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Abstract

Our ability to interrogate the cell and computationally assimilate its answers is improving at a dramatic
pace. For instance, the study of even a focused aspect of cellular activity, such as gene action, now
benefits from multiple high-throughput data acquisition technologies such as microarrays, genome-wide
deletion screens, and RNAi assays. A critical need is the development of algorithms that can bridge,
relate, and unify diverse categories of data descriptors. Redescription mining is such an approach. Given
a set of biological objects (e.g., genes, proteins) and a collection of descriptors defined over this set,
the goal of redescription mining is to use the given descriptors as a vocabulary and find subsets of data
that afford multiple definitions. The premise of redescription mining is that subsets that afford multiple
definitions are likely to exhibit concerted behavior and are, hence, interesting. We present algorithms
for redescription mining based on formal concept analysis and applications of redescription mining to
multiple biological datasets. We demonstrate how redescriptions identify conceptual clusters of data
using mutually reinforcing features, without explicit training information.

1 Introduction

Our ability to interrogate the cell and computationally assimilate its answers is improving at a dramatic
pace. The transformation of biology into a data-driven science is hence continuing unabated, as we become
engulfed in ever-larger quantities of information about genes, proteins, pathways, and even entire processes.
For instance, the study of even a focused aspect of cellular activity, such as gene action, now benefits
from multiple high-throughput data acquisition technologies such as microarrays [4], genome-wide dele-
tion screens [7], and RNAi assays [14, 15, 16]. Consequently, analysis and mining techniques, especially
those that provide data reduction down to manageable quantities, have become a mainstay of computational
biology and bioinformatics. From simple clustering of gene expression profiles [10], researchers have be-
gun uncovering networks of concerted (regulatory) activity [20, 26], reconstructing the dynamics of cellular
processes [9, 23], and even generating system-wide perspectives on complex diseases such as cancer [25].

The successes at being able to rapidly curate, analyze, and mine biological data obscure a serious prob-
lem, namely an overload of vocabularies now available for describing biological entities. For our purposes,
a vocabulary is any way to carve up a domain of interest and posit distinctions and equivalences. While one
biologist might study stress-responsive genes from the perspective of their transcriptional levels, another
might assess downstream effects such as the proteins the genes encode, whereas still others might investi-
gate the phenotypes of deletion mutants. All of these vocabularies offer alternative and mostly complemen-
tary (sometimes, contradictory) ways to organize information and each provides a different perspective into
the problem being studied. To further knowledge discovery, biologists need tools to help uniformly reason
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across vocabularies, integrate multiple forms of characterizing datasets, and situate knowledge gained from
one study in terms of others.

The need to bridge diverse biological vocabularies is more than a problem of data reconciliation, it is
paramount to providing high-level problem solving functions for the biologist. As a motivating context,
consider a biologist desiring to identify a set of C. elegans genes to knock-down (via RNAi) in order to
confer improved desiccation tolerance in the nematode. Assume the biologist would like to decompose this
problem via two lines of reasoning. First, proceeding along a stress response argument, the investigator
would like to identify genes that serve as master controls (transcription factors) whose knock-down will
cause significant change in downstream gene expression of other genes, leading to a modulation in the des-
iccation response (positive or negative), culminating in a disruption or delay of any shutdown processes.
Second, following a phenotypical argument, efforts would be directed at identifying key physiological indi-
cators of tolerance and adaptation, restate these indicators in terms of pathways that must be activated (or
inactivated), and identify genes central to these objectives. To support such lines of reasoning, and inte-
grate their answers, the biologist needs to be able to relate diverse data domains using a uniform analytical
methodology. Redescription mining is such an approach. Redescriptions empower the biologist to define
his own vocabularies, relate descriptors across them uniformly, and relationally compose sequences of re-
descriptions to realize complex functions. We will show how redescriptions are not specific to any data
acquisition technology, domain of interest, or problem solving scenario. Instead, they can be configured to
support a range of analytical functions that straddle vocabularies.

2 Reasoning about sets using redescriptions

As the term indicates, to redescribe something is to describe anew or to express the same concept in a
different vocabulary. The input to redescription mining is a set of objects and a collection of subsets defined
over this set. It is easiest to first illustrate redescription mining using an everyday, non-biological, example;
consider, therefore, the set of ten countries shown in Fig. 1 and its four subsets, each of which denotes
a meaningful grouping of countries according to some intensional definition. For instance, the colors (G)
green, (R) red, (B) blue, and (Y) yellow (from right, counterclockwise) refer to the sets ‘permanent members
of the UN security council,’ ‘countries with a history of communism,’ ‘countries with land area> 3, 000, 000
square miles,’ and ‘popular tourist destinations in the Americas (North and South).’ We will refer to such
sets as descriptors. A redescription is a shift-of-vocabulary and the goal of redescription mining is to identify
subsets that can be defined in at least two ways using the given descriptors. An example redescription for this
dataset is then: ‘Countries with land area > 3, 000, 000 square miles outside of the Americas’ are the same
as ‘Permanent members of the UN security council who have a history of communism.’ This redescription
defines the set {Russia, China}, once by a set intersection of political indicators (R ∩ G), and again by
a set difference involving geographical descriptors (B − Y ). Notice that neither the set of objects to be
redescribed nor the ways in which descriptor expressions should be constructed is input to the algorithm.
The underlying premise of redescription analysis is that sets that can indeed be defined in (at least) two ways
are likely to exhibit concerted behavior and are, hence, interesting.

