
Replacing Paths With Connection-Biased Attention for
Knowledge Graph Completion

Sharmishtha Dutta1, Alex Gittens1, Mohammed J. Zaki1, Charu C. Aggarwal2

1Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, USA
2IBM T. J. Watson Research Center, Yorktown Heights, NY, USA

duttas@rpi.edu, gittea@rpi.edu, zaki@cs.rpi.edu, charu.us@ibm.com

Abstract

Knowledge graph (KG) completion aims to identify addi-
tional facts that can be inferred from the existing facts in the
KG. Recent developments in this field have explored this task
in the inductive setting, where at test time one sees entities
that were not present during training; the most performant
models in the inductive setting have employed path encoding
modules in addition to standard subgraph encoding modules.
This work similarly focuses on KG completion in the induc-
tive setting, without the explicit use of path encodings, which
can be time-consuming and introduces several hyperparam-
eters that require costly hyperparameter optimization. Our
approach uses a Transformer-based subgraph encoding mod-
ule only; we introduce connection-biased attention and entity
role embeddings into the subgraph encoding module to elim-
inate the need for an expensive and time-consuming path en-
coding module. Evaluations on standard inductive KG com-
pletion benchmark datasets demonstrate that our Connection-
Biased Link Prediction (CBLiP) model has superior perfor-
mance to models that do not use path information. Compared
to models that utilize path information, CBLiP shows com-
petitive or superior performance while being faster. Addition-
ally, to show that the effectiveness of connection-biased at-
tention and entity role embeddings also holds in the transduc-
tive setting, we compare CBLiP’s performance on the relation
prediction task in the transductive setting.

Introduction
Knowledge graphs (KGs) store facts expressed in the forms
of relationships between entities. Each fact is represented
as a triple (h,r,t) or (head, relation, tail). Here, the head and
tail represent entities such as people, places, and institutions,
and the relation represents the relation between the two en-
tities. These facts are modeled as a directed graph with la-
beled edges, where each entity is a vertex in the graph, the
relations are the edge labels, and edges are directed from the
head to the tail entities.

KGs are often constructed by crowdsourced data, or by
using off-the-shelf fact extraction tools. Therefore, in addi-
tion to containing spurious information, they can omit facts
that are implicit in the observed data. These omissions hin-
der the usefulness of KGs in various downstream tasks such
as question answering in search engines. This has motivated

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

adaptedFrom

author

screenwriter

adaptedFrom
Movie: The

Woman
Book: The

Woman

Stephen
King

Book: Rita
Hayworth and the

Shawshank
redemption

Movie: The
Shawshank
redemption

Frank
Darabont

author

author

adaptedFromMovie:
The Green

Mile

Book: The
Green Mile

director

director

screenwriter

screenwriter

Training Graph

Movie:
Lawless

John
Hillcoat

adaptedFrom

Matt
Bonduran

author

Inductive Test Graph

Transductive Test Query

Movie: The
Green Mile

Frank
Darabont

?

directorMovie:
Lawless ?

Inductive Test Query

The Wettest
County in the

World

screenwriter

Figure 1: Example of training graph and test queries for KG
completion in transductive and inductive settings.

researchers to use statistical relational learning to infer miss-
ing entities or relations from incomplete triples. Earlier ap-
proaches to KG completion were developed for the trans-
ductive setting, where the triples to be completed consist of
entities and relations seen during training. While this stream
of research has yielded numerous high-performing models,
these models cannot be used when the triples to be com-
pleted contain entities that were not seen at training time.

Real-world KGs grow continuously as new facts are
added, and the set of entities may grow over time, mean-
ing that at any given point, completion models may need to
be used on entities that were not seen during training. In-
ductive KG Completion assumes the relations between enti-
ties remain the same in the newly added facts. To illustrate
this setting, Figure 1 depicts a training graph that reflects the
correlation between the role of a director and screenwriter.
The same artist often plays these two roles when the screen-
play is adapted from an existing novel. In the transductive
KG completion setting, a relation prediction task involves
queries where both entities are present in the training graph
and the most plausible relation is to be determined. In the
inductive setting, the test graph contains entities added to

ar
X

iv
:2

41
0.

00
87

6v
2

 [
cs

.L
G

]
 1

9
D

ec
 2

02
4

the graph after the model was trained, and the inductive KG
completion task to find the best option for a missing entity
involves entities unseen during training (marked by purple
ink in the figure).

Naturally, in the inductive setting, graph-learning-based
approaches rely greatly on the information provided by
neighbors of the incomplete triple of interest. This has
led to several Graph Convolution Network (GCN) based
models that encode the surrounding subgraph to learn
about relation interactions. Paths between entities have
also been utilized in several models (Lin et al. 2022;
Li, Wang, and Mao 2023; Pan et al. 2022; Zhu et al.
2021), as explicitly encoding path information has re-
sulted in a great performance boost. Here, path informa-
tion is usually defined as an ordered sequence of rela-
tions between two entities. For example, two paths between
Stanley Kubrick and Stephen King, according to
Figure 1, are (screenwriter−1, adaptedFrom, author)
and (director−1, adaptedFrom, author). One could also
find a path of length 6 between Stanley Kubrick and
Frank Darabont.

