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Abstract analysis of the database of known protein structures (the

In this paper we develop data mining techniques to I-sites Library, [1]). In this work, similar short sequeisce
predict 3D contact potentials among protein residues that mapped to the same local structure in different pretein
(or amino acids) based on the hierarchical nucleation- Were deemed to be autonomous folding units, and the short
propagation model of protein folding. We apply a hybrid sequences were complled_ into patterns or “profiles” which
approach, using a Hidden Markov Model to extract folding couId_then be usedto predlptwhetheror not a segment of the
initiation sites, and then apply association miningto disc ~ Protein would tend to fold independently of the rest of the
er contact potentials. The new hybrid approach achieves molecule. Cross-validation showed a strong statisticp! si

accuracy results better than those reported previously. nificance to the predictions made by the profiles, and later
NMR studies showed that some peptides predicted to fold in
1 Introduction isolation actually did so [10]. Peptides with a strong temde

. ) ) o _ ¢y to fold independently constitute about 30% of the amino
~ Today we are witnessing a paradigm shift in predict- acid residues in protein sequences. The formation of in-
ing protein structure from its known amino acid sequence dependent folding units (I-sites motifs) is the first levél o

(a1,az,---,a,). The traditional or Ab initio folding  self-organization in the folding process: the “initiation
method employed first principles to derive the 3D structure

of proteins. However, even though considerable progress 1 Nese short motifs occur in proteins of widely differing
has been made in understanding the chemistry and biol-topology, and so cannot contain sufficient information to de
ogy of folding, the success of ab initio folding has been fine the overall, global fold of the protein r_nolecu_le. More-
quite limited. Instead of simulation studies, an alterna- OVer, they are too short to be the fast-folding regions found
tive approach is to employ learning from examples using PY €xperimental dissection. There must be a higher level of
a database of known protein structures. For example, the>€lf-organization which dictates how the short pieces come
Protein Data Bank (PDB) records the 3D coordinates of the {0gether to form larger, longer globular domains. The rules
atoms of thousands of protein structures. Most of these pro-d€fining the propagation of structure along the chain, start

teins cluster into around 700 fold-families based on their N9 from the sites of initiation, have been extracted from
similarity. It is conjectured that there will be on the ordér the database of known protein structures and formalized as

1000 fold-families for the natural proteins. The PDB thus & hidden Markov model (HMM), called HMMSTR [2] (or

offers a new paradigm to protein structure prediction by em- -hamster’), discussed further below. HMMSTR models the
ploying data mining methods like clustering, classificatio interactions between adjacent short regions of the segenc
association rules, hidden Markov models, etc. attempting to model the second level of self-organization:

A fascinating property of protein chains is that they ~Propagation”of structure along the sequence.
spontaneously and reproducibly fold into complex three-  The I-sites Library models the initiation sites of folding,
dimensional globules when placed in an aqueous solution.and the new HMM models interactions between those sites.
The sequence of amino acids making up the polypeptideBut HMMSTR [2] is a network of connections between |-
chain contains, encoded within it, the complete building in sites motifs, and thus simultaneously models both folding
structions. This self-organization cannot occur by a ran- initiation and propagation. The two levels of complexity,
dom conformational search for the lowest energy state, s-not discretely defined but smoothly intermingled, are repre
ince such a search would take millions of years, while pro- sented in the HMM as variable degrees of branching. Un-
teins fold in milliseconds. In recent years, a combinatibn o branched segments are initiations sites, whose prohabilit
molecular biological and biophysical techniques have dis- depend simultaneously on short contiguous segments of the
sected the folding process into fast and slow componentssequence, while branching and cycles represent multiple
which localize to certain parts of the protein sequence. sequence-dependent ways of extending and linking the ini-

Some small, fast-folding regions of the molecule may be tiation sites. Arbitrary levels of complexity may be modkle
identified by their sequence alone. A library of short se- by including HMMs recursively within overarching HMMs,
guence patterns that fold fast has been compiled by clustethe latter representing the ways of connecting the output of



