ S, and JnK a n-length
index set {1, . . . , n}.

2.1 Deep Clustering Basics

Deep clustering is an unsupervised task, where we have to learn (usually lower dimensional) repre-
sentations such that (i) no (critical) information is lost in the latent lower dimensional representations,
and (ii) the data in the latent space forms well-separated clusters. To ensure that no information is lost
in the latent space, we learn an encoder e : Rd → Rm (m < d) that maps the input x ∈ Rd to a latent
space (that is, e(x) ∈ Rm), along with a decoder d : Rm → Rd that maps the latent representation
back to the original ambient space. Encoder e and decoder d together give us an autoencoder, and
the loss of information is often measured as the reconstruction loss:

Lr(e,d) ≜
∑
x∈S

ℓr(x, e,d) =
∑
x∈S

∥x− d(e(x))∥2. (1)

This loss term does not account for the cluster structure in the latent space. For that purpose, we
consider k cluster centers ρ = {ρ1, . . . , ρk} ⊂ Rm in the latent space, so that the corresponding
clustering loss is given by:

Lc(e,ρ) ≜
∑
x∈S

ℓc(x, e,ρ) =
∑
x∈S

min
i∈JkK

∥e(x)− ρi∥2, (2)

which measures how close a sample is to its closest cluster center in the latent space with a mini∈JkK
on a per-sample basis to denote the discrete assignment. A small value of Lc(e,ρ) implies that all
points in the latent space are close to their respective cluster centers.

Unsupervised deep clustering is often considered in the following form (Guo et al., 2017a,b; Cai
et al., 2022)

min
e,d,ρ

Lr(e,d) + γLc(e,ρ) (3)

2



where γ ≥ 0 is a hyperparameter that balances the clustering loss Lc and the reconstruction loss Lr.
Nevertheless γ can be difficult to select since the terms Lc and Lr are not inherently comparable,
with Lc being computed between entities in the latent space Rm, and Lr computed between items in
the ambient space Rd.

To handle this challenge (though rarely introduced in this manner to the best of our knowledge),
usual implementations of deep clustering (Guo et al., 2017a,b; Golzari Oskouei et al., 2023) do the
following: (i) First, an autoencoder (that is, e and d) is “pretrained” with the data to achieve low
reconstruction error (that is, low Lr by setting γ = 0 in Eq. (3)), and (ii) second, the γ is set to a
positive value in Eq. (3), and the clustering loss Lc is minimized by learning the cluster centers ρ,
and “fine-tuning” the encoder e, while the reconstruction loss Lr stays low by changing the decoder
d accordingly if the balancing hyperparameter γ is set appropriately.

Ambient Space Rd

x

d(AT
ρ (e(x)))

Latent Space Rm

Encoder

e

AM-inspired loss
L̄ =

∑
x ∥x− d ◦AT

ρ ◦ e(x)∥22
Lr ≤ L̄ ≤ γ1Lc + γ2Lr

∇eL̄

Decoder

d

e(x)→ v

ρ1ρ2

ρ3

ρ4

ρ5 ρ6

AT
ρ (v)

AM rec.

∇ρL̄

∇dL̄

Figure 1: DClAM: AM-enabled simplified deep clus-
tering. The solid arrows −−→ denote the forward-
pass to compute the single loss term in Eq. (6).
The dashed arrows −→ denote the backward pass
showing the single loss driving all updates.

Evaluation of deep clustering. A common
metric to evaluate and benchmark deep clus-
tering algorithms is by computing the overlap
between the obtained clusters in the latent space
(thus, partitions) and a semantic partitioning of
the data with metrics such as the Normalized
Mutual Information or NMI. While this is a fair
metric to compare methods on, it is critical to
ensure that NMI (or similar label-dependent
metrics) is not utilized for hyperparameter se-
lection since that is leaking supervision into
the unsupervised task of deep clustering, mak-
ing the overall process a supervised learning
pipeline. To the best of our knowledge, it is
not clear how hyperparameters are typically
selected. Even for the purposes of just evalua-
tion, NMI like metrics might only tell us how
the learned clusters in the latent space match
some semantic partitioning (often manual) of
the data, it does not provide any information
regarding the reconstruction quality (and thus
the information loss in the latent space). Thus,
it is easily possible to have high NMI with poor
reconstruction loss, which may not align with
the primary goals of deep clustering. If we em-
ploy autoencoder pretraining, then we could
optimize for the clustering quality with some
unsupervised metric (such as SC) while ensur-
ing that the reconstruction loss is within some margin (say 10%) of the reconstruction loss of the
pretained autoencoder. We believe that the hyperparameters should be selected based on unsupervised
metrics – metrics that do not utilize any ground-truth label information to evaluate clustering quality –
given the unsupervised nature of the deep clustering problem. Thus, we consider the above strategy of
optimizing for SC while keeping the reconstruction loss below some user-defined threshold. Existing
literature typically report NMI without explicitly discussing reconstruction loss.
2.2 Dense Associative Memories and Clustering

Given k memories {ρ1, . . . ,ρk},ρi ∈ Rd, and a point or particle v ∈ Rd, ClAM (Saha et al, 2023)
defines the energy function for v as follows:

E(v) = − 1

β
log

(∑
i∈JkK

exp(−β∥ρi − v∥2)
)

(4)

with the scalar β > 0 playing the role of inverse “temperature”. As β increases, the exp(·) function
emphasizes the leading term, suppressing the others. In ClAM, the attractor dynamics are driven by
gradient descent on the energy landscape. This controls the movement of v over time through dv/dt,
ensuring a decrease in energy:

τ
dv

dt
= −1

2
∇vE =

∑
i∈JkK

(ρi − v) softmax(−β∥ρi − v∥2) (5)

3



Here, τ > 0 is a characteristic time constant that determines how quickly the particle will move
on the energy landscape. The function softmax(·) represents the softmax function applied to the
scaled distances to the memories. We use the notation AT

ρ (v) to denote Aρ(Aρ(· · ·Aρ(v))), where
the operator Aρ is applied to v recursively for T steps. Thus, vt+1 = Aρ(v

t) = vt + τ dv
dt |v=vt , via

gradient descent on the energy. The attractor dynamics ensure that every memory ρi, i ∈ JkK, forms
a “basin of attraction”, and with enough recursions T , any particle will usually converge to exactly
one of these memories ρi, which thus act as cluster centers. The differentiability of the recursive
dynamics is what makes ClAM an end-to-end differentiable clustering scheme, with the memories
learned via standard backpropagation.

3 Deep Clustering with Associative Memories

One key limitation of ClAM is that is works only in the ambient space, since it lacks representation
learning. In this work, we propose novel approach to deep clustering that leverages the attractor
dynamics and combines it with latent space learning.

3.1 DClAM: AM enabled Deep Clustering

Existing deep clustering needs to solve Eq. (3) explicitly, which involves the critical γ hyperparameter
to appropriately balance the clustering and reconstruction losses. Here, we will show how AM
enables the removal of the critical γ hyperparameter in the deep clustering objective (Eq. (3)), while
still maintaining the intent of Eq. (3) to balance the clustering loss and the reconstruction loss.

Consider the pipeline depicted in Fig. 1: The input x is mapped into the latent space as e(x) by
the encoder e, and then the attractor dynamics operator Aρ : Rm → Rm based on the current
centers ρ = {ρ1, . . . , ρk} is applied to e(x) for T recursions, resulting in AT

ρ (e(x)) ≈ ρ4. Then this
representation (effectively of a cluster center) is passed through the decoder d to get d(AT

ρ (e(x))) ∈
Rd in the ambient space. We can then optimize for the following loss:

min
e,d,ρ

L̄(e,d,ρ) ≜
∑
x∈S

∥∥x− d
(
AT

ρ (e (x))
)∥∥2︸ ︷︷ ︸

ℓ̄(x,e,d,ρ)

. (6)

Here AM becomes the intricate part of the encoder that transforms the embedding space (obtained by
the encoder) into a clustering-friendly new space to find clusters (as opposed to the existing deep
clustering schemes that use different additional loss functions e.g. clustering loss in Eq. (3) and/or
regularizations to get a similar effect). This AM enabled novel deep clustering loss L̄ is a single term
involving all parameters in the deep learning pipeline – the encoder e, the cluster centers ρ and the
decoder d.

Our DClAM deep clustering provides various advantages – (i) First, it does not involve any balancing
hyperparameter γ since the loss involves all parameters in a single term in the per-sample ℓ̄(x, e,d,ρ).
(ii) Second, the updates for all the parameters in the pipeline are more explicitly tied together with
the d ◦ AT

ρ ◦ e composition in the d(AT
ρ (e(x))) term. This ties the representation learning and

clustering objectives more intricately. (iii) Third, it continues to have all the advantages of traditional
deep clustering, being end-to-end differentiable since all operators in the above composition are
differentiable, and performing a discrete cluster center assignment with T recursions of the attractor
dynamics operator Aρ. (iv) Forth, this deep clustering is completely architecture agnostic – we can
select a problem dependent encoder and decoder (for example, convolutional or residual networks for
images or fully-connected feed-forward networks for text or tabular data). Furthermore, this setup can
easily handle already trained encoders (for example, one trained via contrastive learning (Chen et al.,
2020; Van Gansbeke et al., 2020). (v) Fifth, it does not involve any additional entropy regularization
based hyperparameters as with existing deep clustering algorithms. (vi) Finally, on a less technical
level, Fig. 1 clearly highlights how the overall information flow in the deep clustering pipeline is
simplified. The AM plays a critical role in this pipeline with the ability to obtain the actual closest
center AT

ρ (e(x)); without it, this new pipeline and loss cannot be utilized.

