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ABSTRACT
In the rapidly evolving landscape of online recipe sharing within
a globalized context, there has been a notable surge in research
towards comprehending and generating food recipes. Recent ad-
vancements in large language models (LLMs) like GPT-2 [40] and
LLaVA [32] have paved the way for Natural Language Processing
(NLP) approaches to delve deeper into various facets of food-related
tasks, encompassing ingredient recognition and comprehensive
recipe generation. Despite impressive performance andmulti-modal
adaptability of LLMs, domain-specific training remains paramount
for their effective application. This work evaluates existing LLMs
for recipe generation and proposes LLaVA-Chef, a novel model
trained on a curated dataset of diverse recipe prompts in a multi-
stage approach. First, we refine the mapping of visual food image
embeddings to the language space. Second, we adapt LLaVA to the
food domain by fine-tuning it on relevant recipe data. Third, we
utilize diverse prompts to enhance the model’s recipe comprehen-
sion. Finally, we improve the linguistic quality of generated recipes
by penalizing the model with a custom loss function. LLaVA-Chef
demonstrates impressive improvements over pretrained LLMs and
prior works. A detailed qualitative analysis reveals that LLaVA-Chef
generates more detailed recipes with precise ingredient mentions,
compared to existing approaches.
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1 INTRODUCTION
The significance of food for promoting well-being is growing, as a
result understanding food recipes for healthy lifestyles has emerged
as a critical research area. The recent growth of recipe data through
online platforms and mobile apps has created a rich data resources,
driving research efforts towards developing AI-powered solutions
for food recognition, ingredient suggestion, and personalizing recipe,
all while factoring in dietary restrictions, cultural preferences, and
religious considerations [11, 35, 44, 54]. Despite substantial progress,
generating recipes or cooking steps solely from food names, images,
or ingredients remains a significant challenge. While the computer
vision community has leveraged state-of-the-art deep learning tech-
niques to extract ingredients from images, and NLP applications
have facilitated recipe generation from food names or ingredients,
the recent advances in multi-modal language-vision models offer a
promising path towards crafting feasible real-world solutions by
fusing visual and textual data.

Large language models (LLMs) [20, 22, 41, 47] have demonstrated
a remarkable ability to rapidly learn from vast amounts of text and
even multi-modal data [25, 28, 32]. For instance, by incorporating
visual features extracted from pretrained vision-language models,
several LLMs [5, 28, 32] have shown an enhanced ability to tackle
vision-language tasks like image captioning, visual question an-
swering, and visual reasoning. While these models excel in general
applications, their expertise plummets when they encounter special-
ized domains due to insufficient domain-specific training [26, 34].
This deficit often manifests in outputs riddled with hallucinations,
inaccuracies, and repetitive text, as Figure 2 demonstrates for food
recipes generated by two models.

Initial research focused on computer visionmethods for food clas-
sification to ingredient detection [8, 19, 23, 43]. Several researchers
learned unique food embeddings using text-vision models [35, 43]
while others generated food names using image captioning mod-
els [11]. Chef Transformer [16] takes a list of ingredients and gen-
erates recipes, whereas [11, 17, 46] predict ingredients from food
images as an intermediate step towards recipe generation. One
recent research [53] fine-tuned the LISA [25] model for a variety
of food tasks including food classification, recipe generation and
segmentation. Despite various endeavors, none of the models have
proven successful in generating effective recipes. Furthermore, most
of these models lack robust evaluation or are not publicly available.

In this paper, we address the limitation of the existing methods
by proposing LLaVA-Chef, a powerful multi-modal language and
vision model for learning food recipes with the help of well curated
and diverse set of prompts tailored towards training the model for
food domain tasks. Our model extends the LLaVA [32], which con-
sists of Vicuna [12] as a foundation LLM and CLIP [39] as a visual
encoder. The architecture of our model is shown in Figure 1. The
model concatenates visual and textual embeddings, and inputs them
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Xt= Gluten-Free Teff Biscuits

Xing = 1/2 cup teff flour, 1/2 cup 
amaranth flour, 1/2 cup tapioca starch, 
1/2 cup cornstarch, 1 1/2 tablespoons 
baking powder, 2 teaspoons xanthan 
gum, 3/4 teaspoon salt, 1 teaspoon 
vanilla extract, 1/2 cup jam, 1/2 cup 
unsweetened soymilk, 3 tablespoons 
sunflower oil.
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1. Preheat oven to 350 degrees.
2. In a large bowl, mix together the teff flour, 

amaranth flour, tapioca starch, cornstarch, 
baking powder, xanthan gum, salt, and 
vanilla extract.

3. In a separate bowl, mix together the jam 
and soy milk.

4. Add the wet ingredients to the dry 
ingredients and mix until just combined.

5. Drop the dough by tablespoonfuls onto a 
parchment-lined baking sheet.

6. Bake for 15 minutes, or until the biscuits 
are golden brown.

7. Remove from the oven and let cool on a 
wire rack.\n8. Serve with strawberry-
pineapple jam.

Generated recipe Yinst

Please provide the step-
by-step instructions for 
cooking <name> using the 
ingredients: <ingredients>

Prompt

Figure 1: Architecture of LLaVA-Chef and different training stages (as shown in grey). The inputs to the model 𝑋𝑡 , 𝑋𝑖𝑛𝑔, and 𝑋𝑖
refer to the recipe title, ingredients and image, respectively. 𝑌𝑖𝑛𝑠𝑡 refers to the generated recipe instructions (which are compared
with the ground truth instructions 𝑋𝑖𝑛𝑠𝑡 for loss computation). In training Stage-0 (S-0), the image to text mapping layer is
fine-tuned. Whereas, in the rest of the training stages S-1, S-2, and S-3 the backbone LLM is fine-tuned. Given a recipe, we
sample a prompt, then substitute <name> and <ingredients> with 𝑋𝑡 and 𝑋𝑖𝑛𝑔. Visual features of the image 𝑋𝑖 from CLIP are
mapped in language space and concatenated with language embeddings before passing through the backbone LLM. The frozen
and trainable symbols indicate which layers are fine-tuned (e.g., CLIP is frozen, whereas mapping layer and LLM are trainable.)

to the backbone LLM to generate the desired output. Following [26],
first we improve the cross-modal representation for food related
images by fine-tuning the mapping. Then, the model is fine-tuned
on unique prompts that reduce the hallucination and improve the
quality of recipe text. In the following training stage, we improve
the adaptability of the model for the food domain by introducing
more than 100 unique prompts to generate different attributes of
a recipe, i.e., title, ingredients and cooking instructions. Finally,
we penalize the model with a novel scaling term based on text
generation metrics, ultimately leading to improved performance.
Thus, gradually involving the augmentation of prompt diversity and
task complexity across multiple stages, our model systematically
acquires proficiency in handling a wide array of food recipes. We
evaluate our model on the Recipe1M dataset [45], specifically on the
test samples containing at least one image. Compared to pretrained
LLMs, our model consistently achieves higher scores across most
metrics. While other models could not get more than 0.1 CIDEr
score, our model achieves a remarkable 21-point lead. Qualitative
evaluation of the generated recipes confirms the advantages of our
model.

2 RELATEDWORK
Large FoundationalModels:The emergence of LLMs like BERT [24]
and GPT-2 [40] marked a significant leap in text understanding from
summarization to reasoning. This success spurred exploration of
even better LLMs and their application to visual-language tasks, in-
cluding image captioning and visual question answering. Building
on the success of LLMs like the 175B parameter model GPT-3.5 [7],

recent smaller counterparts like Mistral [22] and Phi-2 [20] demon-
strate promising performance on various language tasks, suggesting
potential benefits in efficiency and resource usage. Furthermore,
recent proprietary models like GPT-4 [1] and BARD [2] have gar-
nered significant attention for their multi-modal capabilities, but
their proprietary nature restricts accessibility and computational
feasibility.