the HMMs it contains. Hidden Markov models are limited diagonal. In this paper we thus ignore any pair of residues
to data that can be expressed as one-dimensional sequencesose sequence separatior j| < 4.
of discrete symbols, but there are techniques for overcom-  Previous work on contact prediction has employed Neu-
ing both the discreteness and the one-dimensionality [7]. ral Networks [3], and statistical techniques based on eorre
The next level of complexity in protein folding is called lated mutations [6, 8]. Recent work by Vendruscolo et al [9]
“condensation”. In the first few microseconds after in- has also shown that it is possible to recover the 3D structure
troducing the polypeptide chain into an aqueous solution, from even corrupted contact maps. In this paper we present
initiation sites form transient, rapidly-interchangingus- a new hybrid technique for contact map prediction. We first
tures, favoring one or more conformations to varying de- predict local structural elements using an HMM. The HM-
grees. These structures propagate along the chain by proM simultaneously represents the initiation and propagatio
moting compatible upstream and downstream conforma-steps of protein folding. We then apply association mining
tions, and the resulting transiently-formed substructere technique on top of the HMM states to predict the states that
counter each other by through-space diffusion, condensingrequently co-occur with contacts. These sets are then used
into larger, ordered globules, as energy dictates. Therorde for predicting contacts in unseen proteins. Our model ob-
ing of these three processes is not discrete but overlappingtains 19% accuracy and coverage over the set of all proteins;
and they should therefore be integrated into a single com-the model is also 5.2 times better than a random predictor.
putational model. Modeling of the condensation step given We can significantly enhance coverage to over 40% if we
predictions based on the modeling of initiation/propawati  sacrifice accuracy (13%). For short proteins (lergit0)
is the subject of the present work. A single Markov state we get 30% accuracy and coverage (4.5 times better than
prediction implies a local substructure and a single amino random); if we lower accuracy to 26% we can get coverage
acid position within it. Thus, a contact between two Markov upto 63%. We believe that these results are better than (or
states implies a specific mode of condensation between twaequal to) those reported previously.
local substructures to form tertiary structure.

2 Hybrid Mining Approach

We first use an HMM to predict local substructures with-
in the protein. We then use meta-level mining on the output
of the HMM using association rule mining.

Hidden Markov Models: The description of HMM below
is based on the excellent tutorial by Rabiner [7]. An HMM
is a doubly stochastic process with an underlying stochasti
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10 process that is not observable (it is hidden), but can only be
0 ‘ ‘ ‘ ‘ ‘ ‘ observed through another set of observed symbols.
T st An HMM is made up of a finite numbe¥ of states. At
each time step a new state is entered based on a transition
Figure 1. Contact Map (PDB ID 2igd, N = 61) probability distribution which depends on the previousesta
The contact map of a protein (see Figure 1) is a particu- (the Markovian property). After each transition is made, an
larly useful representation of protein tertiary structufeo observation output is produced according to a fixed prob-

amino acids in a protein that come into contact with each ability distribution which depends on the the current state
other form a non-covalent interaction (hydrogen-bonds, hy Thus there av such observation probability distributions.
drophobic effect, etc.). More formally, we say that two An HMM is made up of the following component§:
residues (or amino acids) anda; in a protein are ircon- is the length of the observation sequencg;the num-
tactif the 3D distancé(a;, a;) is less than some threshold ber of states in the model)/ the number of observa-
valuet (in this paper we use = 74 as the threshold dis-  tion symbols (for simplicity we assume here that the out-
tance), wheré(a;,a;) = |r; —rj|, andr; andr; are the  put is a discrete symbol, e.g. an amino acid. How-
coordinates of ther-Carbon atoms of amino acids and ever we actually use a continuous vector output as we
aj. We definesequence separatiars the distance between shall see later)Q = {q1,q2,---qn} is set of HMM s-
two amino acids;; anda; in the amino acid sequence, giv- tates;V = {vi,vs,---,var} is the set of output symbol-
en as|i — j|. A contact map for a protein withV residues  s; A = {a;;} gives the set of state transition probabili-
isanN x N binary matrixC' whose element'(z, j) = 1 if ties, i.e.,a;; = P(q; at t + 1|g; at t); B = {b;(k)} is
residueg andj are in contact, and’'(i, j) = 0 otherwise. the output symbol probability distribution in stage, i.e.,
The contact map provides a host of useful information. For b;(k) = P(vi, at t|g; at t); and finallyr = {7;} gives the
example, secondary structure can easily be discerned fronnitial state distribution, i.eq; = P(g; at t = 1).

it. a-Helices appear as thick bands along the main diago- Using the model, an observation sequenge =

nal since they involve contacts between one amino acid andO,0: - - - Or is generated as follows: 1) choose an initial
its four successors, whilg-Sheets are thin bands parallel statei; based onr, 2) set positiont = 1, 3) chooseO,

or anti-parallel to the main diagonal, etc. However, teytia  according tob;, (k), 4) choose,;; according to{a;,;, ., },
structure is not easily found from the contact map. For pre-i;11 = 1,2,--- N, and 5) set = ¢ + 1, return to step 3 if
dicting the elusive global fold of a protein we are usually ¢ < T'; otherwise terminate the procedure.