Although DClAM can be viewed as an extension (namely) of ClAM, there are fundamental difference
between how ClAM uses AMs and how DClAM utilizes them. In ClAM AMs are utilized to act as dif-
ferentiable arg min solver for the k-means objective whereas in DClAM, which involves representation
learning, AM recursion actually has a more elaborate effect. The AM augmented encoder (AT

ρ ◦ e)
explicitly creates basins of attraction in the latent space, and moves/pushes the latent representations

4



of the points into these basins, thereby explicitly inducing a clustered data distribution in the latent
space. While the encoder is moving points into basins of attraction, the DClAM loss tries to minimize
the information loss in the latent representations by having the decoder reconstruct these relocated
latent representations.

Upon solving Eq. (6), we will obtain a trained encoder and decoder, and memories in the latent space,
and we can utilize them to obtain the final partition the data (see the Infer subroutine in Alg. 1 in
Appendix). See Appendix B.5 for an understanding how DClAM loss typically relates to existing deep
clustering loss.

4 Empirical Evaluation

We evaluate the performance of DClAM on a diverse set of 8 datasets (6 images and 2 text sets),
ranging in size from 296 to 49152 (raw) features and containing 2007 to 60000 samples. The
selection of the number of clusters for each dataset is based on its intrinsic class count, with no
reliance on class information during clustering or hyperparameter selection (see dataset details
in Appendix B.1). We conduct a comparative analysis of DClAM against established clustering
methods, including k-means (Lloyd, 1982), agglomerative clustering (or Agglo.) (Müllner, 2011),
ClAM (Saha et al., 2023), DCEC (Guo et al., 2017b), DEKM (Guo et al., 2021) and EDCWRN (or
EDC) Golzari Oskouei et al. (2023). We evaluate k-means, agglomerative clustering, and ClAM in the
ambient space (denoted as NAE) and in the latent space obtained through a pretrained Convolutional
Autoencoder (CAE) as used in DCEC (Guo et al., 2017b). For DCEC amd DEKM, we consider a
ResNet-based AE (RAE) (Wickramasinghe et al., 2021) along with their original CAE. For DClAM,
we extend our exploration to include not only the CAE and RAE architectures but also EDCWRN-
based (Golzari Oskouei et al., 2023) Autoencoder (EAE) (originally proposed by Guo et al. (2017a))
to analyze its impact on the algorithm. We also compare DClAM with state-of-the-art SimCLR (Chen
et al., 2020) based (contrastive learning) SCAN (Van Gansbeke et al., 2020) and NNM (Dang et al.,
2021) deep clustering schemes. Detailed parameter setting of the networks are in Appendix B.3,
while implementation details are in Appendix B.4.

Table 1: Per-method best SC across all architectures (while RRL is within 10% of the respective
pretrained AE loss), comparing DClAM to baselines. Best for each dataset is in bold. See text for
further details. Higher SC is better, but lower RRL is better. The top set of rows are vision datasets,
and the bottom set are text datasets. A ‘-’ indicates not applicable (NA); e.g., DCEC, DEKM, SCAN,
NNM work only on image datasets. Further, we report SCAN and NNM results only on C-10, C-100
and STL, since these are the only datasets for which pretrained contrastive encoders are available. x▼
indicates negative RRL which means the RL of the method is x% less than the pretrained AE loss.

Dataset SC RRL

k-means Agglo. ClAM DCEC DEKM EDC SCAN NNM DClAM DCEC DEKM EDC DClAM

FM 0.257 0.201 0.279 0.873 0.296 0.483 - - 0.932 9.8 9.8 10 1.6▼

C-10 0.084 0.372 0.208 0.787 0.104 0.511 0.541 0.587 0.863 9.6 9.6 10 0.5
C-100 0.015 0.149 0.053 0.487 -0.018 0.311 0.321 0.358 0.553 10 10 10 10
USPS 0.195 0.158 0.194 0.871 0.256 0.461 - - 0.898 10 10 0.0 10
STL 0.079 0.270 0.108 0.771 0.112 0.411 0.552 0.540 0.891 10 9.5 4.9▼ 10
CBird -0.019 0.094 -0.026 0.311 -0.032 0.171 - - 0.448 10 0.0 10 9.1

R-10k -0.010 0.114 -0.002 - - 0.023 - - 0.564 - - 10 10
20NG -0.021 0.114 -0.008 - - 0.101 - - 0.197 - - 10 10

Q1: How does DClAM compare against baselines? We present the best Silhouette Coefficient or
SC achieved (while constraining the reconstruction loss or RL to be within 10% of the pretrained
AE loss) by DClAM, and the baselines for all 8 datasets in Table 1. As it is hard to compare the
raw RL numbers if the base AE is different for different methods, we consider relative RL (RRL)
defined as (RL − RL PAE)/RL PAE) where RL PAE is the pretrained/base RL. Then we
present the best SC per method with RRL <= 10%. From Table 1, we see across both image and
text datasets, DClAM consistently outperforms traditional and deep clustering baselines in terms of SC
while keeping RRL relatively low. To provide a comprehensive view alongside SC, we also present
the best RRL (while constraining the SC to be within 10% of the best/peak SC of the method) in
Table 4 in Appendix and visualize both SC and RL in Fig. 3 for all six image datasets. Both Table 4
and figures demonstrate that DClAM excels not only in achieving the best SC but also in minimizing
RL compared to the baselines. Note that SCAN and NNM do not have a reconstruction loss term
as they work on the pre-trained (pretext) model by SimCLR (Chen et al., 2020) and utilize only

5



Table 2: SC for image datasets, comparing DClAM to baselines with different encoder/decoder
architectures. Best for each dataset is in bold. See text for details. Higher is better.

Dataset Convolutional AE ResNet AE EAE

DCEC DEKM DClAM DCEC DEKM DClAM EDC DClAM

FM 0.896 0.831 0.932 0.800 0.784 0.897 0.521 0.715
C-10 0.787 0.489 0.863 0.664 0.443 0.676 0.541 0.731
C-100 0.406 0.025 0.518 0.501 0.027 0.684 0.337 0.636
USPS 0.920 0.946 0.912 0.896 0.931 0.921 0.491 0.911
STL 0.822 0.675 0.919 0.854 0.824 0.881 0.431 0.923
CBird 0.386 0.018 0.448 0.282 0.035 0.377 0.188 0.446

the encoder (discarding the decoder) for clustering purpose. For additional insights, we present the
best SC (while keeping RL within 10% of the pretrained AE loss) and its corresponding NMI, RL,
and cluster sizes and balance obtained by all schemes in Table 5 in Appendix C.1. Simultaneously,
Table 6 displays the best RL (while keeping SC within 10% of the best SC of the method) and its
associated SC, NMI, and cluster sizes. We also present Table 7 which displays the best NMI and its
associated SC, RL, and cluster sizes. DClAM consistently outperforms traditional and deep clustering
baselines in terms of all SC, RL and NMI metrics.

Q2: Is DClAM’s improvement agnostic to selected architecture? Table 2 shows that the perfor-
mance improvements achieved by DClAM is independent of the Autoencoder (AE) architecture choice.
DClAM with all three architectures – CAE, EAE, and RAE – consistently outperform their respective
baselines, DCEC, DEKM and EDCWRN with similar architecture. This not only underscores the
superiority of the internal algorithm of DClAM over the corresponding baselines but also suggests the
potential for further improvement with some more advanced AE architecture.

Figure 2: Visualizing DClAM++ clus-
ters for Fashion MNIST (left block)
and Caltech Birds (right block), with
the learned memories (left column in
block) and the corresponding closest
(center column in block) and farthest
(right column in block) images within
their clusters.

Further results. We qualitatively evaluate the clusters found
by DClAM in Fig. 2 for Fashion MNIST (10 clusters) and Cal-
tech Birds (10 out of 200 clusters), visualizing the learned
memories (centers), and the corresponding closest and far-
thest cluster members (as measured in the latent space). In
most cases, the memories form a blurry image that match
the closest images well. The farthest cluster members still
appear similar to their memories in most cases, but do start
changing significantly in some cases: (i) In the 7th row for
FMNIST an image that looks like a pants is classified as a
dress though the overall image shape is still similar. (ii) In
the 5th row for CBirds, the memory and the closest are very
similar but the farthest appears significantly different. In
addition to the above, we discuss our thorough empirical
evaluation in Appendix C, reporting various clustering met-
rics in Appendix C.1, and visualizing the evolution of the
latent memories (cluster centers) in Appendix C.3.

5 Limitations and Future Work

In this paper, we introduce a fresh integration of associa-
tive memories in a deep neural network module to create
the innovative deep clustering algorithms: DClAM, leverag-
ing the AM attractor dynamics. Our findings demonstrate
that DClAM significantly surpasses standard prototype-based
clustering and existing deep clustering methods. However,
it is worth noting that DClAM is still sensitive to hyperparam-
eters and requires pretraining to avoid latent space collapse.
Inspired by DClAM’s outstanding performance, our future
work aims to extend it to multimodal deep clustering. We
plan to explore new energy functions and update dynamics to enhance spectral and semantic cluster-
ing. Additionally, leveraging DClAM’s flexibility, we intend to automate the estimation of the number
of clusters directly from the data.

6



References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G.,

Isard, M., et al. {TensorFlow}: a system for {Large-Scale} machine learning. In 12th USENIX
symposium on operating systems design and implementation (OSDI 16), pp. 265–283, 2016.

Aljalbout, E., Golkov, V., Siddiqui, Y., Strobel, M., and Cremers, D. Clustering with deep learning:
Taxonomy and new methods. arXiv preprint arXiv:1801.07648, 2018.