What makes redescription mining pertinent to biology is that the domain of discourse, i.e., the descrip-
tors, is defined by the biologist. For instance, descriptors of genes in a given organism can be organized into
vocabularies such as cellular location (e.g., ‘genes localized in the mitochondrion’), transcriptional activity
(e.g., ‘genes up-regulated two-fold or more in heat stress’), protein function (e.g., ‘genes encoding proteins
that form the Immunoglobin complex’), or biological pathway involvement (e.g., ‘genes involved in glucose
biosynthesis’). More vocabularies can be harnessed from computational studies (e.g., ‘genes forming mod-
ule #124 identified by the Segal et al. algorithm’) or literature (e.g., ‘genes hypothesized to be involved in
desiccation response in the Potts et al. paper’). Redescription mining then constructs set-theoretic expres-
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Figure 1: Example input to redescription mining. The expression B − Y can be redescribed into R ∩G.

sions that induce the same set of genes in different vocabularies. See Fig. 4, to be described in detail later,
for examples of redescriptions from studies on budding yeast S. cerevisiae. Redescription 1 in Fig. 4, for
instance, restates ‘the ORFs negatively expressed in the histone depletion experiment (6 hours)’ as those
‘negatively expressed two-fold or more in the heat shock (10 minutes) experiment.’ Notice that this is an
approximate, albeit strong, redescription which holds with Jaccard’s coefficient (the ratio of the size of the
overlap to the size of the union) 0.78. These ORFs comprise functions related to metabolism, catalytic ac-
tivity, and their action is localized in the cytoplasm. The Pearson coefficients for these ORFs in the histone
depletion experiments match very strongly, showcasing the use of redescription in identifying a concerted
set of ORFs. Similarly, it is easy to conceptualize redescription scenarios where the descriptors are defined
over proteins, processes, or other domains.

In fact, the importance of ‘descriptors’ to encode domain specific sets in biology and using them as
a starting point for biological data mining has been recognized by other researchers. Segal et al. [25]
focus on pre-defined sets of genes and this work defines descriptors based on the results of clustering, on
expression in specific cell types, and membership in certain functional categories or pathways. The MSigDB
(molecular signatures database) [29] supporting the Gene Set Enrichment Analysis (GSEA) algorithm is
another resource that defines gene sets based on pathways, annotations, and similar information. There
are many more such methods but essentially all of them are interested in casting interpretations over pre-
defined, biologically meaningful, sets. Redescription mining views these databases as the primary resource
for mining and reveals inter-dependencies within them.

3 Theory and Algorithms

Formally, the inputs to redescription mining are the universal set of objects (e.g., genes)G = {g1, g2, . . . , gn},
and a set D = {d1, d2, . . . , dm} of proper subsets (the descriptors) of G. This information can be summa-
rized in a n × m binary dataset matrix whose rows represent genes, columns represents the descriptors,
and the (i, j) entry is 1 if object gi is a member of descriptor dj , and 0 otherwise. Typically, descriptors
are organized into vocabularies, each of which provides a covering of G. An expression bias (more on this
below) dictates allowable set-theoretic constructs involving the descriptors. This setting is similar to one
studied by Pu and Mendelzon [21] but there the goal is to find one most concise description of a given set
of objects using the vocabulary. The goal in redescription mining is to find equivalence relationships of the
form E ⇔ F that hold at or above a given Jaccard’s coefficient θ (i.e., |E∩F |

|E∪F | ≥ θ), where E and F are
expressions in the specified bias comprising the descriptors D. The key property of a redescription, like
most data mining patterns, is that it must be falsifiable in some interpretation (dataset). Notice that this rules
out tautologies, such as di − (di − dj)⇔ di ∩ dj , which are true in all datasets.