interested in only those contacts that are far from the mainAssociation Rules: The association mining [11] task can be



stated as follows: L€eT be a set of items, anB a database  between the different motifs. The redundancy inherent in
of examples composed of items. A subset of items is alsothe I-sites model suggests a better representation thddwou
called anitemset The supportof an itemset is the number model the diversity of the motifs and their higher order rela
of examples inD where it occurs as a subset. An itemset tionships while condensing features they have in common.
is frequentif its support is more than a user-specifiathi- A hidden Markov model is well suited to this purpose.
mum support (mirsup)value. Anassociation rulés an ex- Description of HMMSTR: Each of the 262 I-sites motif
pressiond = B, whereA andB are itemsets. The support was represented as a chain of Markov states, each of which
of the rule is the joint probability of a example containing contains information about the sequence and structure at-
both A andB. Theconfidencef the rule is the conditional  tributes of a single position in the motif. Adjacent positso
probability that an example contais, given that it con-  were represented by transitions from one state to the next.
tains A. A rule is strongif its confidence is more than a  Hierarchical merging of these linear chains of states, dhase
user-specifiedninimum confidence (miconf). In this pa- on sequence and structure similarity, resulted in a graph
per we are interested in rules with a specific item, called containing almost all the motifs. The merged I-sites mo-
the class as a consequent, i.e., we mine rules of the form tifs comprise a network of states connected by probalailisti
A = c; wherec; is a class attributel(< 7 < k). transitions, i.e. an HMM as shown in Figure 2.

We mine the frequent sets based on the Formal Concept
Analysis approach, which is a very elegant mathematical 3

framework for extracting “concepts” from databases. ‘E %
Consider an itemseX. LetY = {E € D|X C E} e L Diverging-tum
be the set of all examples in the databas® where X “,‘( g '
occurs. Further leX’ = {i € Z|i € Ngey E} be the set P2 <
of all items that are common to all examples in the Bet ~p

Then we say thak is closedif X = X’. In other wordsX
is the maximal set of items that is common to all examples | g
in Y. A closed itemset is also calleccancept ,‘b’
The set of all closed frequent itemsets can be orders of
magnitude smaller than the set of all frequent itemsets, e-
specially for real (dense) datasets. At the same time, we
don’t loose any information; the closed itemsets uniquely
determine the set of all frequent itemsets and thedctire-
guency. Thus instead of mining all the frequent itemsets we
only mine the frequent closed itemsets using theAR- (
M algorithm [12] we recently developed. A detailed de-
scription of the algorithm is beyond the scope of this paper.
Suffice it to say that BARM can handle very large disk-
resident or external memory databases; it has been tested
on databases with millions of examples, and it scales linear
ly in the database size. We refer the reader to [12] for the
algorithm description and its efficiency.

3 HMMSTR: An HMM for Local Structure

We describe here the hidden Markov model, HMM-
STR [2], for general protein sequences based on the I-sites

elix N-cap

Amphipathic helix

library of sequence-structure motifs [1]. In the next sauti Figure 2. HMMSTR model [2]
we will show how we apply association mining on the out- Each HMMSTR state can produce, or "emit’, amino
put of HMMSTR to predict residue contacts. acids and structure symbols according to a probability dis-

The I-sites (Invariant or Initiation sites) library cortsis  tribution specific to that state. There are four probability
s of an extensive set of short sequence motifs, length 3distributions defined for the states in HMMSTR, d, r,
to 19, obtained by exhaustive clustering of sequence seg-andc, which describe the probability of observing a particu-
ments from a non-redundant database of known structuredar amino acid, secondary structure, backbone angle region
[1]. Each sequence pattern correlates strongly with a recur or structural context descriptor, respectively. A contdedt
rent local structural motif in proteins. Approximately one scriptor represents the classification of a secondarytsiteic
third of all residues in the database are found in an I-sitestype according to its context. For example, a hairpin turn is
motif that can be predicted with a high degree of confidence distinguished from a diverging turn, and a beta-strandén th
(> 70%). The library is non-redundant in that no motif is middle of a sheet is distinguished from one at the end of a
completely contained within another, longer motif. How- sheet. More formally, for a given statg, there are a set
ever, many of the motifs overlap. Furthermore, the isolat- of emission probabilities, collectively callel;. The val-
ed motif model does not capture higher order relationship-uesb;(m) (m = 1---20) are associated with probabilities
s such as the distinctly non-random transition frequenciesfor the emission of amino acidg;(m) (m = 1---3) are