On the other hand, open-source multi-modal LLMs [5, 14, 26,
28, 39, 55] have demonstrated their effectiveness in various visual-
language tasks. At the core of these multi-modal models lies a
foundational LLM fine-tuned for understanding visual data. A com-
mon approach involves a pretrained vision-language encoder (e.g.,
CLIP [39]) to extract visual features, which are then integrated with
language embeddings through mapping layers [32, 55] or cross-
attention modules [5, 14, 28]. This approach has led to successful
applications in domains like medicine [26, 34], finance [33, 52], and
law [4, 13]. While some research has explored applying these mod-
els to the food domain [11, 18, 27, 53], their performance remains
limited due to ineffective or inadequate training strategies.

Recipe Understanding: Early research in the food domain pri-
marily focused on food image classification [19, 23]. Following this,
interests shifted towards more intricate tasks including ingredi-
ent detection [8, 11, 43], recipe retrieval [10, 45, 50], ingredient
substitution recommendations [27, 37], and automatic recipe gen-
eration [6, 11, 16, 46, 53]. Notable attempts at recipe generation
include Chef Watson’s [48] Bayesian network approach over a
knowledge representation schema. Wang et al. [51] proposed a
structure-aware generation method for recipes from food images.
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1. Preheat your oven to 350°F (175°C).
2. In a large mixing bowl, combine the teff flour, 

amaranth flour, tapioca starch, cornstarch, baking 
powder, xanthan gum, and salt. Whisk to combine.

3. In a separate bowl, whisk together the soymilk, 
sunflower oil, and vanilla extract.

4. Pour the wet ingredients into the dry ingredients and 
mix until a dough forms. If the dough is too dry, you can 
add a bit more soymilk. If it's too wet, you can add a bit 
more flour.

5. Turn the dough onto a floured surface and knead it 
until it comes together and forms a smooth, elastic 
dough.

6. Roll the dough out to your desired thickness (around 
1/2 inch or 1 cm). Cut the dough into desired shapes 
using a cookie cutter or a knife.

7. Place the biscuits on a baking sheet lined with 
parchment paper or a silicone mat.

8. Bake the biscuits for 12-15 minutes, or until they are 
golden brown on the edges and firm to the touch.

9. Allow the biscuits to cool on the baking sheet for a few 
minutes before transferring them to a wire rack to cool 
completely.

10. While the biscuits are cooling, prepare the strawberry-
pineapple jam by heating the jam in a saucepan over 
medium heat until it reaches the desired consistency.

11. Once the biscuits are cooled, spread a layer of jam on 
top of each biscuit.

12. Serve the Gluten-Free Teff Biscuits With Strawberry-
Pineapple Jam immediately, as they are best enjoyed 
fresh.

13. Enjoy your delicious Gluten-Free Teff Biscuits With 
Strawberry-Pineapple Jam!

LLaVA

1. Preheat oven to 350 degrees.
2. In a large bowl, mix together the teff flour, amaranth 

flour, tapioca starch, cornstarch, baking powder, 
xanthan gum, salt, and vanilla extract.

3. In a separate bowl, mix together the jam and soy milk.
4. Add the wet ingredients to the dry ingredients and mix 

until just combined.
5. Drop the dough by tablespoonfuls onto a parchment-

lined baking sheet.
6. Bake for 15 minutes, or until the biscuits are golden 

brown.
7. Remove from the oven and let cool on a wire rack.
8. Serve with strawberry-pineapple jam.

LLaVA-Chef-S3

1. preheat oven to 375 degrees f. line an 8 x 4 x 2 inch loaf 
pan with silicone liners, or lightly coat with nonstick 
spray.

2. sift together all dry ingredients in a large bowl.
3. make a well in the center.
4. add the vanilla, jam, yogurt, and oil and stir until just 

blended do not overmix.
5. using a rubber spatula or wooden spoon, gently stir in ot

until well combined.
6. divide batter evenly among lined loaf pan.
7. bake until a wooden pick inserted in center comes out 

clean, about 45 minutes. 
8. cool in pan for 15 minutes.

Chef Transformer

1. preheat oven to 450F
2. mix together dry ingredients.
3. in a seperate bowl, mix wet.
4. slowly add the wet to the dry, and combine until just 

mixed.
5. roll out on a lightly floured surface, and use a cutter of 

choice to create shapes (i used the top of a drinking 
glass).

6. bake for about 15 minutes.

Ground Truth

Input Prompt:  Outline the method for cooking a delightful Gluten-Free Teff Biscuits With 
Strawberry-Pineapple Jam, highlighting the ingredients: 1/2 cup teff flour, 1/2 cup amaranth flour, 
1/2 cup tapioca starch, 1/2 cup cornstarch, 1 1/2 tablespoons baking powder, 2 teaspoons xanthan 
gum, 3/4 teaspoon salt, 1 teaspoon vanilla extract, 1/2 cup jam, 1/2 cup unsweetened soymilk, 3 
tablespoons sunflower oil.

Input Prompt: Elaborate on the steps involved in cooking Easy Cheesy Funeral Potluck Party 
Potatoes With Optional Add-Ins with these ingredients: 28 -32 ounces hash brown potatoes, 10 
34 cream of chicken soup or 10 34 cream of mushroom soup, 8 -16 ounces sour cream (I use 
light), 12 cup chopped onion, 14 teaspoon pepper, 14 cup butter, 8 -10 ounces sharp cheddar 
cheese (I use 2 percent)\noptional ingredients may be added -- broccoli, chicken, ground beef, 
sausage.

To prepare Easy Cheesy Funeral Potluck Party Potatoes, 
follow these steps:
1. Preheat your oven to 350°F (175°C).
2. In a large bowl, combine the hash brown potatoes, 

cream of chicken or mushroom soup, sour cream, 
onion, pepper, and butter. Mix well.

3. Transfer the mixture to a greased 9x13 inch baking dish.
4. Bake the potatoes in the preheated oven for 30-35 

minutes, or until they are tender and golden brown.
5. While the potatoes are baking, prepare the optional 

ingredients, if desired.
6. Once the potatoes are cooked, remove them from the 

oven and let them cool for a few minutes.
7. Add the shredded cheddar cheese on top of the 

potatoes, and if desired, add the optional ingredients 
such as broccoli, chicken, ground beef, or sausage.

8. Return the dish to the oven and bake for an additional 
5-10 minutes, or until the cheese is melted and bubbly.

9. Serve the Easy Cheesy Funeral Potluck Party Potatoes 
immediately.

LLaVA

1. Preheat oven to 350 degrees.
2. Cook potatoes in boiling water until tender. 
3. Drain and mash with a potato masher or fork.
4. Add cream of chicken or mushroom soup, sour cream, 

onion and pepper.
5. Mix well. 
6. Add butter and cheese.
7. Bake for 15 minutes.
8. Serve with broccoli, chicken, ground beef or sausage.

LLaVA-Chef-S3

1. preheat oven to 350 f. grease a 9 by 13 inch baking dish 
or any oven safe pan. 

2. add butter to a skillet over medium heat and melt. add 
onion and cook for 3 4 minutes until softened. add v 8. 
and chili sauce and cook stirring often until well 
blended.

3. add hashkooh browns and soup and stir well.
4. stir in v8, rooster sauce, tyler s bp, bff and chili powder.
5. add sour cream and stir until combined.
6. spoon evenly into prepared baking dish. bake 45 50 

minutes or until bubbling and browned.
7. serve topped with an optional topping such as fried or 

sauteed chicken.
8. serve with your choice of toppings if desired.

Chef Transformer

1. Preheat oven to 350 degrees F.
2. Grease 9x13 pan.
3. Saute onion in butter til tender, don't brown.
4. Mix all ingredients together in bowl including onions 

and butter. 
5. Pour potato mixture in pan and cover, bake aprox. 1 

hour. 
6. uncover last 10 minute.

Ground Truth

Figure 2: Sample recipes generated by LLaVA-Chef model, Chef-Transformer [16] (open source recipe generation model) and
LLaVA [26] (best pretrained model). We can see issues of hallucination, repetitive test, and inaccuracies for previous models.