Redescription mining exhibits traits of many other data mining problems such as conceptual clustering,
constructive induction, and boolean formula discovery. It is a form of conceptual clustering [11, 17] be-
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Figure 2: Mining redescriptions using the CARTwheels algorithm. The alternation begins with a tree (first
frame) defining set-theoretic expressions to be matched. The bottom tree is then grown to match the top tree
(second frame), which is then fixed, and the top tree is re-grown (third frame). Colored arrows indicate the
matching paths. Redescriptions corresponding to matching paths at every stage are read off and subjected to
evaluation by Jaccard’s coefficient. For instance, in the second frame, the matching paths give rise to three
redescriptions: d1 ∩ d2 ⇔ G− d4 − d5 from paths on the left (red), G− d1 − d3 ⇔ d4 − d6 from paths on
the right (blue), and (d1 − d2) ∪ (d3 − d1)⇔ (d4 ∩ d6) ∪ (d5 − d4) from paths in the middle (green).

cause the mined clusters are required to have not just one meaningful description, but two. It is a form of
constructive induction since the features important for learning must be automatically constructed from the
given vocabulary of descriptors. Finally, since redescriptions are equivalence relationships, the problem of
mining redescriptions can be viewed as (unsupervised) boolean formula discovery [6].

3.1 Structure Theory of Redescriptions

In [19], a structure theory of redescriptions is presented that yields both impossibility and strong possibility
results. For instance, if the dataset matrix is a truth table, i.e., the number of genes n is 2m, where m is the
number of descriptors, then there can be no redescriptions. This is because the number of subsets of genes
(2n) coincides with the number of possible boolean formulas over m variables (22m

). Each boolean formula
is then in an equivalence class by itself and induces a different subset of objects from other formulas. On
the other hand, if the dataset is less than a truth table (i.e., missing one or more rows), then the ‘islands’
of boolean formulas begin to merge, with each missing row reducing the number of equivalence classes by
a factor of two. In such a case, all boolean formulas have redescriptions! This dichotomy law is rather
disconcerting but holds only under the assumption that the expression bias is general enough to induce all
subsets of genes. If we algorithmically restrict the bias, e.g., to conjunctions, or length-limited constructs,
then it is not obvious which subsets afford redescriptions, leading to a non-trivial data mining problem. As
a result, all algorithms for mining redescriptions focus on a specific bias and mine expressions within that
bias.

3.2 Algorithms for Mining Redescriptions

The CARTwheels algorithm [24] mines redescriptions between length-limited disjunctions of conjunctions.
The CHARM-L algorithm [33] mines redescriptions between conjunctions (with no restrictions on length).
A recently developed extension to CHARM-L (BLOSOM [34]) provides a way to systematically mine
complex boolean expressions in various biases, e.g., conjunctions, disjunctions, CNF, or DNF forms. We
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Figure 3: Mining redescriptions using the CHARM-L algorithm. Each node in the lattice denotes a closed
set, comprising genes, descriptors (abbreviated as dsets), and their minimal generators. The only redescrib-
able sets are the closed sets; redescriptions for these are obtained by relating their minimal generators. For
instance, d3∩ d5⇔ d7 is a redescription because both d3∩ d5 and d7 are minimal generators of the closed
set circled in the lattice.

highlight the main features of all these algorithms in this section.

CARTwheels: CARTwheels mines redescriptions by exploiting two important properties of binary decision
trees [22]. First, if the nodes in such a tree correspond to boolean membership variables of the given de-
scriptors, then we can interpret paths to represent set intersections, differences, or complements; unions of
paths would correspond to disjunctions. Second, a partition of paths in the tree corresponds to a partition of
objects. These two properties are employed in CARTwheels which grows two trees in opposite directions
so that they are joined at the leaves. Essentially, one tree exposes a partition of objects via its choice of
subsets and the other tree tries to grow to match this partition using a different choice of subsets. If partition
correspondence is established, then paths that join can be read off as redescriptions. CARTwheels explores
the space of possible tree matchings via an alternation process (see Fig. 2) whereby trees are repeatedly re-
grown to match the partitions exposed by the other tree. Notice the implicit restriction of bias to disjunctions
of one to three clauses, each involving one to two descriptors (in negated or non-negated form). By suitably
configuring this alternation, we can guarantee, with non-zero probability, that any redescription existing in
the dataset would be found. Exploration policies must balance the potential of identifying unseen regions of
descriptor space against redundancy from re-finding already mined redescriptions.