the probabilities of emitting helix(H), strand(S) or loap{ sitions) was used for training, and divided into a large $et o
r;(m) (m = 1---11) are the probabilities of emitting dihe- 564 sequences (133,000 positions), used for optimization
dral angle symbols, ang(m) (m = 1---10) are probabil-  via the Expectation-Maximization algorithm, and a small
ities of emitting structural context symbols. set of 54 sequences (12,000 positions) used to evaluate the
The database is encoded as a linear sequence of aminpredictive ability of the model during training. Note thhet
acids and structural observables. The amino acid sequencemall set of 54 sequences is used only for evaluation of the
data consists of a “parent” amino acid sequence of knownperformance of a model and may thus appear to be a test set.
three-dimensional structure, and an amino acid profile However, decisions regarding the modification of the model
obtained by alignments to the parent sequence [1]. Theare based on results of those evaluations. The set of 54 se-
amino acid of the parent sequence is denotedpyand guences is therefore not a test set, but a training set. Eor th
the profile by{O"}(1 < m < 20). For the structural final round of training we re-combined the large and small
identifiers at each positiony the following nomenclature training sets, to a total of 618 sequence families. After the
is used: 3-state secondary structiirg discrete backbone final round of training, the models were frozen.
angle regionk;, and the context symbal;. A sequence .
s of length T is given by the values of the attributes at all 4 Data Format and Preparation
positionss; = {O, {0}, Dy, Re, Ce} (1 < ¢t < T). A After HMMSTR is built we again took the 691 proteins
path is a sequence of states through the HMM, denotedfrom PDBSelect and computed for each protein the optimal
Q = q1q2---qr. Thus, the probability of a sequenge HMMSTR states that agree with the observed amino acids
given the model\, P(s|)), is obtained by summing the in the protein. In other words for each protein sequence-

relevant contributions from all possible patfis P(s|\) = structure we solve the estimation problem, i.e., given the
D an 1 Tin Biy (51)4,i,0i5(52) - - - i _yigpbip (ST),  Where observation sequene = 0,0, - - - O, how to choose a
I = iyig---ir is a fixed sequence of states amg(s;) state sequenck = iyis - - - i, Which is optimal. The out-

is the probability of observing; at stateq;. HMMSTR put probability distributions of all the states thus chog®n
showed significant improvements in performance whena protein.sequence is used as input fc_)r the association_ min-
we used amino acid profiles instead of single amino ing algorithm. In fact, rather than a single state assodiate
acids, thusB is given as Vcount is a global parameter):  with a given residue, we have available the probability that

d;(Dy) the residue at the given position is associated with all the
Bi(s:) = | mi(Re) | 3220_, by(m)NeountxO" states of HMMSTR, i.e., we have availaldfg;|a;) for all
¢i(Ch) B the 282 HMMSTR statesl (< ¢ < 282) for all the residues

Training HMMSTR: For training and testing of the H- in a given protein { < j < n, wheren is the length of

MMSTR we used a non-redundant database of proteins ofthe proteln)_._ For each residue we also know_the amln_o acid

known structure, PDBselect:December 1998 [4] containing at that position; the, d, r, andc outputs, which describe

691 proteins and their sequence families. The proteinin th the probability of observing a particular amino acid, sec-

set have< 25% sequence similarity. Entries in the database ondary structure, backbone angle region, or structural con

were selectively removed if the structure was solved by N- text descriptor, respectively; the spatial coordinatethef

MR, had a large number of disulfide bridges or cis-peptide a-Carbon atom(z, y, z); a distance vector of length giv-

bonds, or if it was a membrane-associated protein accordingnd the distance of this residue from all other residuesén th

to the header records. Disordered or missing coordinates inProtein; and the 20 amino acid profiles for that position. A

the middle of a sequence were addressed by dividing theProtein data file may look like this:

sequence at that point. Contiguous segments of length less

than 20 were ignored. Multiple sequence alignments werePDB Nane: 153l _, Sequence Length: 185

generated from each sequence using PSI-BLAST after fil- )

tering the query sequences for low-complexity regions. Da- Posi tion: 1, Residue: R

ta for training the HMM included the sequence profile, com- (PJOO][.d: nat gg' oi 0 -'73620 177'613 0 0.0

puted from the multiple sequence alignment as describedHRA(\)/B'TResg " evgrSEZLi lities (282 val ues):

before [1], the DSSP secondary structure assignments [5], 00. 07 . . 03. 00

the backbone angles, and a structural “context” symbol. i 5t ance Vector (185 values): 0 3 ... 15 13
Backbone angles were measured from the coordinates

and assigned, using a Voronoi method, to 11 regions ofpPosition: 2, Residue: T

phi/psi space. The centroids of 10 regions were chosen byCoor di nates: -124.4 0.2 -177.1

K-means clustering of a large subset of trans phi/psi pairsProfile: 0.0 ... 1.0 ... 0.0
from the database. The 11th region is all cis peptides. HWEBTR Sgage Pr Ogagl liti 8821 o0
Arandomly selected set of 73 of the 691 proteins (19,000Di stance Vector: 303 15 13 10

positions) was then set aside and not used for training, but
only for the final cross-validation. Before cross-validati Position: 185 Residue: Y
a test for true independence was applied to each member ogoor dinates: -88.7 0.0 0.0

the test set, and 12 members were removed. The final tespyofije: 0.0 ... 0.4 ... 0.6 ... 0.0
set thus contained 61 proteins and 16,000 positions. HWETR State Probabilities:
The remaining set of 618 parent sequences (145,000 po- 0.0... 0.2... 05...03...0.0