Amit, D. J., Gutfreund, H., and Sompolinsky, H. Storing infinite numbers of patterns in a spin-glass
model of neural networks. Physical Review Letters, 55(14):1530, 1985.

Assent, I. Clustering high dimensional data. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 2(4):340–350, 2012.

Baldi, P. Autoencoders, unsupervised learning, and deep architectures. In Proceedings of ICML
workshop on unsupervised and transfer learning, pp. 37–49. JMLR Workshop and Conference
Proceedings, 2012.

Bank, D., Koenigstein, N., and Giryes, R. Autoencoders. Machine learning for data science
handbook: data mining and knowledge discovery handbook, pp. 353–374, 2023.

Bein, B. Entropy. Best Practice & Research Clinical Anaesthesiology, 20(1):101–109, 2006.

Bezdek, J. C., Ehrlich, R., and Full, W. Fcm: The fuzzy c-means clustering algorithm. Computers &
geosciences, 10(2-3):191–203, 1984.

Cai, J., Wang, S., Xu, C., and Guo, W. Unsupervised deep clustering via contractive feature
representation and focal loss. Pattern Recognition, 123:108386, 2022.

Caron, M., Bojanowski, P., Joulin, A., and Douze, M. Deep clustering for unsupervised learning
of visual features. In Proceedings of the European conference on computer vision (ECCV), pp.
132–149, 2018.

Chang, J., Wang, L., Meng, G., Xiang, S., and Pan, C. Deep adaptive image clustering. In Proceedings
of the IEEE international conference on computer vision, pp. 5879–5887, 2017.

Chazan, S. E., Gannot, S., and Goldberger, J. Deep clustering based on a mixture of autoencoders. In
2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP), pp.
1–6. IEEE, 2019.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A simple framework for contrastive learning of
visual representations. In International conference on machine learning, pp. 1597–1607. PMLR,
2020.

Coates, A., Ng, A., and Lee, H. An analysis of single-layer networks in unsupervised feature learning.
In Proceedings of the fourteenth international conference on artificial intelligence and statistics,
pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

Dang, Z., Deng, C., Yang, X., Wei, K., and Huang, H. Nearest neighbor matching for deep clustering.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
13693–13702, 2021.

Demircigil, M., Heusel, J., Löwe, M., Upgang, S., and Vermet, F. On a model of associative memory
with huge storage capacity. Journal of Statistical Physics, 168(2):288–299, 2017.

Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum likelihood from incomplete data via the
em algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):1–22,
1977.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Donath, W. E. and Hoffman, A. J. Lower bounds for the partitioning of graphs. IBM Journal of
Research and Development, 17(5):420–425, 1973. doi: 10.1147/rd.175.0420.

7



Golzari Oskouei, A., Balafar, M. A., and Motamed, C. Edcwrn: efficient deep clustering with the
weight of representations and the help of neighbors. Applied Intelligence, 53(5):5845–5867, 2023.

Guo, W., Lin, K., and Ye, W. Deep embedded k-means clustering. In 2021 International Conference
on Data Mining Workshops (ICDMW), pp. 686–694. IEEE, 2021.

Guo, X., Gao, L., Liu, X., and Yin, J. Improved deep embedded clustering with local structure
preservation. In Ijcai, pp. 1753–1759, 2017a.

Guo, X., Liu, X., Zhu, E., and Yin, J. Deep clustering with convolutional autoencoders. In
International conference on neural information processing, pp. 373–382. Springer, 2017b.

Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

Huang, X., Hu, Z., and Lin, L. Deep clustering based on embedded auto-encoder. Soft Computing,
27(2):1075–1090, 2023.

Hull, J. J. A database for handwritten text recognition research. IEEE Transactions on pattern
analysis and machine intelligence, 16(5):550–554, 1994.

Johnson, S. C. Hierarchical clustering schemes. Psychometrika, 32(3):241–254, 1967.

Kaufman, L. and Rousseeuw, P. J. Finding groups in data: an introduction to cluster analysis. John
Wiley & Sons, 2009.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers of features from tiny images. 2009.

Krotov, D. and Hopfield, J. J. Dense associative memory for pattern recognition. Advances in neural
information processing systems, 29, 2016.

Lloyd, S. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):
129–137, 1982.

Lucibello, C. and Mézard, M. The exponential capacity of dense associative memories. arXiv preprint
arXiv:2304.14964, 2023.

MacQueen, J. Classification and analysis of multivariate observations. In 5th Berkeley Symp. Math.
Statist. Probability, pp. 281–297, 1967.

McEliece, R., Posner, E., Rodemich, E., and Venkatesh, S. The capacity of the hopfield associative
memory. IEEE transactions on Information Theory, 33(4):461–482, 1987.

Min, E., Guo, X., Liu, Q., Zhang, G., Cui, J., and Long, J. A survey of clustering with deep learning:
From the perspective of network architecture. IEEE Access, 6:39501–39514, 2018.

Müllner, D. Modern hierarchical, agglomerative clustering algorithms. arXiv preprint
arXiv:1109.2378, 2011.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., et al. Scikit-learn: Machine learning in python. the
Journal of machine Learning research, 12:2825–2830, 2011.

Ramsauer, H., Schäfl, B., Lehner, J., Seidl, P., Widrich, M., Adler, T., Gruber, L., Holzleitner,
M., Pavlović, M., Sandve, G. K., et al. Hopfield networks is all you need. arXiv preprint
arXiv:2008.02217, 2020.

Ren, Y., Pu, J., Yang, Z., Xu, J., Li, G., Pu, X., Philip, S. Y., and He, L. Deep clustering: A
comprehensive survey. IEEE Transactions on Neural Networks and Learning Systems, 2024. URL
https://ieeexplore.ieee.org/abstract/document/10585323.

8

https://ieeexplore.ieee.org/abstract/document/10585323


Ronen, M., Finder, S. E., and Freifeld, O. Deepdpm: Deep clustering with an unknown number of
clusters. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 9861–9870, 2022.

Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis.
Journal of computational and applied mathematics, 20:53–65, 1987.

Rumelhart, D. E., Hinton, G. E., Williams, R. J., et al. Learning internal representations by error
propagation, 1985.

Saha, B., Krotov, D., Zaki, M. J., and Ram, P. End-to-end differentiable clustering with associative
memories. arXiv preprint arXiv:2306.03209, 2023.

Sammut, C. and Webb, G. I. (eds.). TF–IDF, pp. 986–987. Springer US, Boston, MA, 2010. ISBN
978-0-387-30164-8. doi: 10.1007/978-0-387-30164-8 832. URL https://doi.org/10.1007/
978-0-387-30164-8_832.

Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O. P., Tiwari, A., Er, M. J., Ding, W., and Lin,
C.-T. A review of clustering techniques and developments. Neurocomputing, 267:664–681, 2017.

Schaeffer, R., Khona, M., Zahedi, N., Fiete, I. R., Gromov, A., and Koyejo, S. Associative memory
under the probabilistic lens: Improved transformers & dynamic memory creation. In Associative
Memory {\&} Hopfield Networks in 2023, 2023.

Steinbach, M., Ertöz, L., and Kumar, V. The challenges of clustering high dimensional data. In
New directions in statistical physics: econophysics, bioinformatics, and pattern recognition, pp.
273–309. Springer, 2004.

Van der Maaten, L. and Hinton, G. Visualizing data using t-sne. Journal of machine learning research,
9(11), 2008.

Van Gansbeke, W., Vandenhende, S., Georgoulis, S., Proesmans, M., and Van Gool, L. Scan:
Learning to classify images without labels. In European conference on computer vision, pp.
268–285. Springer, 2020.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Verleysen, M. and François, D. The curse of dimensionality in data mining and time series prediction.
In International work-conference on artificial neural networks, pp. 758–770. Springer, 2005.

Vinh, N. X., Epps, J., and Bailey, J. Information theoretic measures for clusterings comparison: is a
correction for chance necessary? In Proceedings of the 26th annual international conference on
machine learning, pp. 1073–1080, 2009.

Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., and Perona, P. Caltech-UCSD
Birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology, 2010.

Wickramasinghe, C. S., Marino, D. L., and Manic, M. Resnet autoencoders for unsupervised feature
learning from high-dimensional data: Deep models resistant to performance degradation. IEEE
Access, 9:40511–40520, 2021.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Xie, J., Girshick, R., and Farhadi, A. Unsupervised deep embedding for clustering analysis. In
International conference on machine learning, pp. 478–487. PMLR, 2016.

Xu, D. and Tian, Y. A comprehensive survey of clustering algorithms. Annals of Data Science, 2:
165–193, 2015.

Xu, R. and Wunsch, D. Survey of clustering algorithms. IEEE Transactions on neural networks, 16
(3):645–678, 2005.

9

https://doi.org/10.1007/978-0-387-30164-8_832
https://doi.org/10.1007/978-0-387-30164-8_832


Zaki, M. J. and Meira Jr, W. Data mining and machine learning: Fundamental concepts and
algorithms. Cambridge University Press, 2020.

Zhou, S., Xu, H., Zheng, Z., Chen, J., Bu, J., Wu, J., Wang, X., Zhu, W., Ester, M., et al. A
comprehensive survey on deep clustering: Taxonomy, challenges, and future directions. arXiv
preprint arXiv:2206.07579, 2022.

10



A Related Work

Clustering is a long-studied and well-reviewed problem in computer science, with various formula-
tions and several applications (Kaufman & Rousseeuw, 2009; Zaki & Meira Jr, 2020). Here we will
review existing and relevant literature on deep clustering and associative memories.