CHARM-L: CHARM-L, employing the conjunctions bias, adopts a different approach and exploits con-
nections between boolean formulas and closed sets, a concept popular in the association mining commu-
nity [1, 2]. A closed set is a set of genes together with a set of descriptors such that the conjunction of the
given descriptors induces the given set of genes, and no subset of the given descriptors induces the same set
of genes. In other words, the gene set and descriptor set are maximal w.r.t. each other and we cannot reduce
either of these sets without losing any elements of the other. The closed sets form a lossless representation
of the underlying dataset matrix in that the only redescribable sets are the closed sets. Additionally, the
redescriptions of a closed set are precisely the non-maximal versions of the given set. CHARM-L further
focuses on only the minimal variants, called minimal generators. The problem of redescription mining then
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reduces to mining closed sets and relating their minimal generators to form redescriptions (see Fig. 3). How-
ever, datasets for redescription analysis, when studied in the association mining framework, are very dense.
Since a gene participates in either a descriptor or its negation, the underlying dataset matrix is exactly 50%
dense (or sparse). We hence cannot rely merely on support pruning as a way to curtail the complexity of data
mining. CHARM-L’s solution is a constraint-based approach so that the lattice of closed sets is selectively
computed around genes (or descriptors) of interest.

BLOSOM: A generalization of CHARM-L is now being developed in the BLOSOM data mining frame-
work [34]. BLOSOM is a framework for mining closed boolean expressions of all forms, and defines closure
operators for specific families of expressions such as conjunctions, disjunctions, CNF, and DNF forms. It
focuses on mining the minimal boolean expressions that characterize a set of objects (e.g., genes). The main
data mining engine is based on a new approach to mine disjunctions (OR-clauses) instead of conjunctions. A
number of effective pruning techniques are utilized to effectively search for all the possible frequent boolean
expressions in normal form.

Besides their choice of biases, CARTwheels and CHARM-L/BLOSOM approach redescription mining from
alternative viewpoints, namely exploratory search versus enumeration and pruning. In this chapter, we show
the application of all these algorithms for biological studies.

4 Applications of redescription mining

4.1 Redescriptions for S. cerevisiae

We have applied redescriptions to studying descriptors defined over the yeast genome [24, 27], resulting
in considerable biological insight. The biologist first na rrows down on a reference set of a few hundred
genesand then defines descriptors over this reference set.In [27] we defined the reference set to be the set of
210 ‘high-expressors’ – genes exhibiting more than five-fold change in some t ime point (not necessarily all
or even a majority) across the yeast desiccation and rehydration time course. The descriptors are drawn from
a variety of sources. One vocabulary denotes expression levels in specific microarray measurements taken
from Gasch et al. [12] and Wyrick et al. [32]. For instance, ‘genes negatively expressed two-fold or below in
the 15 minute time point of the 1M sorbitol experiment’ is a descriptor in this vocabulary. A second type of
vocabulary asserts membership of genes in targeted taxonomic categories of the Gene Ontology (biological
processes (GO BIO), cellular components (GO CEL) or molecular functions (GO MOL)). A third class of
descriptors is based on clustering time course datasets using a k-means clustering algorithm [28] and using
the clusters as descriptors.

The redescriptions presented here, although approximate, have been whetted at a p-value significance
level of 0.0001. Essentially, we characterize the distribution of set size overlaps for targeted descriptor car-
dinalities and reason about the possibility of obtaining the specified Jaccard’s coefficient purely by chance.

Fig. 4 depicts some statistically significant redescriptions obtained by CARTwheels, illustrating the
diversity of set constructions possible. Of these, redescription R1 has been discussed earlier. R2 relates a
k-means cluster to a set difference of two related GO cellular component categories. While the 8 ORFs in
R2 appear to be part of different response pathways, 5 of these 8 ORFs are similarly regulated according to
the work of Segal et al. [26]; these genes relate to the cellular hyperorganization and membrane dynamics
in the regulation network.

R3 is a triangle of redescription relationships involving three different experimental comparisons, with
10 ORFs being implicated in all three expressions. From a biological standpoint, this is a very interesting
result – the common genes indicate concerted participation across stress conditions; whereas the genes
participating in, say, two of the descriptors, but not the third, suggest a careful diversification of functionality.
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Figure 4: Seven (approximate) redescriptions mined from gene expression studies on Saccharomyces cere-
visiae. Each box gives a readable statement of the redescription, presents it in graphical form, and identifies
the ORFs conforming to the redescription. The Jaccard’s coefficient is displayed over the redescription ar-
row. Notice that some redescriptions (e.g., R7) involve few ORFs, whereas others such as R5 involve larger
numbers.
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6 of the 10 ORFs are related to cell growth and maintenance. 5 of the 10 ORFs have binding motifs related
to the DNA binding protein REB1. The importance of phosphate and ribosomes appears to be salient in this
redescription. It is important to note that the circularity of R3 is not directly mined by CARTwheels, but
inferred post-hoc from a linear chain.

The theme in R4 is ribosome assembly/biogenesis and RNA processing. R4 is a linear chain comprising
two redescriptions, and uses a GO descriptor as an intermediary between two expression-based descriptors.
It is also interesting that this redescription involves a set of 45 ORFs!