DoD [43] explored food recognition by learning fine-grained em-
beddings of food names and ingredients using BLIP-2 [28] and
Falcon 7B [3]. RecipeGPT [18] leveraged the GPT-2 [40] architec-
ture, while RecipeMC [46] employed Monte Carlo Tree Search on
top of GPT-2 for recipe generation.

More recent works such as RecipeGM [42] and Chef Trans-
former [16] focused on generating recipes from pre-specified in-
gredient lists. FIRE [11] utilizes BLIP [29] model for food title
generation and a ViT-based multi-class classifier for extracting
ingredient lists, followed by the model T5 [41] for recipe genera-
tion. FoodLMM [53] fine-tuned LISA [25], a multi-modal model,
for diverse food-related tasks including classification, ingredient
detection, segmentation and recipe generation. While FoodLMM
demonstrates improved performance across multiple tasks com-
pared to baselines, its recipe generation capabilities remain a subject
for further improvement.

3 VISUAL INSTRUCTION-FOLLOWING DATA
Building upon the success of LLaVA [32] for visual instruction
tuning, we adapt it to food recipe generation. Food recipes encom-
pass both textual elements (title 𝑋𝑡 , ingredients 𝑋𝑖𝑛𝑔 , and cooking
instructions 𝑋𝑖𝑛𝑠𝑡 ) and visual information (food image 𝑋𝑖 ), as il-
lustrated in Figure 3. Despite several efforts to estimate cooking
instructions from food images, none could produce good recipes
compared to human. Furthermore, a dearth of research exists re-
garding the generation of complete recipes solely from images,
titles, ingredients, or combinations thereof. To bridge this gap, we
develop instruction tuning prompts specifically designed to predict

Ingredients: 
• 2 quarts whole milk,
• 1 1/2 cups uncooked rice, 
• 1 egg, 
• 1/2 cup cream (Half & Half), 
• 3/4 cup sugar, 
• 3 tablespoons flour, 
• 1 teaspoon salt

Title: Norwegian Rice

Cooking instructions: 
• Heat the milk to boiling point.
• Cook the rice in boiling water until almost done, then drain it.
• Add the rice to the hot milk
• bring the milk to almost a boil.
• When the rice is fully cooked, add step #4. 
• Beat 1 egg and 3/4 cup sugar, 1 tsp salt, 3 tbsp flour, and 1/2 

cup Half and Half cream- mix well. 
• Cook at a slow boil until the rice is well suspended and stays at 

the surface when the milk is boiling
• Cool, and serve.

Figure 3: Sample recipe from the Recipe1M dataset. Title is
denoted𝑋𝑡 , image𝑋𝑖 , ingredients𝑋𝑖𝑛𝑔 , and instructions𝑋𝑖𝑛𝑠𝑡 .

𝑌𝑡 , 𝑌𝑖𝑛𝑔 , 𝑌𝑖𝑛𝑠𝑡 , or their combination. Our approach entails align-
ing food image embeddings with corresponding textual attributes
by partially fine-tuning the model, followed by fine-tuning the
complete model to estimate the desired food attributes through
multi-modal fusion.

3.1 Food Concept Alignment Data
To align food image embeddings with text embeddings, we ran-
domly sample a question prompt 𝑋𝑝 for the generation of cooking
instructions 𝑌𝑖𝑛𝑠𝑡 from the title 𝑋𝑡 , ingredients 𝑋𝑖𝑛𝑔 , and the as-
sociated food image 𝑋𝑖 . Sample prompts with placeholders are
illustrated in Table 1. The prompt 𝑋𝑝 contains placeholders tokens
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Input Output sample prompt
Stage 0 and 1 Training Prompts

𝑋𝑖 + 𝑋𝑡 + 𝑋𝑖𝑛𝑔 𝑌𝑖𝑛𝑠𝑡 Given <ingredients>, what are the key steps you need to follow to prepare a perfect <name>?
𝑋𝑖 + 𝑋𝑡 + 𝑋𝑖𝑛𝑔 𝑌𝑖𝑛𝑠𝑡 Please provide the step-by-step instructions for cooking a delicious <name> from scratch using the following ingredients: <ingredients>.
𝑋𝑖 + 𝑋𝑡 + 𝑋𝑖𝑛𝑔 𝑌𝑖𝑛𝑠𝑡 Outline the steps to cook a <name> using ingredients: <ingredients>

Stage 2 and 3 Training Prompts
𝑋𝑖 𝑌𝑡 What is the name of the dish in this image?
𝑋𝑖 + 𝑋𝑖𝑛𝑔 𝑌𝑡 What is the name of the dish in this image? The ingredients used are: <ingredients>
𝑋𝑖 𝑌𝑖𝑛𝑔 Based on the features of the food in the image, provide a list of possible ingredients.
𝑋𝑖 𝑌𝑖𝑛𝑠𝑡 Describe how to prepare the meal shown in the image.
𝑋𝑡 𝑌𝑖𝑛𝑠𝑡 Generate cooking instructions for <name>:
𝑋𝑖 + 𝑋𝑡 𝑌𝑖𝑛𝑠𝑡 Generate cooking steps for <name> shown in this image.
𝑋𝑖 + 𝑋𝑡 + 𝑋𝑖𝑛𝑔 𝑌𝑖𝑛𝑠𝑡 Elaborate on the steps involved in cooking <name> with these ingredients: <ingredients>
𝑋𝑖 𝑌𝑡 + 𝑌𝑖𝑛𝑔 + 𝑌𝑖𝑛𝑠𝑡 Generate a name, ingredients, and cooking instructions for this dish:

Table 1: Example prompts utilized at each training stage. We can see that S-0 and S-1 focus on generating cooking instructions,
whereas S-2 and S-3 also on additional tasks. During training, we randomly select output task then we select input(s).

<𝑛𝑎𝑚𝑒> and <𝑖𝑛𝑔𝑟𝑒𝑑𝑖𝑒𝑛𝑡𝑠> corresponding to the title 𝑋𝑡 and in-
gredients 𝑋𝑖𝑛𝑔 . During training, we substitute these placeholders
with their actual values, resulting in the finalized prompt 𝑋𝑞 . This
refined prompt serves as the query for the model as demonstrated
in Figure 1. Throughout the training, we structure inputs into a
single-round instructions-following format, as exemplified below:

Human : 𝑋𝑞 𝑋𝑖 <STOP> \n
Assistant : 𝑌𝑖𝑛𝑠𝑡 <STOP> \n

During training, optimization focuses solely on the layer that maps
visual features to language embeddings. This targeted optimization
aims to refine the visual embeddings and enhance their alignment
with the food domain, ultimately improving the LLM’s performance
for recipe generation.

3.2 Visual Instruction Tuning Data
To adapt our model for food domain, we curated diverse prompts
aimed at generating multiple textual attributes of a recipe from a
food image and other textual attributes. These prompts effectively
leverage the LLM’s ability to perform multi-modal text generation.
Specifically, each prompt was designed to elicit a targeted output
from the LLM. For instance, one prompt instructed the model to
generate the food name based solely on its image. Another prompt
tasked the model with predicting the cooking instructions, utilizing
both the food image and the provided name. We employed GPT-3.5
to generate prompts for the following target outputs: food name
(𝑌𝑡 ), cooking instructions (𝑌𝑖𝑛𝑠𝑡 ), and cooking ingredients (𝑌𝑖𝑛𝑔).
Examples of these prompts are presented in Table 1. During train-
ing, we randomly select a task and then a prompt specific to the
selected task. The chosen prompt either may demand the prediction
of a single output (title, ingredients, or instructions) or multiple
outputs from the provided inputs. In cases where the recipe lacks
an associated image, an empty image is utilized.

Our multi-stage fine-tuning process progressively enhances the
model’s understanding of food recipes. Initially (Stage-0), visual
embeddings are projected into the language domain, establishing a
foundation for subsequent learning. Stage-1 focuses on recipe com-
prehension by training the model to generate cooking instructions
based on the provided food image, title, and ingredients. Subsequent
stages (Stages-2 and Stage-3) increase task complexity and reduce
input information to promote deeper recipe knowledge acquisition.
In the cooking instruction task, diverse prompts expose the model

to varying input modalities (image-only, title-only, image-title, and
image-title-ingredients), fostering robustness in recipe generation.
Finally, the model is also challenged to predict recipe title, ingredi-
ents, and cooking instructions solely from the image, solidifying
its ability to infer comprehensive recipe information from limited
visual input.