Deep clustering. This has been extensively studied over the past decade (Ren et al., 2024; Aljalbout
et al., 2018; Zhou et al., 2022). Inspired by t-SNE (Van der Maaten & Hinton, 2008), Xie et al. (2016)
introduced DEC, enhancing clustering and feature representation by minimizing the Kullback-Leibler
Divergence (KLD) to an auxiliary target distribution. However, a drawback is abandoning the decoder
layer after pre-training, impacting the embedded space and clustering performance. Guo et al. (2017a)
showed that keeping the decoder layer improves clustering (IDEC), and Guo et al. (2017b) proposed
DCEC using convolutional autoencoders (CAE). Chazan et al. (2019) proposed DAMIC, a mixture
of autoencoders for clustering, determined by minimizing the reconstruction loss without needing a
regularization term. However, they leverage multiple AEs to their model, while we focus on schemes
using single AE. Huang et al. (2023) introduced an innovative embedded auto-encoder architecture
by incorporating it into both the encoding and decoding units of the outer auto-encoder. Guo et al.
(2021) proposed DEKM which works on the embedding space (after pretraining) and transforms it to
a new cluster-friendly space using an orthonormal transformation matrix. However, discarding the
decoder after pretraining for both of these methods may lead to the distortion of the embedded space,
consequently hurting clustering performance. In addressing the automatic inference of the number of
clusters in a dataset, Ronen et al. (2022) introduced DeepDPM. They proposed a novel loss inspired
by EM in the Bayesian Gaussian Mixture Model, facilitating a new amortized inference in mixture
models. It is worth noting that DeepDPM diverges from the typical encoder-decoder architecture,
opting instead for a multilayer perceptron model.

While many deep clustering methods utilize KLD as a clustering objective, it falls short in preserving
the global data structure (which implies that only within-cluster distances are prioritized, leaving un-
certainties regarding between-cluster similarities), leading Golzari Oskouei et al. (2023) (EDCWRN)
to advocate for cross-entropy over KLD. They incorporate feature weighting to emphasize essential
features for clustering and employ a neighborhood technique to encourage similar representations for
samples within the same cluster. Addressing another challenge with KLD regarding the presence of
hard, misclassified samples, Cai et al. (2022) introduced focal loss to enhance label assignment in
deep clustering methods and improved the representation learning module with a contractive penalty
term, capturing more discriminative representations. However, it could lead to unintentional bias
in the optimization focus between the representation learning and clustering modules. Dang et al.
(2021) introduces a novel deep clustering framework (NNM) based on a two-level nearest neighbors
matching approach. Distinguishing itself from prior methods (Van Gansbeke et al., 2020), NNM
incorporates matching at both local and global levels, resulting in a notable enhancement in clustering
performance. Both studies leverage SimCLR (Chen et al., 2020) to pretrain a representation learning
model using the state-of-the-art contrastive learning loss. In our work, we rethink the deep clustering
problem at a architecture agnostic level by leveraging the capabilities of associative memories. Thus,
various architectural and pretraining advancements would also benefit our proposed scheme.

Associative Memory (AM) and Clustering. AMs adeptly store multidimensional vectors as fixed
point attractor states in a recurrent dynamical system. AMs form associations between the initial
state and a final state (memory), creating disjoint basins of attractions which are crucial for clustering.
Initially conceptualized as the classical Hopfield Network (Hopfield, 1982), AM exhibits limited
memory capacity, approximately storing only ≈ 0.14d arbitrary memories in a d dimensional data
domain (McEliece et al., 1987; Amit et al., 1985). Subsequently, Dense AM or Modern Hopfield
Network was suggested by Krotov & Hopfield (2016), introducing rapidly expanding non-linearities
(activation functions) into the system. This advancement enables a more concentrated memory
arrangement and attains super-linear (in d) memory capacity (Demircigil et al., 2017; Ramsauer
et al., 2020; Lucibello & Mézard, 2023). With softmax activation, Dense AMs can serve as a
unique limiting case of the attention mechanism used in transformers (Vaswani et al., 2017) and
BERT (Devlin et al., 2018) model (Ramsauer et al., 2020). Recently, Saha et al. (2023) introduced
ClAM, an end-to-end differentiable clustering approach, utilizing AMs for clustering. ClAM presents
a versatile mathematical framework, introducing a novel continuous unconstrained relaxation of the
discrete optimization challenge in clustering. Schaeffer et al. (2023) demonstrates that the energy
function of ClAM’s AM network resembles a scaled negative log-likelihood of a Gaussian mixture

11



Algorithm 1: Deep clustering a dataset S ∈ Rd in a latent space Rm into k clusters with encoder
e and decoder d. The cluster assignment is done with T recursion of the AM attractor dynamics
operator Aρ parameterized with the centers ρ = {ρi, i ∈ JkK}. The per-sample loss of DClAM

(line 10) is highlighted in Sepia. We optimize for N epochs with learning rates {ϵe, ϵd, ϵρ} for
e,d,ρ respectively. The hyperparameters of Aρ are not shown here for the ease of exposition.

1 Train(S, k,N, T, ϵe, ϵd, ϵρ, γ)
2 Pretrain (e,d) as autoencoder, minimizing Lr(e,d)
3 ρ← {e(x), x ∈M}, M are random k samples from S
4 for epoch n = 1, . . . , N do
5 for batch B ∈ S do
6 Batch loss LB ← 0
7 for example x ∈ B do
8 v ← e(x) //encode input

9 v̄ ← AT
ρ (v) //AM recursion

10 ℓ← ∥x− d(v̄)∥2

11 LB ← LB + ℓ

12 ρi ← ρi − ϵρ∇ρiLB ∀i ∈ JkK
13 e← e− ϵe∇eLB

14 d← d− ϵd∇dLB

15 return e,d,ρ

16 Infer(S, e,d,ρ)
17 Cluster assignments C ← ∅
18 for x ∈ S do
19 v̄ ← AT

ρ (e(x)) //encode→ AM recursion

20 C ← C ∪
{
argmini∈JkK ∥ρi − v̄∥2

}
21 return Per-point cluster assignments C

model and that the dynamics of the AM network can be viewed as expectation maximization via
gradient ascent. In our work, we study the interaction of clustering with latent AMs and representation
learning previously not considered in literature.

B Experimental Details

B.1 Dataset details

To evaluate DClAM, we conducted our experiments on eight standard benchmark data sets. The
datasets are taken from various sources such as USPS from Kaggle1 (Hull, 1994), Fashion-MNIST
from Zalando2 (Xiao et al., 2017), CIFAR-10 & CIFAR-100 from Krizhevsky3 (Krizhevsky et al.,
2009), STL-10 from Coates et al. (2011)4, Caltech birds2010 from Welinder et al. (2010)5, 20-NG
from sklearn6 and Reuters-10k from TensorFlow datasets7. The later two are text datasets, whereas
the others are image datasets. For both text datasets, we calculate TFIDF (Sammut & Webb, 2010)
features based on the 2000 most frequent words, following a similar approach as Golzari Oskouei
et al. (2023) (originally proposed by Xie et al. (2016)). However, unlike their methodology, we
diverge by not employing four root categories to represent four clusters in the case of Reuters-10k.
Instead, we consider the original number of categories as the true number of clusters, which is 46 for
Reuters-10k and 20 for 20-NG. For Caltech birds2010, as there are images of various shapes, we

1
https://www.kaggle.com/datasets/bistaumanga/usps-dataset

2
https://github.com/zalandoresearch/fashion-mnist

3
https://www.cs.toronto.edu/~kriz/cifar.html

4
https://cs.stanford.edu/~acoates/stl10/

5
https://www.tensorflow.org/datasets/catalog/caltech_birds2010

6
https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html

7
https://www.tensorflow.org/api_docs/python/tf/keras/datasets/reuters/load_data

12

https://www.kaggle.com/datasets/bistaumanga/usps-dataset
https://github.com/zalandoresearch/fashion-mnist
https://www.cs.toronto.edu/~kriz/cifar.html
https://cs.stanford.edu/~acoates/stl10/
https://www.tensorflow.org/datasets/catalog/caltech_birds2010
https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
https://www.tensorflow.org/api_docs/python/tf/keras/datasets/reuters/load_data


resize all images to (128, 128, 3) for uniformity and ease of implementation. Table 3 provides the
statistics for the datasets used in our experiments.

Table 3: Descriptions of various benchmark datasets, used in our experiments.

Dataset Short name # Points Shape # Classes # Type

Fashion MNIST FM 60000 (28, 28, 1) 10 Image
CIFAR-10 C-10 50000 (32, 32, 3) 10 Image
CIFAR-100 C-100 50000 (32, 32, 3) 100 Image
USPS USPS 2007 (16, 16, 1) 10 Image
STL-10 STL 5000 (96, 96, 3) 10 Image
Caltech birds2010 CBird 3000 (128, 128, 3) 200 Image
Reuters-10k R-10k 11228 2000 46 Text
20-NG 20NG 18846 2000 20 Text

B.2 Metrics used

To assess the performance of DClAM, we utilize the Silhouette Coefficient (SC) (Rousseeuw, 1987)
as an unsupervised metric for measuring clustering quality. SC scores range from -1 to 1, where 1
indicates perfect clustering and -1 indicates completely incorrect labels. A score close to 0 suggests
the existence of overlapping clusters. We also employ Normalized Mutual Information (NMI) (Vinh
et al., 2009) to evaluate the alignment between the partition obtained by DClAM and the ground
truth clustering labels. NMI scores range from 0 (completely incorrect) to 1 (perfect clustering).
Additionally, we compute Reconstruction Loss (RL), representing the mean squared error between
original and reconstructed points, where lower is better. Entropy (ETP) (Bein, 2006) and Cluster
Size (CS) are computed to assess cluster balance. In clustering, higher entropy (the highest value
is log2(k) for each dataset, where k is the number of true cluster) indicates more balanced clusters,
while lower values suggest potential imbalance, possibly involving singleton or very small clusters.
Entropy (H(X)) is calculated based on the distribution of data points across clusters like below:

H(X) = −
k∑

i=1

P (Ci) log2(P (Ci))

where, P (Ci) is the proportion of data points in cluster Ci relative to the total number of data points.
Cluster Size (CS) indicates the largest and smallest clusters (in terms of the number of data points)
identified in the dataset where the difference should not be so large.