R5 is an even longer chain involving 41 ORFs that are common to all descriptors. Notice the rather
complicated set construct involving a disjunction of a conjunction and a difference, involving three different
GO biological categories. Incidentally, this is the most complicated set expression representable in a 2-level
tree. Although R3, R4, and R5 are linear chains, CARTwheels is not a story telling algorithm since it cannot
find such relationships between user-supplied descriptors. The examples shown here are snapshots from the
continuous alternation of CARTwheels.

R6 is a relationship between two k-means clusters, between heat shock stresses. The ORFs participating
in R6 demonstrate a clear focus on sugar or sugar phosphate metabolism.

R7 is a redescription relating a disjunction of descriptors to a GO cellular component category. It is also
an interesting example of constructive induction, since a rectangular region is mined in a 2D space involving
two different experimental comparisons.

The capabilities of the CHARM-L are best illustrated through an interactive scenario where, given
constraints, the algorithm reasons about the conditions under which two given descriptors would be the
equivalent. In one scenario described in [33], a biologist is exploring descriptors around his favorite gene –
YOR374W, an ORF in S. cerevisiae that encodes an NAD-dependent aldehyde dehydrogenase (an enzyme—
EC 1.2.1.3—that catalyzes the conversion of an aldehyde and NAD+ to a carboxylic acid and NADH), which
has been determined to be very highly expressed in time point 20 minutes of the Gasch heat shock condition
(more than five-fold). YOR374W (Ald4p) is important from the perspective of metabolism as it provide a
means to generate reduced cofactor (NADH) for fueling electron transport and oxidative phosphorylation
(ATP synthesis). The biologist is particularly interested in relating two descriptors that Y0R374W partic-
ipates in. One of them is descriptor d184 that denotes all ORFs that are expressed more than five fold in
the above time point; it contains 19 genes. Looking at the nearby time point (15 minutes) the biologist
notices that the corresponding descriptor (d183) contains 21 genes, with 18 in common with d184. The Jac-
card’s coefficient between these descriptors is already high (0.857) but the biologist is curious to determine
if there could be an exact redescription by using the GO vocabularies. CHARM-L uncovers the following
redescription:

d183− d388− d460− d515⇔ d184− d309

In other words, to make d183 equivalent to d184, we need to subtract descriptors d388, d460, and d515
on the left (to remove 3 genes) and subtract descriptor d309 on the right (to remove 1 gene), bringing
the commonality to 18, as desired. Here, d388 refers to the GO molecular function category: mannose
transporter, d460 refers to the GO cellular component category: external protective structure, and d515
refers to the GO biological process category: fructose metabolism. d309, on the right side, incidentally
happens to refer to genes whose molecular function, according to GO, is unknown. The implied message,
from the above redescription, is that as we go from time point 15 minutes to time point 20 minutes, genes
belonging to the above three categories drop out of the highly expressed (≥ 5 fold) category.

4.2 Expanding redescriptions to uncover pathways

Fig. 5 describes how we can uncover an entire pathway by integrating redescription analysis with domain
theories. The source redescription in Fig. 5 (panel A) states that the genes that are onefold or more down-
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Figure 5: The use of redescriptions to uncover pathways. (A) Statement of redescription relating heat shock
to desiccation experiment. (B) Graphical depiction of redescription and the genes identified. (C) Desiccation
and heat shock lead to down-regulation of sets of genes with a central function in sulfur metabolism. (D)
Functions of genes involved in methyl group transfer and sulfur metabolism.
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Figure 6: Gene Network

regulated during heat shock (30 min) can be restated as those that are between one-and five fold down-
regulated in the desiccation experiment. A conspicuous feature of this redescription (see Fig. 5, panel B) is
the presence of three genes involved in sulfur metabolism: SAM1 (S-adenosylmethionine synthetase gene),
encoding the protein that synthesizes the potential riboswitch ligand S-adenosylmethionine [8], SAH1 (S-
adenosyl-L-homocysteine hydrolase gene), and YFR055W (cystathionine β-lyase gene). Riboswitch lig-
ands such as SAM appear to serve as ancient master control molecules whose concentrations are monitored
to ensure homeostasis of a much wider set of metabolic pathways [30, 31], and indeed SAM has recently
been implicated in G1 cell cycle regulation [18].