The use of paths necessitates multiple decisions, such as
determining the ideal path length to obtain meaningful in-
formation and exclude noise, the number of paths to be ex-
tracted, and various design choices for combining this in-
formation with the subgraph information. Additionally, path
extraction between entities on the fly and representing them
in the model adds overhead to the training time and parame-
ter count.

Transformers have replaced Recurrent Neural Networks
for sequence modeling precisely because appropriate posi-
tional encoding allows attention alone to suffice; we hy-
pothesize that when represented as sequences of triples,
appropriate positional encodings similarly unleash the full
power of attention, obviating the need for explicit and
costly modeling of path information. Indeed, by adapting
the connection-biased attention from GRAN (Wang et al.
2021)– where it was used to better represent single n-ary
facts in a knowledge base– to the representation of sub-
graphs of a KG, we demonstrate that Transformers alone,
without specialized submodules for path representation, suf-
fice to perform accurate KG completion.
Main Contributions. Our key contributions are:

1. We introduce CBLiP: a context-aware Transformer-
based model, with a novel connection-biased attention
module at its core for reasoning in KGs.

2. We introduce entity roles, a simple and effective con-
struct to represent unseen entities in a subgraph, as an
alternative to conventional relative distance-based entity
labeling in the inductive link prediction setting.

3. We demonstrate the effectiveness of CBLiP by compar-
ing its performance on the entity prediction task in the
inductive setting with that of state-of-the-art models on
benchmark datasets and showing that it achieves best-
performing or competitive results.

4. We highlight CBLip’s effectiveness across settings by
similarly evaluating its performance on a transductive re-
lation prediction task.

Related Work
Knowledge graph completion is often based on learn-
ing continuous vector embedding of entities and relations.
KG completion garnered attention in the early 2010s with
TransE (Bordes et al. 2013) where the distance between
learned embedding vectors determined the plausibility of
a triple. GraIL (Teru, Denis, and Hamilton 2020) intro-
duced the inductive learning task and the standard bench-
mark datasets for this task and has garnered much attention
as a more practical approach. In this section, we discuss the
development of both settings.

Transductive Learning Models
Initial work in the transductive setting focused on triple-
based models, exploiting entities’ inherent properties. Re-
cent work has focused on gathering information about the
neighborhood surrounding an entity.

Translational Distance-based Models Research in
translation-based models focused on learning embeddings
that satisfy specific properties. For example, TransE (Bordes
et al. 2013) models relations as translation vectors between
head and tail entities, aiming to maintain h+ r ≈ t. Despite
its limitations in representing many-to-one and one-to-many
relations, TransE remains a lightweight and straightforward
model. Subsequent models like RotatE (Sun et al. 2018) and
QuatE (Zhang et al. 2019) embed entities in complex and
quaternion spaces, respectively.

Factorization Based Models Another family of models
aims to capture semantic similarity by observing pairwise
interactions between entities. RESCAL (Nickel, Tresp, and
Kriegel 2011) was an early model with this idea. It was fol-
lowed by a simplified variation DistMult (Yang et al. 2015)
and a complex number variation ComplEx (Trouillon et al.
2016). SimplE (Kazemi and Poole 2018) extends Canoni-
cal Polyadic (CP) decomposition by removing the indepen-
dence between learned entity representations.

Neural Models PathCon (Wang, Ren, and Leskovec
2021) utilizes a message-passing mechanism to aggregate
edge-based local context and paths between node pairs for
relation prediction. It does not learn any node embeddings,
limiting its applicability for entity prediction.

Inductive Learning Models
Inductive KG completion aims to extend the task to un-
seen entities. Models first relied on Graph Neural Networks
(GNNs) and more recently on Transformers to encode con-
text information by aggregating neighborhood interactions.
Many models have leveraged path information between the
head and tail entities by incorporating a path encoding
module in addition to the subgraph module that aggregates
neighborhood interactions.

Models without Path Information GraIL (Teru, Denis,
and Hamilton 2020) selects the common neighbors of the
target head and tail entities as the context of a target triple to
be scored. The model employs double-radius labeling (dis-
tance from head, distance from tail) to denote each entity’s

relative position and learns embeddings for relations through
attention computation inside an Relational GCN module.
The final score is a function of the triple in consideration
and the encoded subgraph surrounding it. CoMPILE (Mai
et al. 2021) extends GraIL by considering directedness in its
subgraph encoding module and computing edge (triple) at-
tentions to learn edge embedding. TACT (Chen et al. 2021)
expands GraIL by proposing an additional relation correla-
tion module by learning 6 predefined categories of interac-
tions via unique linear transformations for each kind. This
categorization of TACT is closely related to our approach to
constructing a connection-biased adjacency matrix of 7 cat-
egories. However, TACT incorporates this information into
its subgraph encoding module whereas we use it to compute
connection-biased attention in the transformer layers.