4 LLAVA-CHEF: ADAPTING LLAVA TO FOOD
DOMAIN

The performance of LLaVA-Chef is gradually improved by a metic-
ulously designed multi-stage training strategy to unlock its full
potential as described below in detail.

4.1 Stage 0: Food domain adaptation
To bridge the gap between visual and language modalities, LLaVA
leverages a linear layer to project visual features into the language
space. In Stage-0, we concentrate on fine-tuning the mapping layer
using image-recipe pairs from the Recipe1M dataset [45]. As illus-
trated in Figure 1, the food image 𝑋𝑖 , name 𝑋𝑡 and ingredients 𝑋𝑖𝑛𝑔
are input to the model and the model is asked to generate cooking
instructions. Optimization of the mapping layer is achieved through
the standard cross-entropy loss function defined as follows:

𝐿𝐶𝐸 = 𝐶𝐸 (𝑝 (𝑌𝑖𝑛𝑠𝑡 ), 𝑝 (𝑌𝑖𝑛𝑠𝑡 )) (1)

Where, 𝑝 (𝑌𝑖𝑛𝑠𝑡 ) is probability of ground truth cooking instruction
as one hot-vector, 𝑝 (𝑌𝑖𝑛𝑠𝑡 ) indicates probability of the cooking in-
structions predicted by the model. This fine-tuning aims to optimize
the alignment of the visual embeddings with their corresponding
language representations, enhancing the model’s ability to capture
the nuances of visual information relevant to recipes. Note that this
step fine-tunes the mapping layer to better understand the food
images.

4.2 Stage 1: Learning the language of recipes
To train our model on predicting cooking instructions from image,
title, and ingredients, we curated a dataset of 35 unique prompts.
Each prompt incorporates special tokens: <name> representing
the food title and <ingredients> signifying the listed ingredients.
During training, we randomly sample a prompt, then replace these
special tokens with the title and ingredients of the recipe and fine-
tune the entire backbone LLM model. This approach allows the
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model to learn food-domain embeddings from both visual and tex-
tual data seamlessly. Recognizing that not all recipes may have
accompanying images, we employed a strategy for handling miss-
ing visuals. When an image is unavailable, we substitute it with
a black (empty) image as a placeholder. This enables the model to
learn from the remaining textual attributes (title and ingredients)
and still estimate cooking instructions even without image input.
The model is optimized using the default cross entropy loss function
as defined above in equation 1.

4.3 Stage 2: Boosting model adaptability via
prompt diversity

The Recipe1M dataset [45] offers four attributes for each recipe:
image, title, ingredients, and cooking instructions. While image con-
tributes visual information, the latter three act as textual attributes.
To diversify our training prompts, we expanded our initial set of
35 prompts by utilizing GPT-3.5 to generate prompts for various
recipe-related tasks, bringing the total to 102 prompts, some exam-
ples are shown in Table 1. These prompts are task-specific, explicitly
defining the input and target output for each prediction scenario.
During training, we randomly select a task (what to predict) and
a corresponding prompt. We opted to retain cross-entropy as our
chosen loss function. This approach fosters model generalizability,
enabling it to predict the desired output (e.g., title, ingredients, or
instructions) from image, title, or ingredients via fine-tuning as
shown in Figure 1. To further improve generalization, we adopted
a strategy where at most 50% of the ingredients are omitted from
the input during training. This forces the model to infer missing
ingredients based on the remaining information, ultimately lead-
ing to improved performance across all tasks, including cooking
instruction generation from solely image or title.

4.4 Stage 3: Optimizing the recipe language
To enhance the language quality and achieve predictions closer to
the ground truth, we extended the training of our model from Stage-
2 by introducing an additional penalty loss, based on the commonly
used BLEU [36] and Rouge [30] scores that were initially formu-
lated to evaluate machine translation and text summarization tasks.
However, one cannot directly optimize these metrics as additional
loss terms, since they are non-differentiable (e.g., they are based on
𝑛-gram counts). Instead of optimizing them directly, we propose
a novel formulation where we use the scores as a multiplicative
or scaling factor for the cross-entropy loss. Let 𝑌𝑙𝑎𝑏𝑒𝑙 denote the
ground truth recipe, 𝑌𝑝𝑟𝑒𝑑 the generated recipe (note: 𝑙𝑎𝑏𝑒𝑙 can
refer to any of the inputs such as title, image, ingredients and/or
cooking instructions). Next, define 𝐿𝑏𝑙𝑒𝑢 = 1−𝐵𝐿𝐸𝑈 (𝑌𝑙𝑎𝑏𝑒𝑙 , 𝑌𝑝𝑟𝑒𝑑 )
as the penalty from the SacreBLEU score [38], and 𝐿𝑟𝑜𝑢𝑔𝑒𝐿 =

1 − 𝑟𝑜𝑢𝑔𝑒𝐿(𝑌𝑙𝑎𝑏𝑒𝑙 , 𝑌𝑝𝑟𝑒𝑑 ) as the penalty from Rouge-L [31]. Since
higher scores are better (with 1 being the maximum score), we
penalize by subtracting them from 1. We then combine both into a
joint scaling penalty:

𝐿𝐵𝑅 = 𝜆𝑏𝑙𝑒𝑢 (1 − 𝐿𝑏𝑙𝑒𝑢 ) + 𝜆𝑟𝑜𝑢𝑔𝑒𝐿 (1 − 𝐿𝑟𝑜𝑢𝑔𝑒𝐿) (2)

where 𝜆𝑏𝑙𝑒𝑢 and 𝜆𝑟𝑜𝑢𝑔𝑒𝐿 are weighting factors. Next, we multiply
the (per-sample) scaling penalty 𝐿𝐵𝑅 with the cross-entropy loss

(𝐿𝐶𝐸 ), as follows:
𝐿𝑓 𝑖𝑛𝑎𝑙 = 𝐿𝐵𝑅 × 𝐿𝐶𝐸 (3)

As such 𝐿𝐵𝑅 , while non-differentiable, works as a (per sample)
scaling constant, thus scaling and penalizing the overall loss when
the value of either of the metrics goes down; the final loss remains
differentiable. This multi-objective approach holds the promise of
generating more fluent, accurate, and semantically aligned recipe
instructions, as we investigate in the following section.

5 EXPERIMENTS
5.1 Experimental setup

Dataset: We leveraged Recipe1M [45], a large-scale recipe dataset
boasting 1 million recipes and 819,000 food images. Each recipe
comprises a title, ingredients list, and cooking instructions, with
several samples also accompanying one or more images. Recipe1M
already provides training, validation, and test splits. For the train-
ing phase, we utilized the entire training set consisting of 720,639
recipes (with 619,508 images). However, during testing, we focused
on recipes with at least one image. After cleaning the test set by
removing samples lacking images or containing corrupted ones, we
obtained two curated testing subsets:

• 𝑡𝑒𝑠𝑡50𝑘: All 50,507 test samples from Recipe1M test that
contain at least one image.

• 𝑡𝑒𝑠𝑡1𝑘 : We selected another 1,000 samples (randomly) as
𝑡𝑒𝑠𝑡1𝑘 set for detailed qualitative analysis.

Metrics: To evaluate the generated text quality compared to
the ground truth, we employed several image caption and lan-
guage translation metrics. These metrics include BLEU [36], a
precision-based metric specifically designed for machine trans-
lation, Rouge [30], a recall-oriented metric for text summarization,
METEOR [15] and CIDEr [49], which were specifically developed
for assessing image caption quality and exhibit strong correlation
with human subjective judgments. Perplexity [21], a measure of lan-
guage model uncertainty, was also included to provide additional
insights into fluency and coherence of the generated text.