We can procedurally uncover a pathway from the above redescription as follows. We discard genes
encoding for ribosomal activity due to their consistent expression across the range of time courses in the
dataset and study the remaining genes and their interacting partners. Sam1p was reported to interact with
13 other proteins [13], and the gene for one of these, URA7, is also present in the redescription. Using
each of the genes (and their respective protein interactions culled from [5]), we systematically expand the
given genes to form a network of interactions. We then use the primary microarray data to infer possible
additional relationships (based on expression correlation). For example, MET30, encoding a cell cycle
F-box protein and also involved in sulfur metabolism and protein ubiquination, can directly or indirectly
be associated with TEF4 (translation elongation factor EF-1γ gene) and CLN2 (cyclin-dependent protein
kinase regulator gene), both of which are present in the redescription. Note that MET30 itself was not
present in the redescription. Finally, we improve the network further by incorporating genes from a pathway
that show interactions with other genes in the redescription but not with one another (for example, the
clustering of HIS4 and HIS1, ARO1 and ARO4, LYS14 and LYS12, and GAS1 and GAS3). The end result
is depicted in Fig. 5 (panel C). With the exception of MET30, SIP18, and CDC34, the transcription of each
gene in the proposed network was either down-regulated or unchanged, suggesting a central role for sulfur
metabolism in desiccation response. In view of the potential role of its protein in phospholipid binding SIP18
is shown close to other genes associated with lipid synthesis and binding (URA7, YBL085W), although it
doesn’t itself participate in the redescription. Studying this system further, Fig. 5 (panel D) illustrates the
functions of genes involved in methyl group transfer and sulfur metabolism. Additional information can be
obtained from comparison of Panels C and D; for example, note TPO2 (polyamine transport, Panel C) and
role of SAM1 in polyamine synthesis (Panel D); in addition the connectivity of SER3 and ARO4 (serine
biosynthesis, Panel C) and the role of serine in lipid biosynthesis (Panel D).

4.3 Modeling gene regulatory networks

A final application of redescription mining is to finding complex gene regulatory networks, which can be
represented in a simplified form, as boolean networks [3]. For this purpose, we demonstrate the application
of BLOSOM for redescription mining. Consider the network involving 16 genes, taken from [3], shown in
Fig. 6.

Here ⊕ and 	 denote gene activation and deactivation, respv. For example, genes B, E, H , J , and M
are expressed if their parents are not expressed. On the other hand G, L, and D express if all of their parents
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express. For example, D depends on C, F , X1 and X2. Note that F expresses if A does, but not L. Finally
A, C, I , K, N , X1 and X2 do not depend on anyone, and can thus be considered as input variables for
the boolean network. We generated the truth table corresponding to the 7 input genes but BLOSOM was
provided the values for all genes, without explicit instruction about which are inputs and which are outputs.
This yields a dataset with 128 rows and 16 items (genes). We then ran BLOSOM to discover the boolean
expression corresponding to this gene network; we used a minimum support of 100%, since we wish to find
expressions that are true for the entire set of assignments. BLOSOM output 65 expressions in 0.36s, which
hold true for the entire dataset. After simplification these can be reduced to the equivalent expression, as
shown in Table 1. (

D | (A B C E F G H J K L M X1 X2)
)

AND(
L | (C F H J K M)

)
AND(

(A B E G) | C | D | L | X1 | X2
)

AND(
(A B E G) | (C L) | (F H J)

)
AND(

(F H J) | (A B C E G) | (A B E G K M)
)

Table 1: Boolean Network Expression

We verified that indeed this expression is true for all the rows in the dataset! It also allows us to re-
construct the boolean gene network shown in Fig. 6. For example, the first component of the expres-
sion in the first row D | (ABCEFGHJKLMX1X2) can be converted into the implication D ⇒
(ABCEFGHJKLMX1X2), which means thatD depends on the variables on the right hand side (RHS).
If, at this point, we supply any partial knowledge about the input variables or of the maximum fan-out of
the network, we could project the RHS only on those variables to obtain (ACKX1X2), which happens to
be precisely the relationship given in Fig. 6. The second row tells us that L depends on the activation of C
and inactivation of K, i.e., K, if we restrict ourselves to the input variables. Note that C and K give the
values for the remaining varibles. Note that other dependencies are also included in the mined expression.
For example, we find that B and A always have opposite values, and so do B and E, and K and M . G and
B always have the same values, and so on. Thus this example shows the power of BLOSOM in mining gene
regulatory networks.

4.4 Cross-taxonomic and cross-genomic comparisons using redescriptions

Assume that we are provided with two families of functional annotations or ontologies, E and F , over
the same space of objects (e.g., genes). The objective is to conduct an all-pairs redescription study relating
categories or concepts betweenE and F . From the results of such a study, if e1 ∈ E is redescribed to f2 ∈ F
with a very high Jaccard’s coefficient, we could help impute annotations and properties typically associated
with e1 to f2 (and vice versa). The results of such a study can then be used for funtional enrichment of
unclassified genes, to analyze the structural consistencies (and inconsistencies) of different ontologies, and
in general as an educational tool to communicate similarities and differences across taxonomies. Finally,
when the ontologies apply to multiple organisms, we can study the extent to which redescriptions transfer
across organisms and whether some organisms have more developed ontologies than others.