Models with Path Information ConGLR (Lin et al. 2022)
expands on Grail by modifying the subgraph encoding mod-
ule. Additionally, it constructs a context graph that uses the
relational paths involving the neighborhood entities. A com-
bination function and a weighted aggregation function are
employed to encode the paths represented as a sequence of
relations and to combine the paths, respectively. The final
scoring function integrates context information and path-
based logical reasoning. Report (Li, Wang, and Mao 2023)
uses successive stacks of transformer layers for context en-
coding and path encoding. A hierarchical structure of trans-
former layers is utilized to fuse the query and the represen-
tations of context and path to compute a final score. (Pan
et al. 2022) proposed LogCo where a GCN-based subgraph
module is complemented with a path encoding module. Each
path representation is compared with the target relation to
compute an attention score based on similarity. The model
uses positive and negative path samples for a contrastive
training regime. These models add the overhead of path rep-
resentation and path aggregation during training and path
extraction during training and inference time.

NBFNet (Zhu et al. 2021) offers a more scalable solution
to this by generalizing Bellman-Ford algorithm for finding
the shortest paths. The model learns entity pair representa-
tions as well as path representations utilizing the distributive
properties of the generalized operators. This allows parallel
scoring of query triples that share the same entity-relation
pairs and the models suffer from time complexity as well as
memory overhead due to additional support needed to rep-
resent paths. While these models perform better than those
without path information, they come with a drawback of
real-time path extraction for inference triples. Since the core
of inductive link prediction is to conduct reasoning in un-
seen entities during training, preprocessing of paths is not a
realistic choice for inference triples.

Models with Rule Extraction
RPJE (Niu et al. 2020) combines rules and paths by inject-
ing length-2 rules into KG embeddings. DRUM (Sadeghian
et al. 2019) and NeuralLP (Yang, Yang, and Cohen 2017) ex-
tract probabilistic first-order logic rules to assign weights to
paths between entities. RuleN (Meilicke et al. 2018) assigns
confidence to rules by randomized process. While these

methods are efficient in learning short and simple rules, they
suffer from scalability issues while finding frequent patterns
in large graphs.

Problem Formulation
Relational data can be modeled as a directed heterogeneous
graph G = (E ,R,F) where E and R represent the set of
entities and relations modeled as nodes and edge types in the
graph, respectively. F ⊂ E × R × E represents the labeled
edges or fact triples represented as ordered tuples of head-
entity, relation, tail-entity.

The inductive KG completion task comprises the follow-
ing components.
1. Training graph: Gtrain = (Etrain,R,Ftrain) where

Ftrain ⊂ Etrain ×R× Etrain is the set of training facts.
2. Validation triples: Fvalid ⊂ Etrain ×R× Etrain
3. Test graph: Gtest = (Etest,R,Ftest) where Ftest ⊂

Etest × R × Etest. This serves as the fact graph for the
test-time inference triples.

4. Test-time inference triples: Finfer ⊂ Etest ×R× Etest.
Given an incomplete fact from Finfer, the aim is to
complete it using information from Gtest and the model
trained on Gtrain.

The inductive setting is characterized by the fact that
Etrain ∩ Etest = ∅, i.e., the entities seen at test time were
unseen at training time.

Our goal is to find a model that computes a score s for
a triple ⟨h, r, t⟩. We hypothesize that a plausibility score of
a triple can be determined using information present in the
ego graphs of the head and tail entities. The k-hop ego graph
Ne of entity e consists of the triples in its k-hop enclosing
subgraph. Thus, we model the score with

s = g(h, r, t,Nh,Nt) (1)

Here, g is a function of the triple and its local contexts; in
this work, g is given by the CBLiP architecture introduced
in the next section. During training, we corrupt either the
head or tail of a true triple (pi) and obtain a corrupted triple
(ni). We then train the model to assign higher scores to true
triples using a margin-based ranking loss:

L =

|Ftrain|∑
i=1

max(0, g(ni)− g(pi) + γ)

Here, γ is the margin that separates the true and corrupted
facts and allows for flexibility in training. At test time, triples
with higher scores are considered to be more plausible com-
pletions.

Transductive Setting
In the transductive setting, there is no separate test graph and
the test-time inference triples satisfy Finfer ⊂ (Etrain ×R×
Etrain). That is, the entities seen at test time are all present in
the training graph. Our goal in relation prediction is to, given
putative head and tail entities, predict the relation between
them. There are typically many fewer relations than entities
(a few hundred vs. tens of thousands), so instead of a scoring

function, we explicitly model the likelihood of each relation
given the putative head and tail entities:

P(r|h, t) ∝ g(h, t,Nh,Nt) (2)

One advantage of explicitly modeling P(r|h, t) is that there
is no need for negative samples. The model is trained
by minimizing the cross-entropy loss between the log-
likelihood of our estimation and the ground truth observation
r over the training data. CBLiP is again used as the architec-
ture for g in this setting.