Model Training: Our model, LLaVa-Chef, was trained in four
consecutive stages on four NVIDIA RTX A6000 48G GPUs with a
batch size of 32. We set learning rate to 2e-5 with a cosine learning
scheduler at a warmup ratio of 0.03. Stages 0, 1 and 2 employed the
standard cross-entropy loss function. In Stage-3, loss was scaled
based on BLEU (𝜆𝑏𝑙𝑒𝑢 = 1.01), and Rouge-L (𝜆𝑟𝑜𝑢𝑔𝑒𝐿 = 1). This
multi-objective approach prioritized language quality, ultimately
leading to improved performance in generated text fidelity when
compared to ground-truth recipes. Our model and data is publicly
available at https://github.com/mohbattharani/LLaVA-Chef.

5.2 LLaVA fine-tuning
Our investigation into recipe generation compared multiple high-
performing open-source general-purpose LLMs. We also evalu-
ated Chef Transformer [16] (T5 [41] fine-tuned on the RecipeNLG
dataset [6]), the sole publicly available open-source recipe genera-
tion model at the time (December 2023). Evaluation on a 1000 sam-
ple test set (𝑡𝑒𝑠𝑡1𝑘) drawn from the Recipe1M dataset (as detailed
in Table 2) revealed LLaVA [32], a multi-modal LLM, to outperform

https://github.com/mohbattharani/LLaVA-Chef
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Method Inputs BLEU-1 BLEU-2 SacreBLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L CIDEr Perplexity ↓
Chef Transformer [16] 𝑋𝑖𝑛𝑔 0.271 0.128 0.037 0.117 0.259 0.057 0.133 0.046 54.21
GPT-2 [40] 𝑋𝑡 + 𝑋𝑖𝑛𝑔 0.084 0.032 0.01 0.037 0.111 0.018 0.088 0.01 2.15
Mistral [22] 𝑋𝑡 + 𝑋𝑖𝑛𝑔 0.126 0.072 0.04 0.079 0.179 0.055 0.106 0.05 26.45
Phi-2 [20] 𝑋𝑡 + 𝑋𝑖𝑛𝑔 0.143 0.07 0.027 0.147 0.202 0.047 0.108 0.002 32.41
LLaMA [47] 𝑋𝑡 + 𝑋𝑖𝑛𝑔 0.234 0.119 0.049 0.16 0.29 0.075 0.155 0.043 2.86
InstructBLIP-T5xl [14] 𝑋𝑖 + 𝑋𝑡 + 𝑋𝑖𝑛𝑔 0.014 0.006 0.001 0.037 0.137 0.022 0.094 0.014 68.71
InstructBLIP-Vicuna [14] 𝑋𝑖 + 𝑋𝑡 + 𝑋𝑖𝑛𝑔 0.0013 0.0004 0.0001 0.026 0.103 0.012 0.069 0.004 135.75
MiniGPTv2 [9] 𝑋𝑖 + 𝑋𝑡 + 𝑋𝑖𝑛𝑔 0.232 0.115 0.06 0.139 0.257 0.06 0.135 0.03 157.0
MiniGPT4-LLaMA-2 [55] 𝑋𝑖 + 𝑋𝑡 + 𝑋𝑖𝑛𝑔 0.2754 0.141 0.07 0.204 0.353 0.094 0.173 0.032 11.78
LLaVA [32] 𝑋𝑖 + 𝑋𝑡 + 𝑋𝑖𝑛𝑔 0.29 0.155 0.06 0.2 0.366 0.105 0.184 0.041 2.6

Table 2: Performance of pretrained foundational models on our 𝑡𝑒𝑠𝑡1𝑘 . Notably, pretrained LLaVA, outperforms other evaluated
models on most metrics, showcasing its ability to generate food recipes.

Method Inputs BLEU-1 BLEU-2 BLEU-3 BLEU-4 SacreBLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L CIDEr Perplexity ↓
Chef Transformer [16] 𝑋𝑖𝑛𝑔 0.267 0.127 0.064 0.034 0.038 0.116 0.262 0.059 0.136 0.045 30.62
Mistral [22] 𝑋𝑡 + 𝑋𝑖𝑛𝑔 0.130 0.075 0.048 0.033 0.041 0.082 0.188 0.058 0.111 0.063 75.36
LLaMA [47] 𝑋𝑡 + 𝑋𝑖𝑛𝑔 0.252 0.129 0.072 0.043 0.053 0.156 0.293 0.077 0.156 0.031 2.86
LLaVA [32] 𝑋𝑖 + 𝑋𝑡 + 𝑋𝑖𝑛𝑔 0.297 0.159 0.089 0.042 0.061 0.2 0.368 0.106 0.183 0.037 2.92
LLaVA-Chef-S1 𝑋𝑖 + 𝑋𝑡 + 𝑋𝑖𝑛𝑔 0.322 0.19 0.117 0.075 0.096 0.159 0.404 0.141 0.217 0.187 2.62
LLaVA-Chef-S2 𝑋𝑖 + 𝑋𝑡 + 𝑋𝑖𝑛𝑔 0.331 0.193 0.118 0.075 0.09 0.159 0.396 0.136 0.213 0.176 2.86
LLaVA-Chef-S3 𝑋𝑖 + 𝑋𝑡 + 𝑋𝑖𝑛𝑔 0.362 0.215 0.135 0.089 0.167 0.188 0.473 0.172 0.241 0.216 2.38

Table 3: Results on Recipe1M test set 𝑡𝑒𝑠𝑡50K (randomly selected 50,507 test samples, fixed for all models). Our model, LLaVA-
Chef, gradually improves from Stage-1 to Stage-3 on almost all the metrics.

all contenders, including Chef Transformer. Consequently, LLaVA
was chosen for further analysis and fine-tuned on the Recipe1M
dataset for enhanced performance. Our training protocol employed
a multi-stage fine-tuning approach. Initially, during Stage-0, we
conducted fine-tuning for the projection layer over the course of
two epochs. Subsequently, throughout the remaining three stages
(Stage 1-3), the entire model was fine-tuning for two epochs in each
stage.

Our analysis of current open-source LLMs presented in Table 2
reveals intriguing performance in the food domain. In case of text-
only models, Chef-Transformer shown higher BLEU-1 and BLEU-2
scores but it has lower scores on SacreBLEU, METEOR, and Rouge-L
than LLaMA, indicating potential trade-offs in generation quality.
Whereas, comparing all the models, LLaVA seems to outperform.
The higher perplexity scores suggests that, with the exception of
LLaMA, MiniGPT-4 and LLaVA, all models struggle to generate
good quality language, potentially generating text exhibiting hallu-
cinations or incomplete sentences. Though Mistral has impressive
performance on standard benchmarks, its higher perplexity score
and scores for other metrics lower than Phi-2 raises questions about
its effectiveness in this specific context. InstructBLIP [14] gener-
ated recipes for more like caption rather than cooking steps. The
training data of MiniGPT-4 [55] contains food images paired with
cooking instructions, hence it is comparable to Chef-Transformer
for recipe generation on several metrics. Overall, LLaVA stands out,
achieving remarkable performance on most metrics.

5.3 Quantitative Results
The results presented in Table 2 for 𝑡𝑒𝑠𝑡1𝑘 set demonstrate that the
pre-trained LLaVA [32] outperforms other LLMs including Chef-
Transformer [16], despite Chef-Transformer being trained on recipe
dataset. A similar trend was also found on test set 𝑡𝑒𝑠𝑡50𝑘 as shown
in Table 3, comparing top 4 row, LLaVA has higher scores. Our

LLaVA-Chef model therefore extends the baseline LLaVA model via
our novel multi-stage training and fine-tuning framework outlined
above. Notably, our model, LLaVA-Chef outperforms other models,
with its BLEU and Rouge scores indicating the alignment of the
generated cooking instructions with the ground truth.