B.3 Parameter setting

For CAE with k-means, Agglomerative, ClAM, DCEC, DEKM, and DClAM, we adopt an architecture
identical to DCEC. The encoder network structure follows conv5

32 → conv5
64 → conv3

128 → FCd,
where convkn represents a convolutional layer with n filters and a kernel size of k×k. Here, d denotes
the number of true clusters in the dataset, serving as the latent dimension. The decoder mirrors the
encoder.

In RAE with DCEC, DEKM, and DClAM a streamlined configuration is employed using two filters
with sizes 32 and 64. The size of the embedded representation is maintained at d, corresponding
to the number of clusters in the dataset, as in the previous setup. In this experiment, the number of
repeating layers in the ResNet block is set to 2. To enhance model performance, batch normalization
and leakyReLU are incorporated. For a given number of repeats (f ), the total number of hidden
layers is calculated as 2 + (f * number of filters), resulting in 6 layers in our case. This approach
draws inspiration from the standard ResNet block described by Wickramasinghe et al. (2021).

For EAE with EDCWRN, and DClAM, we follow exactly similar architecture as EDCWRN where the
encoder network is configured as a fully connected multilayer perceptron (MLP) with dimensions
i-500-500-2000-d for all datasets, where i represents the dimension of the input space (features),
and d is the number of clusters in the dataset. Similarly, the decoder network mirrors the encoder,

13



constituting an MLP with dimensions d-2000-500-500-i. All internal layers, except for the input,
output, and embedding layers, are activated by the ReLU nonlinearity function.

All three architectures described above are pretrained end-to-end for 100 epochs using Adam (Kingma
& Ba, 2014) with default parameters.

B.4 Implementation details

We implement and evaluate DClAM using the Tensorflow (Abadi et al., 2016) library while employing
scikit-learn (Pedregosa et al., 2011) for clustering baselines and quality metrics. We train our
models on a single node with 1 NVIDIA RTX A6000 (48GB RAM) and a 16-core 2.4GHz Intel
Xeon(R) Silver 4314 CPU. Hyperparameters are tuned individually for each dataset to maximize the
Silhouette Coefficient (Rousseeuw, 1987). Table 8 illustrates the chosen hyperparameters, their roles,
and respective values/ranges.

For baseline schemes like k-means and agglomerative, we use the scikit-learn library imple-
mentation, adjusting hyperparameters for optimal performance on each dataset. For DCEC (Guo
et al., 2017b) and DEKM (Guo et al., 2021), we leverage their Tensorflow implementation8 9and
for EDCWRN (Golzari Oskouei et al., 2023), we utilze their Python implemtentation10. We adopt a
similar hyperparameter tuning strategy for the baseline schemes as employed in ClAM (Saha et al.,
2023).

B.5 How DClAM loss relates to traditional deep clustering loss

Here, we show how the DClAM loss L̄ in Eq. (6) is related to the loss L = Lr + γLc in Eq. (3). If
the encoder e and decoder d form a decent autoencoder (for example, if they are pretrained, as is
common practice), then for a input x ∈ S, the single sample loss can be compared as follows:

ℓr(x, e,d) ≜ ∥x− d(e(x))∥2 ≤ ∥x− d(AT
ρ (e(x)))∥2 ≜ ℓ̄(x, e,d,ρ), (7)

since AT
ρ (e(x)) will be some distortion of e(x), and thus its decoded version will generally be worse

than the decoded version of e(x). Let us now assume that the decoder d : Rm → Rd is Cd-Lipschitz
continuous. Then, considering the per-sample loss ℓ̄ in Eq. (6), and applying the triangle inequality
and the AM–GM inequality, we can show that

ℓ̄(x, e,d,ρ) = ∥x− d(AT
ρ (e(x)))∥2

≤ 2
(
∥x− d(e(x))∥2 + ∥d(e(x))− d(AT

ρ (e(x)))∥2
)

≤ 2
(
∥x− d(e(x))∥2 + C2

d∥e(x)−AT
ρ (e(x))∥2

)
= 2ℓr(x, e,d) + 2C2

dℓc(x, e,ρ), (8)

where the last inequality uses the Lipschitz continuity, and the last equality comes from the definition
of the clustering loss in the latent space with the AM dynamics operator. Summing the above
inequalities in Eqs. (7) and (8) over x ∈ S gives us Lr≤L̄≤γ1Lr+γ2Lc, where the upperbound of
L̄ is (a scaled version of) the standard deep clustering objective of the weighted combination of the
reconstruction loss Lr and the clustering loss Lc in Eq. (3).

We would like to clarify that DClAM does not impose any specific constraints on the structure of the
encoder and decoder (refer to Algorithm 1). In our discussion regarding Lipschitz continuity, our
main goal is to highlight the relationship between the novel loss of DClAM and the loss of traditional
deep clustering (Eq. (3) that consists of reconstruction and clustering losses). This comparison serves
to underscore how the novel loss is related to the better intertwining of the different components of
the deep clustering pipeline – the encoder, decoder, cluster centers. The novel DClAM loss provides
significant improvements over Eq. (3) which uses the standard loss. Also note that if it is a decoder
that we can differentiate through with auto-grad, the decoder is Lipschitz continuous. Additionally,
there exists a more general notion called the modulus of continuity, which extends beyond Lipschitz
continuity. We can substitute Lipschitz continuity with the modulus of continuity in our discussion,
maintaining the same inequality but with potentially different constants.

8https://github.com/XifengGuo/DCEC
9https://github.com/spdj2271/DEKM/blob/main/DEKM.py

10https://github.com/Amin-Golzari-Oskouei/EDICWRN

14

https://en.wikipedia.org/wiki/AM%E2%80%93GM_inequality


Table 4: Per-method best RRL across all architectures (while SC is within 10% of the best SC of the
method) comparing DClAM to baselines. Best for each dataset is in bold. See text for further details.
Higher SC is better, but lower RRL is better. x▼ indicates negative RRL which means the RL of the
method is x% less than the pretrained AE loss.

Dataset SC RRL

k-means Agglo. ClAM DCEC DEKM EDC SCAN NNM DClAM DCEC DEKM EDC DClAM

FM 0.257 0.201 0.279 0.896 0.831 0.521 - - 0.865 16.4 374 143 4.1▼

C-10 0.084 0.372 0.208 0.766 0.489 0.541 0.541 0.587 0.809 2.3 145 74.3 0.5▼

C-100 0.015 0.149 0.053 0.406 0.025 0.337 0.321 0.358 0.476 30 427 33.3 17.1▼

USPS 0.195 0.158 0.194 0.920 0.931 0.491 - - 0.912 52.6 2582 40 42.1
STL 0.079 0.270 0.108 0.822 0.675 0.431 0.552 0.540 0.923 83.2 231 155 27.7
CBird -0.019 0.094 -0.026 0.282 0.018 0.188 - - 0.413 286 1036 102 1.8

R-10k -0.010 0.114 -0.002 - - 0.035 - - 0.673 - - 60 120
20NG -0.021 0.114 -0.008 - - 0.099 - - 0.287 - - 25▼ 50

(a) F-MNIST (b) CIFAR-10 (c) CIFAR-100

(d) USPS (e) STL-10 (f) CBird

Figure 3: Reconstruction loss and clustering quality (1-SC) for CIFAR-100, STL-10 and CBird.
Different markers stand for various AE architectures, and different colors signify distinct methods.
Lower is better for both axes, since we plot 1-SC on the y-axis.

C Additional Experimental Results

C.1 Detailed results with various clustering quality metrics

Table 5 provides a comprehensive overview of the metrics (SC, NMI, RL, ETP, and CS) for DClAM,
and corresponding baselines, focusing on the best SC in each method across various AE architectures
where RL is constrained to 10% of the pretrained AE loss. RL is not presented for k-means,
Agglomerative and ClAM for the original space and for CAE as it remains consistent across the three
methods after pre-taining. Similarly, Table 6 provides a similar overview of the metrics (SC, NMI,
RL, ETP, and CS) for DClAM, and corresponding baselines, focusing on the best Relative RL (RRL)
in each method across various AE architectures where SC is constrained to 10% of the best/peak SC
of the method. Table 7 represents all corresponding metrics focusing on the best NMI in each method.
These tables highlight that DClAM exhibits strong performance not only in terms of SC and RL, but
also when compared to the ground truth labels via NMI. In fact, for NMI, DClAM has the best values
in 5 out of the 8 datasets (DCEC has the best values on the other 3). Additionally, DClAM clusters
maintain reasonable entropy (ETP) and cluster size (CS), ensuring a balanced clustering outcome.

15



Table 5: Metrices obtained by DClAM and baselines corresponding to the best SC (RL within
10% of the pretrained AE loss). The best performance for each dataset is in boldface. (note
abbreviations DCEC→DC, EDCWRN→EDC, Entropy→ETP, Cluster-size→CS, No-AE→NAE,
Conv-AE→CAE, EDCWRN-AE→EAE, Resnet-AE→RAE). ‘-’ denotes NA. x▼ indicates negative
RRL which means the RL of the method is x% less than the pretrained AE loss.