Model Overview
This section describes the architecture used for g in the
CBLiP model. Given ⟨h, r, t⟩, we find the neighboring
triples of both h and t as the context of that triple. In the in-
ductive setting, each triple in our model is represented using
learned entity role vectors for its head and tail entity along
with a relation vector embedding. The resulting vector en-
codings of the triples in the neighborhood are used as inputs
to a connection-biased Transformer, and the output sequence
is passed through a linear transformation to obtain the final
score. Below, we explain these components in detail and the
modifications made for the transductive setting.

Entity Role Vectors
Inductive learning is aided by learning entity behaviors and
interactions to facilitate inference on the unseen (during
training) entities during test time. To this end, we represent
each unseen entity by a vector representing its role. Tradi-
tional GNN-based models (Teru, Denis, and Hamilton 2020;
Chen et al. 2021; Lin et al. 2022) distinguish neighbor en-
tities in a subgraph by assigning relative distance from the
target head or tail entity and by initializing the values with
one-hot vector encoding.

Instead, we represent entities in the local neighborhood
of the putative triple of interest by assigning roles to them.
Such an entity has one of three roles: {head, tail, and other}.
The role simply represents whether the neighbor entity is
in fact the putative head entity, the putative tail entity, or
some other entity. Despite the simplicity of the role embed-
dings, this distinction allows the model to distinguish be-
tween triples that are immediate neighbors or distant neigh-
bors of the putative triple, thus improving the model’s per-
formance. This approach also ensures a shared representa-
tion of these roles across the model, unlike the local updates
of relative-distance-based labeling. We denote the role vec-
tor of an entity e succinctly with ROLE(e).

Context Embedding and Representation of a Triple
We employ a connection-biased Transformer Encoder to ob-
tain contextual embeddings for a given target triple ⟨h, r, t⟩.
We define the neighborhood of h and t as:

N = {f |f ∈ Nh ⊕Nt}

and use a breadth-first search algorithm to collect the triples
in N . Here ⊕ is the union or intersection operation. We
select up to m neighboring triples from N ; here m is a
hyperparameter. We obtain the embedding of each triple

(h,r,t) (h,r1,e1) (e1,r2,e2) (t,r3,e3) (e3,r4,e4) (e4,r5,t)
(h,r,t) - ➕ - - ♠

(h,r1,e1) ➕ - - - -
(e1,r2,e2) - ♣ - - - -
(t,r3,e3) ♣ - - - ♣

(e3,r4,e4) - - - ♣ -
(e4,r5,t) ♠ - - ♣ -

➕ ♠ tail-tail ♣ head-tail tail-headLegend head-head

✖

✖

✖

✖

✖

✖

(h,r,t) (h,r1,e1) (e1,r2,e2) (t,r3,e3) (e3,r4,e4) (e4,r5,t)
(h,r,t) - ➕ - - ♠

(h,r1,e1) ➕ - - - -
(e1,r2,e2) - ♣ - - - -
(t,r3,e3) ♣ - - - ♣

(e3,r4,e4) - - - ♣ -
(e4,r5,t) ♠ - - ♣ -

➕ ♠ tail-tail ♣ head-tail tail-headLegend head-head

✖

✖

✖

✖

✖

✖

Figure 2: An example of constructing a connection-biased
adjacency matrix. The icons denote the presence of a partic-
ular kind of overlap of entities between triples.

f = ⟨e1, r, e2⟩ in N by aggregating its entity and relation
embeddings:

f = A
(
ROLE(e1), r,ROLE(e2)

)
We explored two options for the aggregation function A:
concatenation and mean. The connection-biased aspect of
the Transformer Encoder is described in the following sec-
tion.

Input Sequence
With different pieces of information at hand, we can con-
struct the final contextual representation of the target triple
⟨h, r, t⟩ for scoring. For each triple in Ttrain, we construct a
sequence of tokens encoding its neighborhood, Sin:

Sin = [f⋆, f1N , . . . fmN] (3)

Here, f⋆ is the embedding of the putative completed triple to
be scored. This embedding is additionally aggregated (using
⊕) with a special target vector embedding to distinguish
it from the embeddings for triples from N .

Connection-Biased Adjacency Matrix
Paths are often used to learn relation interaction patterns in
a (sub)graph. We want to avoid the design decisions, time,
and memory complexity that come with this addition to a
model. By constructing a connection-biased adjacency ma-
trix, we aim to learn implicit knowledge of paths, distance,
and shared neighborhoods, which is instrumental in cor-
rectly predicting the final relation.

While GRAN (Wang et al. 2021) constructs a similar ma-
trix for each of its n-ary fact’s components, we build this
for members in a subgraph. The connection types in our
model depict the overlap of entities between neighboring
triples whereas GRAN distinguishes connections between
n-ary fact components such as entity-value, attribute-value,
and so on.