Open source LLMs: Due to limited benchmarks for recipe gen-
eration, we explored the performance of prominent LLMs on the
Hugging Face Leader board (December 20, 2023). These include
well-established models like GPT-2 [40], and LLaMA [47], as well as
recent high-performing options such asMistral (7B parameters) [22]
and Phi-2 [20]. We also considered four multi-modal models in our
study including InstructBLIP [14], MiniGPTv2 [9], MiniGPT-4 [55]
and LLaVA [32] due to their exceptional performance on visual-
language tasks. Additionally, we evaluated Chef Transformer [16], a
fine-tuned T5 [41] model specifically designed for recipe generation,
offering an open-source option for comparison.

Comparison with existing methods: Direct comparison with
the existing literature is challenging due to discrepancies in reported
results and limited dataset accessibility. The partial availability of
Recipe1M dataset and outdated URLs hinder consistent evaluation.
For examples RecipeMC [46] is evaluated on 1000 samples from
Recipe1M dataset but they did not share those samples. Similarly,
FIRE [11] could get 56𝐾 samples from test set of Recipe1M dataset
as few URL were no more accessible. In our case, we could get
only 50, 507 test samples that contain at least one image per recipe.
Although, the test set used by baseline methods and ours might
be slightly different, the scores give us a general idea about the
performance of the models.

Our model in general outperforms the baseline methods as ev-
ident in Table 4 and Table 5. We took the scores for Chef Trans-
former [16], Inverse Transformer [44], FIRE [11], and FoodLMM [53]
from their respective publications. Additionally, we conducted
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Method SacreBLEU ROUGE-L
Inverse Cooking[44] 0.055 0.195
FIRE [11] 0.06 0.212
FoodLMM [53] 0.062 0.369
Chef Transformer [16] 0.046 0.175
Chef Transformer∗ 0.038 0.136
LLaVA∗ 0.061 0.183
LLaVA-Chef-S3∗ (Our) 0.158 0.228

Table 4: Results on Recipe1M test set: Due to inconsistency in
datasets and lack of publicly available models, results based
on our 𝑡𝑒𝑠𝑡50𝑘 benchmark dataset are marked with ∗.

Method Perplexity (gt/pred) ↓ ROUGE-1 ROUGE-2 BLEU
RecipeMC [46] 2.934 / 7.337 0.362 0.115 0.08
LLaVA [32] 6.8 / 2.6 0.367 0.105 0.06
LLaVA-Chef-S3 4.14 / 2.4 0.473 0.17 0.17

Table 5: Results on 1000 test recipes from Recipe1M
dataset (gt: ground truth, pred: predicted or generated text).
RecipeMC test recipes are taken from [46].

an evaluation of the publicly available Chef Transformer [16] on
our 𝑡𝑒𝑠𝑡50𝑘 set. Intriguingly, our evaluation yielded lower scores
for Chef Transformer compared to those reported in its original
publication. Notably, the pretrained general-purpose LLaVA [32]
marginally surpassed FIRE and is close to FoodLMM in terms of
SacreBLEU score. Despite being built upon LLaVA, FoodLMM [53]
only achieved a 1-point improvement in SacreBLEU score, although
its Rouge-L score is significantly higher.

On the other hand, our model, LLaVA-Chef, as seen in Table 4
demonstrates superior performance, achieving a remarkable nearly
10-point margin over other models in SacreBLEU score, even with
second best Rouge-L score. As shown in Table 5, LLaVA-Chef sur-
passes RecipeMC on both Rouge and BLEU scores. This significant
performance gain validates the effectiveness of our approach.

Performance on different cuisines: To evaluate the general-
ization of LLaVA-Chef, we report the performance of our model
on test samples from different cuisines in Table 6, and compare
with scores on test1k. For most of the cuisines, BLEU and Rouge
scores are almost same. Our model shows lowest Rouge scores for
French and higher perplexity for German. In general, most of the
scores are close to the overall scores on 𝑡𝑒𝑠𝑡1𝑘 set indicating the the
model generalizes across cuisines, even for those with few training
examples (e.g., Japanese or Russian).

5.4 Qualitative Results
Beyond quantitative metrics, evaluating the qualitative aspect of
generated recipes is crucial. Figure 2 presents two recipes generated
by Chef-Transformer, LLaVA and LLaVA-Chef (Ours). In the left-
hand example, all models recommend a lower temperature than
the ground truth, but the baking time remains consistent. In the
right-hand example, all models suggest the same oven temperature
but vary in recommended cooking time. LLaVA-Chef generates
concise recipes with high accuracy, often surpassing other models
and even the ground truth in clarity. When manually looking at
the generated recipe, we observe that GPT-2, Mistral and Phi-2

struggle to produce a cohesive recipe, Chef Transformer generated
recipe do not have sufficient information, LLaMA sometime fails
to generate correct recipes, and InstructBLIP generates text which
looks like a caption rather than cooking steps. LLaVA generates
detailed recipes but hallucination is common in generated text.
However, our LLaVA-Chef generated recipe is concise and closely
resembles human generated ground truth recipe.

We also look at how our LLaVA-Chef’s multi-stage approach
successively improves the generated recipes. We found that Stage-
1 exhibits minor discrepancies, while Stage-3 generates accurate
recipes with correct ingredients (see Figure 5). Further analysis
reveals that sometimes the recipes are semantically equivalent
but linguistically different causing lower scores compared to the
ground-truth. Finally, we looked at the impact of combinations of
food image 𝑋𝑖 , title 𝑋𝑡 , ingredients 𝑋𝑖𝑛𝑔 as inputs to our model.
We find that solely relying on the image sometimes makes dish
prediction difficult, leading to a flawed recipe, though high quality
images can provide good results. Providing the title significantly
improves the generation. While LLaVA-Chef achieves promising
results on the Recipe1M dataset, certain limitations emerged upon
closer examination. To summarize, some recipes closely resemble
the corresponding ground-truth recipes, while others exhibit sig-
nificant linguistic divergence resulting in lower Rouge-L scores
even though generated recipes are semantically equivalence with
the ground truth. For instance, a single step of the ground truth
recipe is sometimes split into several steps in the generated recipes,
conveying the same information but with different phrasing.

5.5 Ablation Study
Improvement through multi-stage training: LLaVA-Chef’s

training in a multi-stage setup demonstrates a gradual improve-
ment in its recipe generation capabilities, as evident from scores
in Table 7. Pre-trained LLaVA generates recipes with hallucina-
tions and sometimes discrepancies from the ground truth. However,
LLaVA-Chef improves in every stage by a noticeable margin. The
example in Figure 5 shows that LLaVA-Chef-S1 correctly estimates
the required temperature, but it misjudges the mixing pattern of
the ingredients and baking time. In Stage-2, it instructs to combine
all ingredients in one step, though it misses an ingredient (gar-
lic). While minor discrepancies in instructions remain, the ability
to accurately list all ingredients in Stage-3 highlights the model’s
learning trajectory and potential.

Impact of scaling loss: As discussed earlier, after stage-2, we
introduce a penalty by scaling the loss based on BLEU and Rouge
scores and continued training for 2 epochs. The resulting model is
LLaVA-Chef-S3. To evaluate the improvement through this addi-
tional penalty, we continued training of S2 for two more epochs
with only cross-entropy loss, the resultingmodel is LLaVA-Chef-S22.
As evident in Table 8, although both models have been trained for
2 additional epochs after S2, the difference in performance directly
reflects the impact of our novel penalty formulation.