We conducted a cross-taxonomic GO comparison study using the GO biological process (GO BIO),
GO cellular component (GO CEL), and GO molecular function (GO MOL) assignments available for
the Arabidopsis thaliana(arabidopsis), Drosophila melanogaster(fly), Homo sapiens(human), Mus muscu-
lus(mouse), Caenorhabditis elegans(worm) and Saccharomyces cerevisiae(yeast) genomes from the GO
database website. The GO hierarchy information used for propogation of GO categories up the GO tree was
also taken from the same website. For each organism, only those genes were considered that have atleast
one GO category, other than the categories for unknown GO BIO, GO MOL and, GO CEL, defined. The
summary of the data used is provided in Table 2.
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Table 2: Summary of input GO categories for the 6 species considered
Arabidopsis Fly Human Mouse Worm Yeast

Universal set size 13572 8911 23424 25142 11606 5731
Genes with BIO defined 6340 7424 18068 18193 9299 4711
Genes with CEL defined 3114 4131 16002 17362 5179 5713
Genes with MOL defined 12817 7606 21135 21887 8975 5714
BIO categories involved 1043 2493 2837 2774 1361 1691
CEL categories involved 205 530 543 496 261 424
MOL categories involved 1212 2013 2516 2230 1062 1470

GO BIO 51013:  microtubule severing  <=>  GO CEL 
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Figure 7: Examples of cross-taxonomic redescription: (a) A redescription between two functional cate-
gories for the Fly genome, (b) A redescription involving an intersection between two categories for the
Worm genome, (c) A redescription involving the GO CEL category ‘celullar component unknown’ for the
Arabidopsis genome. This redescription relates to the one in (b).

The experiment using the GO assignments for genes in each genome was performed as follows. The
universal set of genes was defined as above. Within this universal set, the three families of GO categories
were used individually as also in pairs to form input sets of descriptors. In all the runs, the descriptor family
for which redescriptions were sought was used to build one-level trees. Two level trees were used for each
pair of descriptor families used to construct derived descriptors. Thus, if a redescription was sought between
the GO BIO categories on one side and combinations of GO CEL and GO MOL categories on the other, the
study was done using a one-level tree for the GO BIO categories and upto a 2-level tree for GO MOL and
GO CEL categories. We also restricted all derived descriptors to involve just intersections and differences
between descriptors. The support threshold was set at 3 to retain only the most significant redescriptions.
The Jaccards coefficient threshold was set at 0.5.

Fig. 7 shows a few examples of redescriptions mined using CARTwheels. Fig. 7(a) shows a simple
redescription between a GO BIO (51013) and GO CEL (8352) category. This redescription holds for the
Fly genome with Jaccard’s coefficient of 1 and involves 4 genes. This type of a redescription can be easily
used to relate functional enrichments across different taxonomies as described earlier. Fig. 7(b) shows
a redescription involving a derived descriptor formed by the intersection of a GO BIO and a GO CEL
category which relates to a GO MOL category. This redescription holds for the Worm genome with Jaccard’s
coefficient 1 and involves 3 genes. Fig. 7(c) shows a redescription for the Arabidopsis genome where the
GO BIO and GO MOL involved are the same as in Fig. 7(b). The difference here is that GO CEL is assigned
the GO category ‘Cellular category unknown.’ This redescription also holds with a Jaccards coefficient of 1
and involve 11 genes. The pair of redescriptions found could potentially be used to better characterize the
GO CEL categorization for the genes involved for the Arabidopsis genome.

Table 3 summarizes the number of GO categories for which redescriptions are available and the number
of redescriptions mined for each of the six species. In all cases, the use of derived descriptors (intersection
and difference based) results in a significant increase in the number of categories involved in at least one
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Table 3: Summary of redescriptions obtained for the 6 species. Numbers in bracket indicate number of
redescriptions with no derived descriptors

Arabidopsis Fly Human Mouse Worm Yeast
BIO categories involved 259 (244) 169 (138) 389 (915) 375 (314) 257 (239) 260 (224)
CEL categories involved 50 (40) 146 (92) 102 (71) 94 (70) 70 (58) 149 (103)
MOL categories involved 176 (140) 230 (149) 369 (237) 358 (241) 271 (217) 205 (162)
BIO redescriptions 6852 (469) 15483 (324) 43828 (589) 41969 (622) 37174 (713) 23473 (513)
CEL redescriptions 4971 (139) 12567 (207) 22046 (163) 15531 (147) 11280 (178) 43293 (329)
MOL redescriptions 9352 (408) 39788 (363) 68765 (582) 66920 (581) 52445 (711) 20163 (388)

Table 4: Pairwise overlap between redescriptions obtained for the 6 species. The numbers in bracket indicate
th e number of distinct descriptors involved.