Data Met Kmeans Agglo ClAM DC DEKM EDC DClAM

NAE CAE NAE CAE NAE CAE CAE RAE CAE RAE CAE EAE RAE

FM

SC 0.154 0.257 0.109 0.201 0.158 0.279 0.873 0.712 0.296 0.285 0.483 0.932 0.663 0.715
NMI 0.511 0.643 0.534 0.624 0.521 0.622 0.564 0.624 0.648 0.619 0.495 0.472 0.511 0.379
RL - 0.0122 - 0.0122 - 0.0122 0.0134 0.0090 0.0134 0.0089 0.0096 0.0120 0.0096 0.0091

RRL - 0.0 - 0.0 - 0.0 9.8 8.4 9.8 7.2 10 1.6▼ 10 9.6
ETP 3.17 3.17 3.14 3.2 2.81 2.80 3.23 3.23 3.14 3.15 3.11 2.83 3.14 2.99
CS 9617-2361 11145-2744 11830-1860 10298-2544 19032-1524 15679-2 10421-2779 8975-3218 10771-1118 11196-2789 12118-1478 15458-422 11734-2251 11878-1319

C-10

SC 0.050 0.084 0.158 0.372 0.073 0.208 0.787 0.645 0.104 0.095 0.511 0.863 0.632 0.676
NMI 0.078 0.122 0.0005 0.0004 0.073 0.015 0.074 0.094 0.123 0.121 0.112 0.075 0.061 0.079
RL - 0.0220 - 0.0220 - 0.0220 0.0241 0.0198 0.0241 0.0197 0.0184 0.0221 0.0184 0.0197

RRL - 0.0 - 0.0 - 0.0 9.6 10 9.6 9.4 10 0.5 10 2.2
ETP 3.27 3.19 0.006 0.003 2.50 0.24 3.22 2.99 2.99 3.15 3.24 2.83 2.65 2.50
CS 7105-2734 9779-2524 49979-1 49991-1 23544-582 48234-1 8511-2610 11341-1689 12710-1165 11731-2107 8198-2632 17430-380 13771-570 18125-465

C-100

SC 0.015 -0.020 0.028 0.149 0.018 0.053 0.388 0.487 -0.007 -0.018 0.311 0.518 0.636 0.553
NMI 0.161 0.183 0.036 0.004 0.153 0.156 0.111 0.119 0.180 0.184 0.181 0.110 0.202 0.125
RL - 0.0070 - 0.0070 - 0.0070 0.0077 0.0044 0.0074 0.0044 0.0106 0.0073 0.0099 0.0044

RRL - 0.0 - 0.0 - 0.0 10 10 5.7 10 4.3 10 3.1 10
ETP 6.53 6.48 0.940 0.052 6.51 4.38 6.17 4.08 5.23 6.46 6.49 4.16 5.85 3.21
CS 1160-129 1395-23 38814-1 49834-1 1317-177 13950-11 1312-152 14731-24 2312-121 1592-73 999-216 12195-10 4116-32 10003-10

USPS

SC 0.143 0.195 0.124 0.158 0.144 0.194 0.871 0.867 0.256 0.255 0.461 0.898 0.872 0.869
NMI 0.573 0.628 0.627 0.680 0.475 0.619 0.706 0.701 0.712 0.684 0.467 0.444 0.347 0.428
RL - 0.0019 - 0.0019 - 0.0019 0.0021 0.0026 0.0021 0.0024 0.0005 0.0021 0.0006 0.0025

RRL - 0.0 - 0.0 - 0.0 10 10 10 4.3 0.0 10 10 8.7
ETP 3.27 3.23 3.26 3.27 3.10 3.16 3.26 3.27 3.23 3.25 3.29 3.12 2.78 2.99
CS 284-121 359-89 333-121 328-104 420-53 375-64 297-105 281-110 288-91 321-96 295-134 438-69 841-76 519-47

STL

SC 0.039 0.079 0.158 0.270 0.051 0.108 0.753 0.771 0.112 0.093 0.411 0.814 0.891 0.821
NMI 0.127 0.152 0.007 0.004 0.106 0.139 0.187 0.165 0.162 0.161 0.066 0.147 0.073 0.109
RL - 0.0179 - 0.0179 - 0.0179 0.0197 0.0191 0.0198 0.0191 0.0196 0.0192 0.0227 0.0190

RRL - 0.0 - 0.0 - 0.0 10 10 10 10 4.9▼ 7.3 10 9.8
ETP 3.26 3.25 0.069 0.025 2.43 1.4 3.23 3.27 3.23 3.21 2.92 2.48 2.99 2.87
CS 764-312 830-287 4969-1 4991-1 2586-82 3888-38 831-242 657-348 841-213 817-256 2611-33 2170-33 912-45 1469-71

CBird

SC -0.019 -0.021 0.037 0.094 -0.026 -0.062 0.311 0.251 -0.032 -0.037 0.171 0.448 0.446 0.312
NMI 0.412 0.353 0.206 0.132 0.423 0.485 0.347 0.299 0.372 0.370 0.471 0.221 0.467 0.211
RL - 0.0055 - 0.0055 - 0.0055 0.0061 0.0040 0.0055 0.0036 0.0206 0.0060 0.0115 0.0039

RRL - 0.0 - 0.0 - 0.0 10 10 0.0 0.0 10 9.1 39▼ 8.3
ETP 6.34 5.59 2.71 0.958 6.56 7.21 5.41 5.04 5.81 5.80 7.41 5.68 7.02 5.07
CS 131-1 245-1 1722-1 2773-1 101-2 99-2 241-1 291-1 168-1 197-1 37-2 213-1 99-1 676-1

R-10k

SC -0.010 - 0.114 - -0.002 - - - - - 0.023 - 0.564 -
NMI 0.398 - 0.012 - 0.383 - - - - - 0.152 - 0.367 -
RL - - - - - - - - - - 0.0011 - 0.0011 -

RRL - - - - - - - - - - 10 - 10 -
ETP 5.13 - 0.072 - 5.10 - - - - - 5.51 - 4.77 -
CS 916-20 - 11172-1 - 885-18 - - - - - 721-51 - 1046-1 -

20NG

SC -0.021 - 0.114 - -0.008 - - - - - 0.101 - 0.197 -
NMI 0.155 - 0.003 - 0.166 - - - - - 0.019 - 0.181 -
RL - - - - - - - - - - 0.0009 - 0.0009 -

RRL - - - - - - - - - - 10 - 10 -
ETP 4.03 - 0.022 - 3.86 - - - - - 4.32 - 4.21 -
CS 2217-107 - 18818-1 - 3428-26 - - - - - 1131-599 - 1812-199 -

For an understanding of the importance of ETP and CS in clustering, consider the case of Agglomer-
ative clustering in the latent space (CAE) on the CIFAR-10 dataset (see Table 5). In this instance,
almost all points (49991 out of 50000) belong to one cluster, while the other 9 clusters contain only
one data point each, indicating very poor clustering. The low entropy (0.003) further highlights the
deficiency of the clustering.

In certain situations, when comparing two clustering methods, it can happen that a method performs
better in terms of SC and RL but still exhibits a lower NMI compared to another method (see Table 5
for USPS where DClAM outperforms DCEC in both CAE and RAE architecture in both SC and RL,
however, the NMI is worse than DCEC in both cases). This indicates that the alignment of semantic
class (ground truth or true underlying structure) with the geometric characteristics of the data might
not be consistent or straightforward.

C.2 Hyperparameter dependency for DClAM

We extensively tune all hyperparameters (Table 8) for the optimal results in DClAM. We found that the
inverse temperature β serves as the most critical hyperparameter, which we explore in the range of
[10−5, ..., 5] for tuning. We employ the Adam optimizer while keeping separate initial learning rates
for the AM and AE networks. If the training loss does not improve for a certain number of epochs,
we decrease the learning rate by a factor of 0.8 until it reaches the minimum threshold (10−6). Each
hyperparameter configuration is run mostly for 300 epochs (in certain cases longer training is needed
for better results) with 5 restarts using different random seeds. Throughout each epoch, we track the
training loss. The set of hyperparameters and the associated model yielding the lowest training loss
are chosen during the inference step. The best hyperparameter values for various datasets for DClAM
are detailed in Table 9.

16



Table 6: Metrices obtained by DClAM and baselines corresponding to the best RL (SC within
10% of the best SC of the method). The best performance for each dataset is in boldface. (note
abbreviations DCEC→DC, EDCWRN→EDC, Entropy→ETP, Cluster-size→CS, No-AE→NAE,
Conv-AE→CAE, EDCWRN-AE→EAE, Resnet-AE→RAE). ‘-’ denotes NA. x▼ indicates negative
RRL which means the RL of the method is x% less than the pretrained AE loss.