We construct a connection-biased adjacency matrix C for
the triples in a subgraph. We do so by comparing whether
these triples share the same head and tail entity and in which
manner. Each entry cij ∈ C represents the kind of connec-
tions two triples fi and fj can have:

1. fi’s head is fj’s head
2. fi’s tail is fj’s tail
3. fi’s tail is fj’s head
4. fi’s head is fj’s tail
5. fi’s head is fj’s head AND fi’s tail is fj’s tail (imply-

ing there are two parallel edges between the same pair of
entities)

6. fi’s head is fj’s tail AND fi’s tail is fj’s head (inverse
relations, e.g., sonOf and motherOf)

7. fi and fj share neither head nor tail
This approach serves three main purposes:

1. It informs the model whether the head and tail entities
have shared neighbor entities.

2. It serves as an implicit method of encoding paths as we
just need to know about shared entities, and their order in
a path. For example, we can have a pair of length-2 paths
where the involved entities and relations are the same but
their directions are different as follows:
• ⟨e1, r1, e2⟩ and ⟨e2, r2, e3⟩
• ⟨e1, r1, e2⟩ and ⟨e3, r2, e2⟩
Our approach can distinguish between these two and any
other combinations of directions.

3. It implicitly captures the relative distance between all en-
tity pairs. Most importantly, it informs the model of 1-
hop neighbors and neighbors farther hops away from the
target head entity (or from the tail entity).

This implicit knowledge of paths, distance, and shared
neighborhood is instrumental to correctly predicting the fi-
nal relation. Figure 2 shows an example of finding four kinds
of connections.

Connection-Biased Attention in Transformer
Encoder
Transformers create key, query, and value vectors K,Q,V
for tokens by a linear transformation with corresponding
learnable weight matrices WK ,WQ,WV (Vaswani et al.
2017). With slight abuse of notation, we represent any two
tokens in an input sequence at xi and xj . We define the
connection-biased similarity between xi and xj as:

αij =
(WQxi)

⊤(WKxj + cKij)
dy

(4)

Here, cKij is the Key-specific bias vector for connection type
cij . The corresponding output vector yi is computed by
modifying the attention computation:

yi =
m+1∑
j=1

exp(αij)∑m+1
k=1 exp(αik)

(WV xj + cVij) (5)

Here, cVij is the Value-specific bias vector for connection
type cij .

We denote the output sequence as:
Sout = [y⋆,y1

N , . . . ,ym
N] (6)

The architecture for connection-biased adjacency and the
overall architecture of the proposed model is depicted in Fig-
ure 3.

Transformer encoder layer with
connection-biased attention

Linear Transformation

f*

x N layers

y*

score

y1N y2N ymN

f1N f2N fmN

MatMul with Value bias

SoftMax

Scale

MatMul with Key
bias

Q K cK V cV

Scaled dot product attention with
connection bias

Figure 3: Connection-biased attention computation. The left
diagram shows an overview of the input and output se-
quence, and the right one elaborates the enhanced encoder
layer with connection bias.

Transductive Training
For using our model in the transductive training, we replace
ROLE(e) with entity-specific learnable vector embeddings.
Note that, in this setting, all test entities are seen during
training, and a relative representation is not needed. Another
change in the transductive version of the model is the dis-
tinction between neighbors of head and tail. We choose m
neighbors from each entity and construct a specific interpre-
tation of the input token sequence in Eq. (3).

Note that in this case, f⋆ is the target entity pair represen-
tation without the relation. Two separate vector embeddings
specify the roles of each triple (neighbor of head or neigh-
bor of tail) in the neighborhood. All respective equations are
modified to reflect the presence of 2m+1 triples in the input
sequence. We make a final change by applying the softmax
function to the output of the linear transformation to get a
probability distribution over all possible relations.

Experimental Evaluation
In this section, we evaluate our model on the entity pre-
diction task in the inductive setting and present the perfor-
mances in three KG datasets (12 versions). Additionally, we
present relation prediction results in the transductive setting.
All experiments were conducted on Quadro RTX 6000 (with
NVLink) GPU with 32 GB memory.

Inductive Entity Prediction
Baselines NeuralLP (Yang, Yang, and Cohen 2017),
DRUM (Sadeghian et al. 2019), and RuleN (Meilicke et al.
2018) are rule-extraction-based methods. GraIL (Teru, De-
nis, and Hamilton 2020), CoMPILE (Mai et al. 2021) and
TACT (Chen et al. 2021) are graph-based models that use
only the subgraph information surrounding a target entity
pair and exclude explicit path information. ConGLR (Lin
et al. 2022), Report (Liu et al. 2023), LogCo (Pan et al.
2022), NBFNet (Zhu et al. 2021) are graph-based models
that utilize path information between target head and tail en-
tities. Report (Li, Wang, and Mao 2023) uses vanilla Trans-
formers to encode context and path and is the most similar

Table 1: Hits@10 for entity prediction in inductive KG dataset splits; Bold and underlined text represents the best and 2nd best
results, respectively. All results are sourced from the original papers except for TACT (taken from ConGLR).