Impact of input attributes: We also assess LLaVA and LLaVA-
Chef models under various input configurations, including sce-
narios where only the food image is provided (excluding title and
ingredients), the food image with the title (excluding ingredients),
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Cuisine Train Samples BLEU-1 BLEU-2 BLEU-3 BLEU-4 SacreBLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L CIDEr Perplexity ↓
North-American 13119 0.377 0.216 0.13 0.082 0.127 0.185 0.445 0.133 0.198 0.202 16.36
American 9026 0.376 0.215 0.129 0.081 0.125 0.184 0.411 0.124 0.183 0.2 18.79
European 5683 0.384 0.22 0.133 0.084 0.143 0.187 0.411 0.125 0.204 0.198 18.60
Asian 2526 0.377 0.215 0.129 0.08 0.152 0.184 0.511 0.172 0.232 0.194 10.46
Mexican 2472 0.379 0.218 0.131 0.083 0.131 0.186 0.507 0.15 0.224 0.205 11.9
Italian 2047 0.393 0.226 0.137 0.087 0.214 0.19 0.526 0.194 0.273 0.193 9.57
Indian 544 0.377 0.215 0.128 0.081 0.104 0.184 0.531 0.173 0.229 0.193 11.34
French 427 0.377 0.215 0.129 0.081 0.04 0.184 0.097 0.011 0.043 0.191 15.29
English 248 0.377 0.216 0.13 0.083 0.106 0.185 0.241 0.038 0.148 0.226 16.42
Middle-Eastern 267 0.376 0.215 0.128 0.08 0.134 0.184 0.487 0.103 0.218 0.197 11.43
Thai 252 0.374 0.214 0.127 0.08 0.315 0.183 0.664 0.311 0.28 0.188 8.56
German 247 0.378 0.216 0.129 0.081 0.068 0.185 0.366 0.091 0.173 0.192 42.98
Russian 223 0.377 0.215 0.129 0.081 0.135 0.184 0.459 0.106 0.182 0.189 8.71
Japanese 132 0.38 0.218 0.13 0.082 0.055 0.186 0.362 0.101 0.2 0.198 10.48
test1k - 0.366 0.218 0.137 0.09 0.17 0.189 0.473 0.17 0.24 0.242 17.9

Table 6: Performance of LLaVA-Chef on generating recipe that belong to different cuisines

Ground Truth LLaVA-Chef
1. Prompt: Compose a recipe for Avocado-Hummus Dip incorporating the following ingredients: 2 medium Hass avocados, peeled and chopped, One 15-ounce can chickpeas,
drained and rinsed, 1/4 cup fresh lemon juice, 1 1/2 tablespoons tahini (sesame paste), 1/2 cup extra-virgin olive oil, plus more for drizzling, Kosher salt, Freshly ground pepper,
Assorted crudites, bread and tortilla chips, for serving.

1. In a food processor, puree the avocados with the chickpeas, lemon juice and tahini.\n2.
Add the 1/2 cup of oil and puree until smooth; season with salt and pepper.\n3. Transfer
the dip to a bowl, drizzle with olive oil and serve with crudites, bread and chips.

1. In a food processor, combine the avocados, chickpeas, lemon juice, tahini, olive oil,
and salt and pepper.\n2. Process until smooth and creamy.\n3. Transfer to a serving
bowl and drizzle with more olive oil.\n4. Serve with crudites, bread slices, and tortilla
chips.

2. Prompt: Generate a comprehensive recipe for crafting Anchovy and Caper Dressing with the listed ingredients: 2 tablespoons lemon juice, 5 tablespoons olive oil, 1
teaspoon fresh ground black pepper, 6 anchovy fillets, pounded to a coarse paste, 1 tablespoon capers, chopped.

1. Mix together all ingredients.\n2. Salt should not be needed because of the anchovies. 1. In a small bowl, whisk together the lemon juice, olive oil, and pepper.\n2. Add the
anchovy paste and capers.\n3.Whisk again to combine.\n4. Taste and adjust seasonings
if necessary.\n5. The dressing can be refrigerated for up to 2 days.

3. Prompt: Given 1 1/2 cups buttermilk, 1 1/2 tablespoons margarine, 2 tablespoons white sugar, 1 teaspoon salt, 3 cups bread flour, 1 1/3 cups whole wheat flour, 2 1/4 teaspoons
active dry yeast, what are the key steps you need to follow to prepare a perfect Buttermilk Bread ?

1. Place buttermilk, butter or margarine, sugar, salt, flour, whole wheat flour, and yeast
into pan of bread machine.\n2. Bake on White Bread setting.\n3. Cool on wire racks
before slicing.

1. Mix all ingredients together.\n2. Let the dough rise for 1 hour.\n3. Punch down the
dough.\n4. Let the dough rise for 1 hour.\n5. Shape the dough into loaves.\n6. Let the
loaves rise for 1 hour.\n7. Bake at 350 degrees for 30 minutes.

Figure 4: Sample recipes produced by the LLaVA-Chef-S3 model.

Method Inputs BLEU-1 BLEU-2 BLEU-3 BLEU-4 SacreBLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L CIDEr Perplexity ↓

LLaVA

𝑋𝑖 0.152 0.057 0.024 0.011 0.015 0.096 0.178 0.026 0.1 0.004 16.76
𝑋𝑡 0.213 0.101 0.051 0.027 0.03 0.144 0.262 0.059 0.136 0.019 32.94
𝑋𝑖 + 𝑋𝑡 0.158 0.061 0.025 0.011 0.016 0.104 0.195 0.029 0.109 0.005 14.62
𝑋𝑖 + 𝑋𝑖𝑛𝑔 0.277 0.144 0.079 0.045 0.054 0.182 0.349 0.095 0.177 0.036 2.77
𝑋𝑡 + 𝑋𝑖𝑛𝑔 0.293 0.157 0.088 0.051 0.061 0.2 0.367 0.106 0.183 0.046 2.38
𝑋𝑖 + 𝑋𝑡 + 𝑋𝑖𝑛𝑔 0.29 0.154 0.087 0.051 0.06 0.2 0.367 0.105 0.182 0.041 2.6

LLaVA-Chef-S1

𝑋𝑖 0.144 0.059 0.027 0.014 0.021 0.067 0.207 0.035 0.13 0.014 3.54
𝑋𝑡 0.225 0.111 0.06 0.035 0.048 0.107 0.278 0.069 0.158 0.065 3.54
𝑋𝑖 + 𝑋𝑡 0.227 0.115 0.063 0.037 0.05 0.108 0.283 0.073 0.162 0.065 2.89
𝑋𝑖 + 𝑋𝑖𝑛𝑔 0.253 0.144 0.088 0.055 0.074 0.137 0.357 0.113 0.196 0.168 3.0
𝑋𝑡 + 𝑋𝑖𝑛𝑔 0.325 0.191 0.119 0.076 0.097 0.16 0.404 0.14 0.218 0.201 2.63
𝑋𝑖 + 𝑋𝑡 + 𝑋𝑖𝑛𝑔 0.327 0.192 0.116 0.074 0.096 0.16 0.405 0.14 0.219 0.198 3.54

LLaVA-Chef-S2

𝑋𝑖 0.188 0.082 0.04 0.021 0.047 0.078 0.223 0.042 0.136 0.016 2.3
𝑋𝑡 0.253 0.13 0.072 0.042 0.076 0.11 0.294 0.079 0.166 0.078 2.71
𝑋𝑖 + 𝑋𝑡 0.256 0.131 0.072 0.042 0.076 0.111 0.298 0.078 0.167 0.081 2.74
𝑋𝑖 + 𝑋𝑖𝑛𝑔 0.308 0.175 0.106 0.067 0.111 0.151 0.378 0.12 0.204 0.174 2.77
𝑋𝑡+ 𝑋𝑖𝑛𝑔 0.338 0.197 0.121 0.078 0.124 0.163 0.407 0.138 0.219 0.179 2.6
𝑋𝑖+ 𝑋𝑡 + 𝑋𝑖𝑛𝑔 0.337 0.196 0.121 0.078 0.124 0.163 0.41 0.14 0.221 0.189 2.63

LLaVA-Chef-S3

𝑋𝑖 0.209 0.092 0.042 0.021 0.082 0.091 0.242 0.048 0.135 0.011 1.72
𝑋𝑡 0.283 0.149 0.081 0.047 0.116 0.142 0.37 0.108 0.193 0.094 2.08
𝑋𝑖 + 𝑋𝑡 0.293 0.155 0.086 0.049 0.123 0.146 0.373 0.11 0.195 0.102 2.05
𝑋𝑖 + 𝑋𝑖𝑛𝑔 0.337 0.197 0.12 0.077 0.156 0.177 0.45 0.156 0.232 0.203 2.43
𝑋𝑡 + 𝑋𝑖𝑛𝑔 0.362 0.213 0.132 0.086 0.16 0.187 0.471 0.166 0.249 0.215 2.41
𝑋𝑖 + 𝑋𝑡 + 𝑋𝑖𝑛𝑔 0.366 0.218 0.137 0.09 0.17 0.189 0.473 0.17 0.24 0.242 2.4

Table 7: We analyzed the role of different information sources in generating cooking instructions on the test1K subset of the
Recipe1M test set. While food images provide valuable context, our ablation study reveals that food names and ingredients are
essential for accurate results.
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Prompt: Generate a comprehensive recipe for crafting Stuffed Artichokes using the following ingredients: 2 lbs lean ground beef, 7 ounces fresh mushrooms
chopped, 1 large onion, diced finely, 2 large eggs, 12 cup celery, diced finely, 12 cup tomato puree, 12 cup water, 1 teaspoon salt to taste, 12 teaspoon freshly ground
black pepper, 1 teaspoon thyme, 3 cloves garlic, minced, 24 large canned artichoke bottoms or 24 large frozen artichoke bottoms, 2 cups beef broth.