Data Met Kmeans Agglo ClAM DC DEKM EDC DClAM

NAE CAE NAE CAE NAE CAE CAE RAE CAE RAE CAE EAE RAE

FM

SC 0.154 0.257 0.109 0.201 0.158 0.279 0.896 0.800 0.831 0.784 0.521 0.865 0.715 0.897
NMI 0.511 0.643 0.534 0.624 0.521 0.622 0.561 0.623 0.585 0.639 0.493 0.472 0.522 0.377
RL - 0.0122 - 0.0122 - 0.0122 0.0142 0.0141 0.0578 0.0596 0.0211 0.0117 0.0131 0.0134

RRL - 0.0 - 0.0 - 0.0 16.4 69.9 374 618 143 4.1▼ 54.0 61.4
ETP 3.17 3.17 3.14 3.2 2.81 2.80 3.22 3.24 3.07 3.16 3.09 2.83 3.16 2.98
CS 9617-2361 11145-2744 11830-1860 10298-2544 19032-1524 15679-2 10523-2775 8877-3061 12986-119 11023-2652 13199-1391 15458-422 11886-2148 12836-1378

C-10

SC 0.050 0.084 0.158 0.372 0.073 0.208 0.766 0.664 0.489 0.443 0.541 0.809 0.731 0.592
NMI 0.078 0.122 0.0005 0.0004 0.073 0.015 0.073 0.094 0.098 0.115 0.111 0.075 0.060 0.082
RL - 0.0220 - 0.0220 - 0.0220 0.0225 0.0224 0.0539 0.0539 0.0291 0.0219 0.0252 0.0182

RRL - 0.0 - 0.0 - 0.0 2.3 24.4 145 199 74.3 0.5▼ 50.9 1.1
ETP 3.27 3.19 0.006 0.003 2.50 0.24 3.22 2.99 2.90 2.93 3.25 2.83 2.64 2.50
CS 7105-2734 9779-2524 49979-1 49991-1 23544-582 48234-1 8514-2701 11322-1646 14800-975 16091-1905 8172-2562 17430-380 14890-120 18125-465

C-100

SC 0.015 -0.020 0.028 0.149 0.018 0.053 0.406 0.501 0.025 0.027 0.337 0.476 0.617 0.684
NMI 0.161 0.183 0.036 0.004 0.153 0.156 0.110 0.119 0.162 0.164 0.186 0.112 0.201 0.121
RL - 0.0070 - 0.0070 - 0.0070 0.0091 0.0083 0.0369 0.0292 0.0128 0.0058 0.0092 0.0061

RRL - 0.0 - 0.0 - 0.0 30 108 427 630 33.3 17.1▼ 4.2▼ 52.5
ETP 6.53 6.48 0.940 0.052 6.51 4.38 6.19 4.06 5.12 5.02 6.51 4.02 5.83 3.22
CS 1160-129 1395-23 38814-1 49834-1 1317-177 13950-11 1299-160 14936-3 2514-101 2613-132 996-156 11191-10 4350-10 11132-10

USPS

SC 0.143 0.195 0.124 0.158 0.144 0.194 0.920 0.896 0.946 0.931 0.491 0.912 0.911 0.921
NMI 0.573 0.628 0.627 0.680 0.475 0.619 0.737 0.736 0.728 0.699 0.451 0.444 0.339 0.437
RL - 0.0019 - 0.0019 - 0.0019 0.0029 0.0039 0.0748 0.0617 0.0007 0.0027 0.0013 0.0047

RRL - 0.0 - 0.0 - 0.0 52.6 69.6 3837 2582 40 42.1 160 104.3
ETP 3.27 3.23 3.26 3.27 3.10 3.16 3.27 3.27 3.24 3.24 3.29 3.12 2.55 2.99
CS 284-121 359-89 333-121 328-104 420-53 375-64 284-108 282-107 298-80 314-88 294-156 438-69 947-27 514-46

STL

SC 0.039 0.079 0.158 0.270 0.051 0.108 0.822 0.854 0.675 0.824 0.431 0.919 0.923 0.881
NMI 0.127 0.152 0.007 0.004 0.106 0.139 0.188 0.164 0.161 0.158 0.065 0.144 0.072 0.107
RL - 0.0179 - 0.0179 - 0.0179 0.0328 0.0332 0.0593 0.0604 0.0525 0.0354 0.0263 0.0266

RRL - 0.0 - 0.0 - 0.0 83.2 91.9 231 249 155 97.8 27.7 53.8
ETP 3.26 3.25 0.069 0.025 2.43 1.4 3.24 3.28 3.22 3.12 2.90 2.48 2.98 2.86
CS 764-312 830-287 4969-1 4991-1 2586-82 3888-38 849-232 669-328 822-224 870-244 2641-23 2280-27 929-34 1466-69

CBird

SC -0.019 -0.021 0.037 0.094 -0.026 -0.062 0.386 0.282 0.018 0.035 0.188 0.413 0.441 0.377
NMI 0.412 0.353 0.206 0.132 0.423 0.485 0.333 0.297 0.316 0.273 0.484 0.222 0.466 0.209
RL - 0.0055 - 0.0055 - 0.0055 0.0229 0.0139 0.0625 0.0560 0.0377 0.0056 0.0104 0.0039

RRL - 0.0 - 0.0 - 0.0 316 286 1036 1455 102 1.8 44.4▼ 8.3
ETP 6.34 5.59 2.71 0.958 6.56 7.21 5.51 5.03 5.16 4.47 7.43 5.68 7.01 5.06
CS 131-1 245-1 1722-1 2773-1 101-2 99-2 248-1 297-1 312-1 519-1 35-2 211-1 100-1 701-1

R-10k

SC -0.010 - 0.114 - -0.002 - - - - - 0.035 - 0.673 -
NMI 0.398 - 0.012 - 0.383 - - - - - 0.147 - 0.378 -
RL - - - - - - - - - - 0.0016 - 0.0022 -

RRL - - - - - - - - - - 60 - 120 -
ETP 5.13 - 0.072 - 5.10 - - - - - 5.55 - 4.79 -
CS 916-20 - 11172-1 - 885-18 - - - - - 727-56 - 1026-1 -

20NG

SC -0.021 - 0.114 - -0.008 - - - - - 0.099 - 0.287 -
NMI 0.155 - 0.003 - 0.166 - - - - - 0.018 - 0.180 -
RL - - - - - - - - - - 0.0006 - 0.0012 -

RRL - - - - - - - - - - 25▼ - 50 -
ETP 4.03 - 0.022 - 3.86 - - - - - 4.31 - 4.19 -
CS 2217-107 - 18818-1 - 3428-26 - - - - - 1142-582 - 1809-197 -

C.3 How interpretable are the memories of DClAM?

We explore the prototype-based representation of the learned memories in latent space for DClAM for
Fashion-MNIST and USPS in figure 4. For Fashion-MNIST, the 60k images are partitioned into 10
clusters, and the evolution of memories is visualized in figure 4b during the training process outlined
in algorithm 1 for DClAM. In each sub-figure of figure 4b, we observe the evolution over epochs. At
epoch 0, there are no distinct memories for clustering; instead, there are pairs of pullover (rows 3 & 5),
shirts (rows 7 & 8), and t-shirts/tops (rows 6 & 9). However, discernible patterns emerge at epoch 10,
refining further by epoch 20. By epoch 100, all ten memories represent distinct shapes, representing
different cluster centroids (explore the additional sub-figures of Fig. 4 to observe the evolution of
memories across epochs for ClAM in the latent space, an DClAM). Fig. 5 displays 20-closest points
for each of the memory of Fashion-MNIST.

17



Table 7: Metrices obtained by DClAM and baselines corresponding to the best NMI. The best
performance for each dataset is in boldface. (note abbreviations DCEC→DC, EDCWRN→EDC,
Entropy→ETP, Cluster-size→CS, No-AE→NAE, Conv-AE→CAE, EDCWRN-AE→EAE, Resnet-
AE→RAE). ‘-’ denotes NA. x▼ indicates negative RRL which means the RL of the method is x%
less than the pretrained AE loss.

Data Met Kmeans Agglo ClAM DC DEKM EDC DClAM

NAE CAE NAE CAE NAE CAE CAE RAE CAE RAE CAE EAE RAE

FM

SC 0.154 0.251 0.109 0.201 0.140 0.262 0.861 0.716 0.819 0.784 0.430 0.817 0.619 0.825
NMI 0.511 0.643 0.534 0.625 0.525 0.631 0.629 0.668 0.586 0.639 0.457 0.610 0.534 0.597
RL - 0.0122 - 0.0122 - 0.0122 0.0138 0.0139 0.0574 0.0596 0.0263 0.0406 0.0327 0.0387

RRL - 0.0 - 0.0 - 0.0 13.1 67.5 370 618 202 233 276 366
ETP 3.17 3.17 3.14 3.20 3.13 2.98 3.22 3.20 3.07 3.16 3.00 3.16 3.22 3.18
CS 9617-2361 11145-2744 11830-1860 10298-2544 14068-2435 15262-2100 10886-3030 9734-2847 12974-1191 11023-2652 17140-1578 11028-2658 10332-3054 10404-2610

C-10

SC 0.050 0.072 0.014 0.020 0.064 0.101 0.118 0.653 0.276 0.262 0.541 0.713 0.632 0.420
NMI 0.078 0.122 0.071 0.101 0.086 0.105 0.121 0.120 0.116 0.122 0.111 0.123 0.114 0.119
RL - 0.0220 - 0.0220 - 0.0220 0.0221 0.0245 0.0426 0.0362 0.0291 0.0403 0.0379 0.0326

RRL - 0.0 - 0.0 - 0.0 0.5 36.1 93.6 101 74.3 83.2 127 81.1
ETP 3.27 3.19 3.17 3.02 3.23 2.21 3.07 3.21 3.19 3.11 3.25 3.18 2.98 3.28
CS 7105-2734 9779-2524 10505-1650 11278-1764 9587-2925 26395-361 11022-3374 10235-1968 10275-2454 13746-2168 8172-2562 8595-2365 10721-289 6843-3144