WN18RR FB15K-237 NELL995
Methods v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

NeuralLP 74.37 68.93 46.18 67.13 52.92 58.94 52.90 55.88 40.78 78.73 82.71 80.58
Rule-based DRUM 74.37 68.93 46.18 67.13 52.92 58.73 52.90 55.88 19.42 78.55 82.71 80.58

RuleN 80.85 78.23 53.39 71.59 49.76 77.82 87.69 85.60 53.50 81.75 77.26 61.35

Graph-based
(w/o path)

GraIL 82.45 78.68 58.43 73.41 64.15 81.80 82.83 89.29 59.50 93.25 91.41 73.19
CoMPILE 83.60 79.82 60.69 75.49 67.64 82.98 84.67 87.44 58.38 93.87 92.77 75.19
TACT* 84.04 81.63 67.97 76.56 65.76 83.56 85.20 88.31 79.80 88.97 94.02 73.78

Graph-based
(with path)

ConGLR 85.64 92.93 70.74 92.90 68.29 85.98 88.61 89.31 81.07 94.92 94.36 81.61
Report 88.03 85.83 72.31 81.46 71.69 88.91 91.62 92.28 - - - -
LogCo 90.16 86.73 68.68 79.08 73.90 84.21 86.47 89.22 61.75 93.48 94.44 80.82
NBFNet 94.80 90.50 89.30 89.00 83.40 94.90 95.10 96.00 - - - -
CBLiP 97.30 94.10 81.30 96.40 89.30 94.10 84.20 80.10 88.00 93.70 97.70 87.60

Table 2: MRR for entity prediction in inductive KG dataset splits; Bold and underlined text represent best results and 2nd best
results, respectively.

WN18RR FB15K-237
Methods v1 v2 v3 v4 v1 v2 v3 v4

Rule-based
NeuralLP 71.74 68.54 44.23 67.14 46.13 51.85 48.7 49.54
DRUM 72.46 68.82 44.96 67.27 47.55 52.78 49.64 50.43
RuleN 79.15 77.82 51.53 71.65 45.97 59.08 73.68 74.19

Graph-based
(w/o path)

GraIL 80.45 78.13 54.11 73.84 48.56 62.54 70.35 70.6
CoMPILE 78.28 79.61 53.97 75.34 50.52 64.54 66.95 63.69

Graph-based
(with path)

Report 80.95 82.01 58.38 77.34 53.22 70.62 71.51 71.28

CBLiP 87.70 87.00 60.50 88.00 59.30 63.70 56.10 53.40

to our model in terms of choice of encoding architecture.

Datasets (Teru, Denis, and Hamilton 2020) extracted
12 inductive datasets from three popular KG benchmark
datasets – Wordnet, Freebase, and Nell. We present the
dataset statistics in supplementary material (?).

Experimental Setup For inductive entity prediction, we
corrupt a triple by replacing its head/tail with a randomly
chosen entity during training. For inference, we want to see
how the model ranks variations of corrupted triples by scor-
ing ⟨h, r, ?⟩ or ⟨?, r, t⟩ and finding the rank of the true triple.
We follow the existing literature and use 50 randomly cho-
sen entities from Etest to corrupt test triples. The model
scores the true triples and the corrupted triples, and the rank
of the true triple is recorded. The ranks of all true test triples
contribute to finding Hits@n (ratio of correct hits in the
top n sorted predictions), which is a commonly used metric
in rank-based experimental studies. We report Hits@10 and
mean reciprocal rank (MRR) and evaluate the performance
of our model. The hyperparameter selection is described in
the appendix.

Entity Prediction Results The results of the entity pre-
diction task according to Hits@10 are presented in Table 1.
Our model CBLiP achieves state-of-the-art performance in 7

dataset splits and the performance is consistently better than
the rule-extraction and no-path baselines. The model strug-
gles in the Freebase dataset, where a path-based model best
utilizes the extremely rich data density. The MRR results of
this experiment are presented in Table 2, where we notice a
similar trend of dominating performance in Wordnet and not
in Freebase.

Transductive Relation Prediction
The transductive entity prediction task is expensive due to
the full vocabulary testing. It is also interchangeable with re-
lation prediction task (Wang, Ren, and Leskovec 2021). We
choose relation prediction as it is a faster measure of how
well a model can learn to reason over a KG in the transduc-
tive setting.

We remove the target relation r from all triples and gener-
ate an input sequence Sin. The output probabilities of each
relation type are sorted and the position of true relation r
is retrieved. This serves as the rank of the relation. We re-
port Hits@1, Hits@3, and MRR for this task in Table 3. We
demonstrate the results on three primary datasets: WN18RR,
FB15K-237, and NELL995. Our supplementary material (?)
contains the dataset statistics, hyperparameter configuration,
and additional experiments on other datasets.