Di stance Vector: 15 13 10 ... 53 0 Note that the number of columns can be variable for dif-

We have one file for each of the 691 proteins from PDB- ferent pairs depending on the profile and HMMSTR state
Select. Disordered or missing coordinates in the middle Probabilities.p;,, p;,, etc. show the other amino acids that
of a protein sequence were addressed by dividing the sean appear in position (provided the probability is more
guence at that point. This produces a set of 794 files, mostthan some threshold), and finally , ¢, etc. show HMM-
of them containing an entire protein sequence, but some ofS TR states with probabilities more than some factor of the
these correspond to proteins that were split. prior probability of those states.

Given a protein file, we now have to transform the da- L . .
ta into a format that can be easily mined for frequent closed 5 Association Mining on the Pairs Database
itemsets, i.e., we need to prepare the data in the relational ~ We are now in a position to cast the above database in the
tabular format where we have multiple attributes (columns) association framework. Each attribute-value pair is amjte
for each example (rows) or record. Since we are interest-and is represented with a fixed, unique integer. For example
ed in predicting the contact between a pair of amino acids,@; = G is one item andi; = L is another item. By the
we use each pair as an example in the training set, associsame token each value of d;, r;, L;, andR; is a different
ated with a speciatlassattribute indicating whether it is  item. Each of the HMMSTR states becomes a distinct item,
a contact ) or non-contact/ C); amino acids:; anda; as do the profile values. The items for the context attributes

are in contact ii(a;, a;) < 7A4, i.e., the distance between ©f a; anda; are also kept distinct. Finally we separate the
a-carbons of amino acids; anda, is less therr 4. Our examples that are contacts from those that are non-contacts
j .

new database has an entry showing the two amino acids anfP gg&ygg?;ig?ﬁl%sh?%nscﬁe%ﬁ223?? %’Jgﬁﬁgecﬂ\ézlyﬁles
their class for each pair of amino acids for each protein. In 9 9 PP 9

order to avoid predicting purely local contacts we ignote al °f the form4 = C'andA = NC, that discriminate be-

pairs whose sequence separation j| < 4. Note also that tween the contact pairs and the non-contact pairs, respec-

the number of contact¥; is a lot smaller than the number UVely. Below we describe the mining/training and testing

of non-contactsVy for any protein phases, where we learn from examples using the frequent
We found that the percentage oi‘ contacts (or number Ofclosed itemsets, and then classify unseen examples as being

database entries with class 1) over all pairs is less th&a.1.7 contacts or non-contacts, respectively.
Across the 794 files, the longest sequence had length 9075.1 Mining on Known Examples
while the smallest had length 35. There were 17,618,115 Tphe goal of the mining phase is to learn from known con-

pairs over all proteins, while only 292,126 pairs were in (g’:\ct and non-contact examples and build a model or rule set
contact. This database thus corresponds to a highly biaseghat giscriminates between the two classes. We selected a
binary classification problem. That is, we have to build a yanqom 90% of the files for training, out of a total of 794
mining model that can discriminate between contacts andgjjes The remaining 10% of the files were kept aside for
non-contacts between amino acids pairs, where the examiegting the mined rule set. Since we are primarily interest-

plegar((ej otv%rwhelmipglél biasgtdhtowards th% nc;n—contt_act?. ed in predicting the contacts rather than the non-contacts,
ur database so far doesn t have enough information Iofy,e mine only on the contacts databa3e. However, we

good discrimination. All we have is the amino acids making )
up the pair and whether they are in contact or not. We need.do use the non-contacts databdgc to prune out those

to add more “context” information to facilitate the classifi teMSets that are frequent in both sets. Building a diserimi
cation. It is easy to incorporate, for each amino acid in the Native rule set consists of the following steps, in order:
pair, the 3 secondary structure symbals ¢;), the 11 back- ~ Mining: We use GIARM [12] to mine all the frequen-
bone angle regions{, r;), and the 10 structural contextde- tclosed itemsets i based on a suitably chosemin_sup
scriptors ¢;, ¢;). For each pair we would also like to add the value. Let's denote the set of frequent closed itemsefS.as
HMMSTR state probabilities. Since association rules only Counting: We compute the support of all itemsetsnin
work for categorical attributes, we need to convert the con- the non-contacts databaBe, .