Arabidopsis Fly Human Mouse Worm Yeast
Arabidopsis - 2744 (48) 4550 (129) 4383 (120) 4133 (124) 4824 (59)
Fly 2744 (48) - 13306 (123) 11198 (94) 8237 (96) 5561 (117)
Human 4550 (129) 13306 (123) - 59674 (475) 29912 (291) 9871 (116)
Mouse 4383 (120) 11198 (94) 59674 (475) - 26884 (282) 5278 (91)
Worm 4133 (124) 8237 (96) 29912 (291) 26884 (282) - 4555 (86)
Yeast 4824 (59) 5561 (117) 9871 (116) 5278 (91) 4555 (86) -

redescription. Also, as is to be expected, a much higher number of redescriptions are found for genomes that
have more categories involved with the genes (giving more descriptors to form derived descriptors with).
Comparing Table 2 and Table 3, we can conclude that a large proportion of the functional categories have
redescriptions associated with them for all genomes.

Redescriptions found in the cross-taxonomic study described above can be used to validate and check
the consistency of GO category assignments across different genomes. For this analysis, we conducted
a pairwise comparison of redescriptions found for two different species and checked for overlap (same
descriptors involved). Importantly, we did not require that the support or Jaccards coefficient be the same
for the same redescription across a pair of species. The overlap observed is summarized in Table 4.

The species with large number of redescriptions (mouse and human) have high overlaps between them
as also with other species. The fly and arabidopsis redescriptions show the minimum overlap. This is a
result of the low number of descriptors available and redescriptions found for these species. As would be
expected, arabidopsis and yeast which differ from the other 4 species most drastically show low amount of
overlap.

Fig. 8 shows 3 examples of redescriptions found to be common for various species for a Jaccards thresh-
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AND   GO CEL 8372:    cellular component unknown 
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nucleus import, docking 

(a) Yeast, Worm 

protein- 
nucleus 
import, 
docking 

protein 
transporter 

activity 

nuclear pore 

1.00 

GO MOL 3924: GTPase activity  AND   GO CEL 
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Figure 8: Examples of redescriptions that hold with Jaccard’s coefficient for more that 1 species: (a) A
redescription common to yeast and worm genomes, (b) A redescription common to the worm and human
genomes, (c) A redescription common to the human, mouse and worm genomes.
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Table 5: GO categories for which redescriptions were found common to all 6 species.

GO category Type Description

GO:0003735 MOL structural constituent of ribosome
GO:0004672 MOL protein kinase activity
GO:0004674 MOL protein serine/threonine kinase activity
GO:0004812 MOL tRNA ligase activity
GO:0005840 CEL ribosome
GO:0006413 BIO translational initiation
GO:0006418 BIO tRNA aminoacylation for protein translation
GO:0006468 BIO protein amino acid phosphorylation
GO:0008452 MOL RNA ligase activity
GO:0016310 BIO phosphorylation
GO:0016875 MOL ligase activity, forming carbon-oxygen bonds
GO:0016876 MOL ligase activity, forming aminoacyl-tRNA and related compounds
GO:0016886 MOL ligase activity, forming phosphoric ester bonds
GO:0043038 BIO amino acid activation
GO:0043039 BIO tRNA aminoacylation

old of 1. Fig. 8 (a) shows a redescription commomn to the yeast and worm genome. This redescription
involves an intersection between a GO MOL and a GO CEL category related to a GO BIO category. It
involves 12 genes in the yeast genome and 4 genes in the worm genome. Fig. 8 (b) shows a redescription
common to the worm and human genome. This redescription again involves an intersection with the GO
CEL category ”cellular category unknown” that is conserved across the two species. It involves 4 genes
in the human genome and 3 genes in the worm genome. Fig. 8 (c) shows a redescription common to the
human, mouse and worm genome. It involves the intersection between a GO MOL and GO CEL category
related to a GO BIO category. This redescription involves 45 genes for human, 30 genes for mouse and 16
genes for the worm genome. Out of the redescription counts shown in Table 4, 920 redescriptions involving
15 categories were found to be constant across all 6 species. These 15 categories are listed in Table 5. All
these categories lie quite high in the GO hierarchy and involve a lot of genes. Thus, there is no example of a
redescription involving a very specific and precise functional category that could be found to be conserved
across the 6 species.

5 Discussion

We hope to have shown here that redescription mining provides a domain-neutral way to cast complex data
mining scenarios in terms of simpler primitives. This work makes possible to formulate and solve entirely
new classes of research problems that are vital to biological knowledge discovery. The key to success in our
approach is the use of domain-scientist-defined object sets (i.e., descriptors) as the starting point of analysis,
ensuring relevance of mined results. As scientists are empowered to create their own vocabularies and
descriptors and reason with them, there will be greater understanding of scientific datasets. Redescription
mining promises to be an important tool in this endeavor.
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