We compare CBLiP with a neural baseline PathCon

Table 3: Relation prediction in transductive KG datasets; Bold and underlined text represents best and 2nd best results, respec-
tively. All results are sourced from PathCon.

WN18RR FB15K-237 NELL995
Methods MRR Hits@1 Hits@3 MRR Hits@1 Hits@3 MRR Hits@1 Hits@3 MRR

TransE 0.784 0.669 0.870 0.966 0.946 0.984 0.841 0.781 0.889
ComplEx 0.840 0.777 0.880 0.924 0.879 0.970 0.703 0.625 0.765

Models w/o path
DistMult 0.847 0.787 0.891 0.875 0.806 0.936 0.634 0.524 0.720
RotatE 0.799 0.735 0.823 0.970 0.951 0.980 0.729 0.691 0.756
SimplE 0.730 0.659 0.755 0.971 0.955 0.987 0.716 0.671 0.748
QuatE 0.823 0.767 0.852 0.974 0.958 0.988 0.752 0.706 0.783
DRUM 0.854 0.778 0.912 0.959 0.905 0.958 0.715 0.640 0.740

Model with path PathCon 0.974 0.954 0.994 0.979 0.964 0.994 0.896 0.844 0.941
CBLiP 0.976 0.960 0.993 0.971 0.949 0.992 0.919 0.868 0.964

Table 4: Hits@10 and MRR for entity prediction in Word-
net dataset splits; Bold text represents better results. CBLiP-
vanilla denotes our model without the connection-biased at-
tention component.

v1 v2 v3 v4
Hits@10

CBLiP 97.30 94.10 81.30 96.40
CBLiP-vanilla 92.00 71.70 69.30 90.90

MRR
CBLiP 87.70 87.00 60.50 88.00

CBLiP-vanilla 76.70 66.20 53.50 77.90

(Wang, Ren, and Leskovec 2021) that uses path informa-
tion explicitly in the model. Other baseline models include
a variety of translation-based, factorization-based, and rule-
extraction-based models.

Table 3 shows the relation prediction results. We see again
that CBLiP performs better than all models that explicitly do
not utilize paths. Similarly, it achieves better or more com-
petitive performance against PathCon.

Ablation Studies
We study the effectiveness of the proposed attention by com-
paring it with vanilla attention in Transformers. We call this
variation CBLiP-vanilla. We run these experiments on the
Wordnet dataset and report the results in Table 4. We observe
that the performance of the model in both metrics drops sig-
nificantly when we eliminate the connection bias from the
transformer encoder.

Discussion
We notice that CBLiP performs well in Wordnet and Nell
across settings. This could be due to the dense degree of
Freebase (on average, each entity has a large number of im-
mediate neighbors), which a path-based model could best
utilize.

However, we argue that omitting the use of paths has its
strengths. Firstly, computing paths between target pairs on
the fly is highly expensive and researchers often fix a path

length and precompute a set of paths between target pairs
of test set. However, this can be a limitation in real applica-
tions, as one will come across a new target entity pair during
test time and has to compute paths between them. This also
comes with an extra set of hyperparameter tuning regarding
path length, how many paths to use, how to represent inverse
relations, and how to aggregate each path.

In contrast to these, our proposed method adds only a
handful of new learnable bias vectors for each connection
type between tokens. Adding the connection bias to the
Transformer encoder block does not add significant compu-
tational overhead since these bias computations do not re-
quire additional matrix multiplications. The scaled dot prod-
uct attention module (that we modify by adding connection-
bias vectors) retains its complexity of O(N2d) for a se-
quence of N tokens with d feature dimension.

The entity role introduced in our paper is also an intuitive
construct and adds negligible overhead to represent all en-
tities in the model. Since these two constructs capture the
similarity of involved entities, the model implicitly learns
relative distance information along with possible path infor-
mation between tokens.

Conclusion and Future Work

We propose CBLiP, a KG link prediction model using inex-
pensive and intuitive use of entity role and connection-bias
in a subgraph. We show the effectiveness of our model in
two KG settings in different tasks where CBLiP showcases
excellent performance while being intuitive and relatively
simpler to its contemporaries. Future work can address the
fully inductive setting, where entities and relations may be
seen at test time that were not present at training time.

A. Codebase

We provide the pytorch implementation of our code and
hyperparameter configurations for all our experiments at:
https://github.com/shoron-dutta/CBLiP.