C-100

SC 0.015 -0.014 -0.018 -0.043 0.018 0.001 0.048 0.002 -0.011 -0.028 0.308 0.354 0.200 0.130
NMI 0.161 0.183 0.150 0.167 0.153 0.170 0.162 0.179 0.186 0.189 0.186 0.219 0.225 0.239
RL - 0.0070 - 0.0070 - 0.0070 0.0072 0.0049 0.0112 0.0074 0.0398 0.0257 0.0250 0.0226

RRL - 0.0 - 0.0 - 0.0 2.9 22.5 60 85 315 267 160 465
ETP 6.53 6.48 6.45 6.30 6.51 6.27 6.41 6.41 5.23 6.45 5.51 6.33 6.33 6.36
CS 1160-129 1395-23 1299-77 2308-17 1317-177 2535-39 1623-14 1380-21 2213-32 1440-60 996-156 1210-5 2105-15 1315-5

USPS

SC 0.143 0.195 0.124 0.159 0.142 0.180 0.920 0.896 0.946 0.465 0.43 0.865 0.660 0.857
NMI 0.573 0.628 0.627 0.680 0.564 0.640 0.737 0.736 0.728 0.701 0.451 0.689 0.583 0.660
RL - 0.0019 - 0.0019 - 0.0019 0.0074 0.0039 0.0748 0.0374 0.0006 0.0451 0.0322 0.0409

RRL - 0.0 - 0.0 - 0.0 289 69.6 3836 1526 20 2274 6340 1678
ETP 3.27 3.23 3.26 3.27 3.27 3.21 3.27 3.27 3.24 3.24 3.29 3.11 3.24 3.23
CS 284-121 359-89 333-121 328-104 290-132 343-73 284-108 282-107 298-80 318-91 294-156 396-35 385-107 308-72

STL

SC 0.039 0.074 0.024 0.021 0.042 0.069 0.822 0.837 0.109 0.079 0.332 0.388 0.597 0.280
NMI 0.127 0.152 0.121 0.138 0.130 0.169 0.188 0.165 0.170 0.166 0.103 0.149 0.151 0.159
RL - 0.0179 - 0.0179 - 0.0179 0.0328 0.0362 0.0315 0.0174 0.0433 0.0409 0.0454 0.0364

RRL - 0.0 - 0.0 - 0.0 83.2 109 76.0 0.6 110 128 120 110
ETP 3.26 3.25 3.02 3.02 3.24 2.82 3.24 3.28 3.21 3.20 2.62 3.13 3.18 3.15
CS 764-312 830-287 1379-205 1373-130 945-317 1212-2 849-232 671-326 807-250 876-264 2173-121 982-46 929-232 938-181

CBird

SC -0.019 -0.021 -0.018 -0.064 -0.026 -0.062 0.248 0.152 -0.041 -0.038 0.188 0.135 0.068 0.167
NMI 0.412 0.353 0.469 0.439 0.423 0.485 0.356 0.320 0.364 0.370 0.484 0.421 0.493 0.385
RL - 0.0055 - 0.0055 - 0.0055 0.0229 0.0152 0.0066 0.0036 0.0377 0.0255 0.0237 0.0249

RRL - 0.0 - 0.0 - 0.0 316 322 20 0.0 102 364 26.7 592
ETP 6.34 5.59 6.97 6.58 6.56 7.21 5.84 5.12 5.71 5.80 7.43 6.48 7.39 6.05
CS 131-1 245-1 93-1 232-1 101-2 99-2 167-1 570-1 177-1 197-1 35-2 143-1 58-2 180-1

R-10k

SC -0.010 - -0.012 - -0.007 - - - - - 0.013 - 0.647 -
NMI 0.398 - 0.404 - 0.394 - - - - - 0.169 - 0.414 -
RL - - - - - - - - - - 0.0014 - 0.0020 -

RRL - - - - - - - - - - 40 - 100 -
ETP 5.13 - 5.15 - 5.22 - - - - - 5.47 - 5.2 -
CS 916-20 - 845-18 - 650-41 - - - - - 478-76 - 540-1 -

20NG

SC -0.021 - -0.186 - -0.103 - - - - - 0.066 - 0.199 -
NMI 0.155 - 0.167 - 0.176 - - - - - 0.018 - 0.229 -
RL - - - - - - - - - - 0.0006 - 0.0012 -

RRL - - - - - - - - - - 25▼ - 50 -
ETP 4.03 - 3.64 - 3.77 - - - - - 4.31 - 3.87 -
CS 2217-107 - 4024-52 - 4227-103 - - - - - 1142-582 - 3203-105 -

Table 8: Hyperparameters, their roles and range of values for DClAM.

Hyperparameter Used Values

Inverse temperature, β [10−5, ..., 5]
Number of layers, T = τ/dt [5, ..., 25]

Batch size [16, 32, 64, 128, 256]
Initial learning rate (AM), ϵam [10−4, 10−3, 10−2, 10−1]
Initial learning rate (AE), ϵae [10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1]
Reduce LR by factor 0.8
Reduce LR patience (epochs) [5, 10, 15]
Minimum LR 10−6

Reduce LR loss threshold 10−4

Maximum Number of epochs 300
Latent dimension Number of true clusters as per dataset
No of cluster, k Number of true clusters as per dataset
Number of restarts 5

Table 9: Best hyperparameters for different datasets for DClAM. ‘-’ denotes NA.

Dataset Inverse temperature, β Layers, T Batch size Learning rate(AM) Learning rate (e) Learning rate (d)

CAE RAE EAE CAE RAE EAE CAE RAE EAE CAE RAE EAE CAE RAE EAE CAE RAE EAE

FM 0.5 0.09 0.7 15 15 10 64 64 64 0.001 0.001 0.1 0.0000001 0.0000001 0.0000001 0.001 0.001 0.001
C-10 2 0.02 0.5 15 15 12 64 64 64 0.001 0.001 0.01 0.0000001 0.0000001 0.0000001 0.001 0.001 0.001
C-100 1 0.005 5 10 10 10 64 64 64 0.001 0.001 0.001 0.0000001 0.0000001 0.0000001 0.001 0.001 0.001
USPS 0.5 1 1 15 10 15 64 64 32 0.01 0.01 0.1 0.0000001 0.0000001 0.0000001 0.001 0.001 0.01
STL 0.5 0.003 0.1 15 10 12 64 64 128 0.001 0.01 0.1 0.0000001 0.0000001 0.0000001 0.001 0.001 0.0001
CBird 0.05 0.00015 0.005 15 10 15 64 64 64 0.01 0.001 0.1 0.0000001 0.0000001 0.0000001 0.001 0.001 0.001

R-10K - - 10 - - 10 - - 64 - - 0.01 - - 0.0000001 - - 0.1
20-NG - - 1.5 - - 15 - - 64 - - 0.1 - - 0.0000001 - - 0.1

18



n0 n5 n10 n20 n50 n100

(a) FM: ClAM on latent space

n0 n5 n10 n20 n50 n100

(b) FM: DClAM

n0 n5 n10 n20 n50 n100

(c) USPS: ClAM on latent space

n0 n5 n10 n20 n50 n100

(d) USPS: DClAM

Figure 4: Evolution of prototypes for Fashion-MNIST & USPS in ClAM on latent space and
DClAM. We visualize the prototypes at the nth training epoch for n = 0, 5, 10, 20, 50, 100 (with
T = 10).

(a) M (b) 20-closest points

Figure 5: DClAM: Final memories (left column) and the 20-closest points for each memory in
F-MNIST.

19



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We lay out clearly our contribution in proposing novel formulation of deep
clustering using associative memories.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made

in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 5 discusses limitations.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution is
low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: This is mostly an empirical paper, but we do discuss the upper bound on the
unified loss proposed in DClAM in Eq. 8.

20



Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Appendix B.1 we describe in detail all the methods, (hyper)parameters and
training details.

Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good
way to accomplish this, but reproducibility can also be provided via detailed instructions
for how to replicate the results, access to a hosted model (e.g., in the case of a large
language model), releasing of a model checkpoint, or other means that are appropriate to
the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

21



Justification: All datasets used are open and publicly available. We will also share our code
after publication.

Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, the paper lists the whole methodology for hyperparameter seletion and
optimizer used, as well as the dataset details.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: We report the best results for all the methods based on the best set of hyperpa-
rameters. For this reason there are no error bars or significance testing required.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error
rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We detail in section B.1 the experimental platform used.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work does not require human subjects. All datasets are public and the
nature of the evaluation is not dependent on any inherent biases. The work does not have
anticipated societal harms or other harmful consequences requiring mitigation.

Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special considera-

tion due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We do not anticipate any additional societal harms or other harmful conse-
quences requiring mitigation beyond the well-known risks.

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point

23

https://neurips.cc/public/EthicsGuidelines


out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models that
generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No proprietary datasets were used, and the models are not anticipated to have
a high risk potential for misuse.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the original asset owners are properly cited in this work. No licensed work
has been used.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

24

paperswithcode.com/datasets


Answer: [Yes]
Justification: The paper mainly contributes new clustering algorithm.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not applicable
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribution

of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: IRB is no applicable, since there is no human (or animal) study involved.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25


	Introduction
	Preliminaries
	Deep Clustering Basics
	Dense Associative Memories and Clustering

	Deep Clustering with Associative Memories
	DClAM: AM enabled Deep Clustering

	Empirical Evaluation
	Limitations and Future Work
	Related Work
	Experimental Details
	Dataset details
	Metrics used
	Parameter setting
	Implementation details
	How DClAM loss relates to traditional deep clustering loss

	Additional Experimental Results
	Detailed results with various clustering quality metrics
	Hyperparameter dependency for DClAM
	How interpretable are the memories of DClAM?