Ground Truth 1. Preheat the oven to 350 degrees F.\n2. Combine all the ingredients except for the artichoke bottoms and the beef broth.\n3. Divide and mound the meat
mixture on the artichoke bottoms, about 4 tablespoons each.\n4. In a well greased baking pan, place the filled artichokes, filled side up, in one layer.\n5.
Pour the broth over the whole thing.\n6. Bake, lightly covered with foil, for 1 1/2 hours.\n7. Uncover and bake another 10-15 minutes, until browned.\n8.
Serve hot.

LLaVA-Chef-S3 1. Preheat oven to 350 degrees F.\n2. In a large skillet, saute the ground beef, mushrooms, onion, and garlic until the meat is browned.\n3. Drain off the
fat.\n4. In a large bowl, combine the meat mixture with the eggs, celery, tomato puree, water, salt, pepper, and thyme.\n5. Stuff the artichoke bottoms with
the meat mixture.\n6. Place the stuffed artichokes in a large baking dish.\n7. Pour the beef broth over the artichokes.\n8. Cover the dish with aluminum foil
and bake for 1 hour.\n9. Remove the foil and bake for an additional 15 minutes.

LLaVA-Chef-S2 1. Preheat oven to 350 degrees F.\n2. In a large bowl, combine the ground beef, mushrooms, onion, celery, eggs, tomato puree, water, salt, pepper, and
thyme.\n3. Mix well.\n4. Stuff the artichoke bottoms with the mixture.\n5. Place the artichoke bottoms in a large baking dish.\n6. Pour the beef broth over
the artichokes.\n7. Cover the dish with aluminum foil and bake for 45 minutes.\n8. Remove the foil and bake for an additional 15 minutes.

LLaVA-Chef-S1 1. Preheat oven to 350 degrees F.\n2. In a large skillet, brown the ground beef with the onion and garlic.\n3. Add the mushrooms and cook until softened.\n4.
Drain the artichoke bottoms and add them to the skillet.\n4. Stir in the tomato puree, water, salt, pepper and thyme.\n5. Bring to a boil, reduce heat, and
simmer for 15 minutes.\n6. Place the artichoke bottoms in a baking dish and cover with the meat mixture.\n7. Bake for 30 minutes.\n8. Serve with rice or
pasta.

LLaVA To prepare a delicious Stuffed Artichokes, follow these steps:\n\n1. Preheat your oven to 375°F (190°C).\n2. In a large bowl, combine the lean ground beef,
mushrooms, onion, and eggs. Season the mixture with salt, pepper, and thyme to taste.\n3. Add the celery, tomato puree, water, and minced garlic to the
bowl. Mix everything together until well combined.\n4. Place the mixture in a large baking dish and bake for about 45 minutes, or until the filling is cooked
through and the edges are slightly browned.\n5. While the filling is cooking, prepare the artichoke bottoms. If using fresh artichoke bottoms, trim the
ends and remove the tough outer leaves. If using frozen artichoke bottoms, follow the package instructions for preparation.\n6. After the filling is cooked,
carefully remove it from the oven and let it cool for a few minutes.\n7. Carefully stuff the cooked filling into the artichoke bottoms, dividing the mixture
evenly among the artichokes.\n8. Pour the beef broth over the stuffed artichokes, making sure to cover them completely.\n9. Return the baking dish to
the oven and bake for another 25-30 minutes, or until the artichokes are tender and the filling is hot and bubbly.\n10. Serve the Stuffed Artichokes hot,
garnished with fresh parsley if desired.\n\nEnjoy your delicious Stuffed Artichokes!

Figure 5: Example recipes generated by pre-trained LLaVA and each stage of our model. We can see how each stage successively
improves the generated recipe, showcasing the effectiveness of our multi-stage training.

Method Loss BLEU-1 BLEU-4 SacreBLEU ROUGE-L CIDEr
LLaVA-Chef-S22 𝐿𝐶𝐸 0.372 0.08 0.158 0.227 0.191
LLaVA-Chef-S3 𝐿𝐵𝑅 × 𝐿𝐶𝐸 0.366 0.09 0.17 0.24 0.242

Table 8: Effect of language quality penalty loss function.

and title with ingredients. The evaluation is conducted on the 𝑡𝑒𝑠𝑡1𝑘
test set, and the outcomes are summarized in Table 7. Our LLaVA-
Chef model improves in each steps, outperforms others, showing
the effectiveness of our multi-stage approach. Our initial observa-
tions revealed that images alone convey less semantic information
about the food compared to food names. This is likely due to the
limitations of visual information captured in images. Nevertheless,
title and ingredients remain a crucial factor in recipe generation as
evident by increase in scores when both are input to the model.

Incorporating images alongside textual prompts failed to im-
prove the performance of a pre-trained LLaVA model for recipe
generation tasks. This might be attributed to limitations in the
model’s ability to map visual features of food images effectively
into the language space. Conversely, our fine-tuned LLaVA-Chef-S1
exhibits minimal performance enhancement from image integra-
tion, regardless of its placement alongside the title or in conjunc-
tion with both title and ingredients. LLaVA-Chef-S2 exposed to a
wider variety of prompts during training, demonstrates significant
improvement over LLaVA when presented with solely an image.
Although titles and ingredients remain essential for generating
accurate cooking instructions. Our final model, LLaVA-Chef-S3,
generally achieves superior scores. Interestingly, LLaVA-Chef-S3,
when prompted solely with an image (𝑋𝑖 ), achieved the lowest
perplexity score, but it has underwhelming performance on other
metrics. Notably, while all models, including Chef-Transformer,

exhibited CIDEr scores lower than 1, our final model achieved an
impressive improvement of nearly 24 points in this metric.

6 CONCLUSION
This work presents LLaVA-Chef, a multi-modal model trained for
recipe generation. Through systematic evaluation of prominent
open-source LLMs, we identified LLaVA as the optimal starting
point. Subsequent fine-tuning utilized specially curated prompts
to progressively guide the model’s adaptation to the food domain.
Our multi-stage method incorporated diverse prompts and a novel
language quality penalty loss function, leading to significant perfor-
mance gains that surpass existing methods by noticeable margins
yielding state-of-the-art performance for this task. Notably, the fi-
nal model, LLaVA-Chef-S3, generates recipes that are demonstrably
more accurate and detailed than its predecessors, often featuring
precise ingredient mentions that enhance understandability and
sometimes even surpasses the quality of human-authored ground
truth recipes. These findings highlight the effectiveness of our
stage-wise fine-tuning approach and paves the way for further ad-
vancements for food-related tasks. While LLaVA-Chef outperforms
other models in recipe generation tasks, it lacks the capability to
suggest ingredient substitutions with accompanying justifications
regarding health impacts. Future research will focus on expanding
LLaVA-Chef’s functionalities beyond recipe generation to incorpo-
rate ingredient substitution while considering dietary constraints.
Another interesting direction is to consider numeric information in
evaluating generated recipes, such as cooking time or temperature,
ingredient quantities, and so on.
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