tinuous state p_robabilities into discrete values. To de thi Pr uning: We Compute the probabmty of occurrence of each
we take the ratio of each of the 282 HMMSTR state proba- jiemset inF in both the contact and non-contact databas-

bilities for a; against the background or prior probability of es. The probability of occurrence is simply the support of

an amino acid being in that state; if the ratio is more than : s . ,
some threshold we include the state in the context aslse the itemset divided by the number of examples in the given

we ignore it. We repeat the same processdfpr Using a ~ dataset. For example, if itemsét € F, then the prob-
similar thresholding method one can incorporate the amino@Dility of its occurrence irD¢ is given asP(X, D¢) =

acid profiles for positions and;j. With all this contextin- (X, Dc)/|Dc|. As afirst step in pruning we can remove
formation for botha; anda; we obtain a new database to all itemsetsX € F which have a greater probability of

be used to find the frequent itemsets characterizing the conoccurrence in the non-contact database than in the contact
tacts and non-contacts. This has the following columns for database, i.e., iP (X, Dn¢) > P(X,D¢). Actually, we

pairs of amino acids over all proteins: compute the ratio of the contact probability versus the non-
Position Info: i j |i-j| ai aj contact probability forX, and prune it if this ratio is less
Context: di dj ri rj ci cj than some suitably chosen threshpld.e., we pruneX if
Profile: pilpi2... pjlpj2... P(X,D¢)/P(X,Dnc) < p. In other words we want to
HWBTR: qil qi2 ... gl1lqj2...

retain only those itemset that have a much greater chance of

Gass: Cor NC predicting a contact rather than a non-contact.



5.2 Testing on Unknown Examples pairs, respectively, that have positive contact suppintes

The goal of testing is to find how accurately the mined We discard examples with zero contact support. By adopt-
set of rules predict the contacts versus the non-contacts ijnd the above method, the number of predicted contacts is

new examples not used for training. We used a random 10% imited to those actually present in the protein. Furths t
of the files in the database for testing. The test set hadla totaM€thod has been used by previous approaches to contact
of 2,336,548 pairs, out of which 35,987 or 1.54% were con- Map prediction [3, 6]; we use it for comparison.
tacts. Since we do know the true class of each example it is :
easy for us to find out how well our rules are for prediction. 6 Experimental Results
For testing we generate a combined dataliaseontaining We mined the pairs database using various combinations
all pairs of amino acids in contact or otherwise. For each of context information and then tested the model on the un-
example we know the true class. We assign each example @een proteins. The pairs databases for training and testing
predicted class using the following steps: had the following approximate sizeB~ = 32M B for the
Evidence Calculation: For each exampld” in the test training contacts databasByc = 2GB for the training
datase;, we compute which itemsets in the set of mined non-contacts database, afiy = 340M B for the testing
and pruned closed frequent itemséfsare subsets of. database (includes both contacts and non-contacts). IFor al
Let’s denote the set of these itemsetsSad/Ve next calcu-  experiments below, we used a minimum support of 0.5% in
late the cumulative contact and non-contact support for ex-the contact database, and we pruned a pattern if the ratio of
ampleFE, i.e., the sum of the supports of all itemsetsim contact to non-contact frequency was less than 4 (except for
the contact and non-contact database. Finally, we computghe amino acids only case where we used a ratio of 1.5).
the evidence fo being a contact, i.e., the ratio of the cu- Amino AcidsOnly: Our first goal was to test how much in-
mulative contact support over non-contact support, dehote formation is contained in the amino acids only, i.e., forhbot
aspgr. Any E with zero contact support is taken to be a training and testing, each example consisted of only the two
non-contact and discarded, and only the examples or withamino acids:; anda;, and nothing else. Figure 3 shows the
positive contact support are retained for the next step. accuracy, coverage, and improvement of the mined model
Prediction: To make the final prediction if a test pair of over the random predictor for the test set. The accuracy and
residues is in contact or not, we sort all test examgles coverage is the mean value over all proteins. The figure
(with positive cumulative contact support) in decreasing o shows that the amino acids have some information that can
der of contact evidenceg. Finally, the topy fraction of be used to predict contacts versus non-contacts, but this in
examples in terms of are predicted to be contacts and formation is nottoo good. The figure plots the accuracy and
the remainingl — ~ fraction of examples as non-contacts. coverage as percentages. It also plots the improvement of
How ~ is chosen will be explained below. the model over the random predictor. The x-axis shows the

rediction factor which is related to the value (used to
5.3 Model Accuracy and Coverage Sredict the top fraction of pairs as contae::ts). Thg preaiicti

In predicting contacts versus non-contacts for the test ex-factor is in multiples ofV;:,, the number of true contacts in

amples, we have to evaluate the mined model based on tthe protein with positive contact evidence. For example, a
wo metrics: Accuracyand Coverage Furthermore, we are  value of 10 means that the tgp0 x N;:)/N7 fraction of
only interested in the prediction of contacts; thus acaurac the examples are predicted as contacts.
and coverage is only considered for contacts. Accuracy is The left-most graph in Figure 3 shows the accuracy and
the ratio of correct contacts to the predicted contactslevhi coverage of the predictor over test proteins of all lengths.
coverage is the percentage of all contacts correctly predic The other two figures on the right show how accuracy and
ed. Thus, accuracy tells us how good the model is, while coverage change with protein length. We have divided the

coverage tells us the number of contacts predicted. test proteins into four bins: < N < 100,100 < N < 170,
More formally, let N;. denote the number of true con- 170 < N < 300, and300 < N.
tacts in the test examplesy,. the number of predicted We find that over all proteins the amino acids by them-

contacts,NVy,. the number of true predicted contacts, and selves can be used to give an 8.5% accuracy, 1.5% coverage,
let N, denote the number of all possible contacts, i.e., and an improvement over a random predictor by a factor of
N, = (N —-3)x(N—2)/2(whereN is the protein length), 2.4. Note also the interesting trend in the graph. As the
since the contact map is symmetric and pairs with sequencerediction factor increases we get better and better cover-
separation less than 4 are ignored. The accuracy of the modage, but the accuracy trails off. This represents the dassi
elis given asd = Ny,./N,., and the coverage of the model accuracy versus coverage trade-off common to many pre-
is given asC' = Nyp./N:c We also compare our model a- diction problems. Which value to choose for the predic-
gainst a random predictor. The accuracy of random predic-tion factor depends on what is more important. It has been
tion of contacts is defined a&. = N;./N,. reported in [9] that the 3D structure of proteins can be re-
The number of contacts predictéd,. of course depends  covered quite robustly, even from corrupted contacts maps.
on how we chose, since the topy fraction of test examples ~ This implies that coverage should have an higher weight
based on evidence is predicted as contacts. Since a proteithan accuracy. In any case, if we had to choose a value rep-
is characterized by, true contacts, we set = N;. /N resenting the best trade-off, we can pick the point where the
and then predict the top fraction of examples as contact- accuracy and coverage curves intersect. This happens for a
s. Note thatV;;, and N} denote the actual contacts and all prediction factor of 7, where we have roughly 7% accuracy



12 T u T 18 T T T T 10 T T T T
accuracy —H— g accuracy1-100 —8— accuracy170-300 —&—-
11 r coverage @ 16 coveragel- 9 coveragel70-300 ----A<-
10 ratio "+ aceuracy100-170 - accuracy300+-%
[ 14 coveragel00-170 e 8 coverage300+ —e
9r
] S 1 ] o 7
3 8f T A T
4 4 € 6 e
g 7f g 10 & g
g g . g
S [ 5 X.. .
2 2 e R 2
44 i .
/ 4l .
3r e ®
L2
2F T 20
1 . . . . . . . . o Lo . . . . . . . .
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Prediction Factor Prediction Factor Prediction Factor
Figure 3. Amino Acids Only
25 70 14
= accuracy1-100 —&— -
- coverage1-100 -4 __4 o coverage170-300 -
60 accuracy100-170- 12 accuracy300+ -
20 }B\E'\B-EI—B—E—goé—;\E coverage100-170 —e coverage300+ @
° o % A o 10 X Rk
3 . 3 A 3 x
% 15 - /.,» % 40 ‘ % 8l
g o g g1 e 1
= c = e
g w0y o g ¥ W] g ° A,.»"’" .
5 G XX, S A .
b4 o 2 5 AR a A7 e
L] & A g ®
5T Ay
10 ¢ 4 2t A
. 00 ® -
o ® * &
.
ol . . . . . . . . 0 . . . . . . . . R . . . . . . . .
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Prediction Factor Prediction Factor Prediction Factor
Figure 4. HMMSTR States and Amino Acids
45 T T T 55 T T T T T T T T T 40 T T T T T T T T T
accuracy —H— ¢ [P — accuracyl-100-—F=--- accuracy170-300 —H—=-
a0t coverage—-#-- 50 AT coverage1-100 - 35 coverage170-300. —&—
R e ratio -+ x"" accuracy100-170 - accuracy300+ -
35 L e 45 coverage100-170 —@ 0 _coverage300+ —@
y A
g3t o g g A
4 o 4 & 25 Ve
® 251 o Bl 3 A
g g : g 20 e .
c20p 8 s ! 5 A .
14 e / S 15 & .
S 15| @ o y 1]
o G20y [ & .
X 10 5 ]
104 e &
15 o Yo Ve
VIV A KK e R
L e S 10 .
oLl . . . . . . . . 5L . . . . . . . . 0L . . . . . . . .
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Prediction Factor Prediction Factor Prediction Factor
Figure 5. HMMSTR States, Amino acids, and Ry, Dy, C; Symbols
35 20
accuracy1-100 —8— accuracy170-300 —&=
coverage1-100 - 18 coverage170-300" -
0N, ., ., accuracyl00-17 accuracy300+ -
"""" 16 k,_.«~-""cuverage300+- -
o o 55 a 1 14 e
3 3 r'd g s
14 14 . x 12
3 3200 / «® 3 « pe
] § 15 X%y g g g
S S Kooy S [yE}—E/E’E'_E"E"B‘B\E\{
& & i & 6 Fars
8- ¢ 0s o e A K K K
’ af X
6 5. ¢ e
L B B
Py . . . . . . . . o Lo . . . . . . . . 0L . . . . . . . .
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Prediction Factor Prediction Factor Prediction Factor

Figure 6. HMMSTR States, Amino Acids, and Amino Acid Profiles

and coverage, and which is 2 times better than random. ForFor 18% accuracy we can get coverage of 25% (still 5.1
6.3% accuracy we can increase coverage to 14%. times better than random). Figure 7 shows the results in a
When we consider the results for proteins of different slightly different format. It plots the improvement in cov-
lengths, we find the same trade-off between accuracy anderage/accuracy over a random prediction. These results are

coverage. Looking at the crossover point, we get aroundComparable to or better than the results recently reponted i

13% accuracy and coverage for short proteins wth< [13], where they examined pairwise amino acid interaction-
100, 6% for100 < N < 170, 4.5% for170 < N < 300, s in the context of secondary structural environment (helix
and around 2% of longer proteins. strand, and coil), and used the environment dependent con-

HMMSTR States and Amino Acids We next added the  tact energies for contact prediction experiments. For abou
HMMSTR states correspondingg anda;, i.e., we added 25% coverage our model does more than 5 times the random

the columnsy;, , i, - - andgj, , ;,, - - - to the training and predictor, as pompared to the 4 timejs improvement report-
testing sets. Figure 4 shows the results. If we look at the €d in [13]. Figure 8 shows the predicted contact map for
cross-over point we get almost 19% accuracy and cover-the protein2igd that we used in the introduction. We got

age, while the model remains 5.2 times better than random 3% accuracy and 37% coverage for this protein. The fig-
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If we look at proteins of various lengths in Figure 4, we
find that for N < 100, we get 26% accuracy and 63%
coverage at the extreme point (4 times over random). For
100 < N < 170 we get 21.5% accuracy and 10% coverage
towards the end (6 times over random), TG0 < N < 300

we get 13% accuracy and around 7.5% coverage (6.5 times

over random), and for longer proteins we get 9.7% accura-
cy and 7.5% coverage (7.8 times over random). We believe

these results are the best, or at least comparable to those re

ported so far in the literature on contact map prediction [3,
6]. For example, Fariselli and Casadio [3], used a Neu-

ral Network based approach over pairs database, with oth-

er contextual information like sequence context windows,
amino acid profiles, and hydrophobicity values. They re-
ported an 14.4% accuracy over all proteins, with an 5.4
times improvement over random. They also got 18% ac-
curacy for short proteins with an 3.1 times improvement
over random. Olmea and Valencia [6] on the other hand

used correlated mutations in multiple sequence alignments

for contact map prediction. They added other information
like sequence conservation, alignment stability, condaet
cupancy, etc. to improve the accuracy. They reported 26%
accuracy for short proteins, but did not report results for
all proteins. While we believe that our hybrid approach
does better, we should say that direct comparison is not
possible, since previous works used a different (and small-
er) PDB select database for training and testing. One draw
back of these previous approaches is that they do not repor

any coverage values, so it is not clear what percentage of

contacts are correctly predicted. Another approach to con-
tact map prediction was presented in [8], which was based

on correlated mutations. They obtained an accuracy of 13%
or 5 times better than random.

Adding Additional Information: We next tried to add
more columns to the training database. For example we
separately added the amino acid profiles, and the structural
context symbols for the 3-state secondary struciyedis-
crete backbone angle regidy, and the context symbdl,.

The results for these cases are shown in Figure 5 and Fig-
ure 6. As we can see adding the profiles did not add any
additional prediction power to our model, while adding the
structural symbols had a positive (somewhat mixed) effect
on accuracy and coverage. It appears that while the accura-
cy of the prediction drops a little there is tremendous boost
in the coverage of the model. For example at around 18%
accuracy we get about 25% coverage using the HMM states
and amino acids (see Figure 4), but when we add the struc-
tural symbols, we get about 44% coverage for an accuracy
of 12.5%. This tells us that the structural symbols can be
helpful in providing the right context and thus help in iden-
tifying a larger portion of the contacts.

In conclusion we have presented a new hybrid HMM and
association rule mining method for contact predictionst Ou
results are the best or comparable to those previously re-
ported. We are currently working to further improve both
accuracy and coverage by carefully selecting many of the
threshold parameters used in the experiments, as well as by
adding additional attributes that might help prediction.
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