Table 5: Statistics of datasets used in inductive link predic-
tion experiments

Table 6: WN18RR

Version Split |R| |E| #TR1 #TR2
v1 train 9 2746 5410 630

test 9 922 1618 188
v2 train 10 6954 15262 1838

test 10 2923 4011 441
v3 train 11 12078 25901 3097

test 11 5084 6327 605
v4 train 9 3861 7940 934

test 9 7208 12334 1429

Table 7: FB15k-237

Version Split |R| |E| #TR1 #TR2
v1 train 183 2000 4245 489

test 146 1500 1993 205
v2 train 203 3000 9739 1166

test 176 2000 4145 478
v3 train 218 4000 17986 2194

test 187 3000 7406 865
v4 train 222 5000 27203 3352

test 204 3500 11714 1424

Table 8: NELL-995

Version Split |R| |E| #TR1 #TR2
v1 train 14 10915 4687 414

test 14 225 833 100
v2 train 88 2564 8219 922

test 79 4937 4586 476
v3 train 142 4647 16393 1851

test 122 4921 8048 809
v4 train 77 4922 7546 876

test 61 3294 7073 731

B. Inductive Entity Prediction
B1. Hyperparameter Selection
We select at most m neighbors from k-hop subgraphs of
entities. We include the closest neighbors first and then al-
low for neighbors farther away. We select feature dimen-
sion d from the set {20, 32, 40, 64, 80, 128}. We use multi-
headed attention with the number of attention heads {2, 4}
and select the number of encoder layers from {2, 3, 4}.
We use Adam optimizer with learning rate from the set
{0.01, 0.001, 0.008, 0.0005}. The specific hyperparameter
setting for each dataset can be found in our GitHub reposi-
tory.

B2. Dataset
The inductive dataset splits provided by (Teru, Denis, and
Hamilton 2020) are widely used for the inductive KG com-
pletion tasks. We present the dataset statistics in Table 5.

Table 9: Statistics of transductive
KG datasets

WN18 WN18RR
#nodes 40,943 40,943

#relations 18 11
#training 141,442 86,835

#validation 5,000 2,824
#test 5,000 2,924

FB15K FB15K-237
#nodes 14,951 14,541

#relations 1,345 237
#training 483,142 272,115

#validation 50,000 17,526
#test 59,071 20,438

NELL995 DDB14
#nodes 63,917 9,203

#relations 198 14
#training 137,465 36,561

#validation 3,907 3,897
#test 3,964 3,882

The terms #TR1 and #TR2 refer to the following:
• In train mode:

– #TR1 refers to Ftrain, the set of triples used for train-
ing

– #TR2 refers to Fvalid, the set of triples we use for val-
idation

• In test mode:
– #TR1 refers to Ftest, the set of triples used as a fact

graph (to collect topological and neighborhood data)
for inference triples

– #TR2 refers to Finfer, the set of triples to test the
model’s inference capabilities

C. Transductive Relation Prediction
C1. Datasets
Initial KG experiments were done on Freebase and Word-
net datasets, FB15k and WN18, whose test sets contained
inverse triples of training triples. It caused simpler models
to perform well during test by memorizing training data.
(Toutanova and Chen 2015) proposed a corrected versions
of these datasets- FB15K-237 and WN18RR, respectively.
We have presented results on FB15k-237, WN18RR, and
NELL995 in the main text of our paper.

PathCon (Wang, Ren, and Leskovec 2021) proposed
DDB14 dataset which is generated from the disease
database. The statistics of all 6 datasets are presented in Ta-
ble 9.

C2. Experimental Evaluation
Here, we present results in the other 3 datasets. Table ??
shows CBLiP’s performance in comparison with the rela-
tion prediction baseline models. CBLiP performs achieves

Table 10: Transductive relation prediction in KG datasets

Methods MRR Hits@1 Hits@3
FB15K

TransE 0.962 0.940 0.982
ComplEx 0.901 0.844 0.952
DistMult 0.661 0.439 0.868
RotatE 0.979 0.967 0.986
SimplE 0.983 0.972 0.991
QuatE 0.983 0.972 0.991
DRUM 0.945 0.945 0.978
PathCon 0.984 0.974 0.995
CBLiP 0.863 0.763 0.962

WN18
TransE 0.971 0.955 0.984
ComplEx 0.985 0.979 0.991
DistMult 0.786 0.584 0.987
RotatE 0.984 0.979 0.986
SimplE 0.972 0.964 0.976
QuatE 0.981 0.975 0.983
DRUM 0.969 0.956 0.980
PathCon 0.993 0.988 0.998
CBLiP 0.991 0.985 0.996

DDB14
TransE 0.966 0.948 0.980
ComplEx 0.953 0.931 0.968
DistMult 0.927 0.886 0.961
RotatE 0.953 0.934 0.964
SimplE 0.924 0.892 0.948
QuatE 0.946 0.922 0.962
DRUM 0.958 0.930 0.987
PathCon 0.980 0.966 0.995
CBLiP 0.981 0.967 0.995

competitive performance in WN18 and DDB14. It struggles
in FB15K. We think the high triples to entities ratio in this
dataset could be the reason for this. The dense neighborhood
information is best captured with a path-based model like
PathCon (Wang, Ren, and Leskovec 2021).

References
Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for modeling
multi-relational data. Advances in neural information pro-
cessing systems, 26.
Chen, J.; He, H.; Wu, F.; and Wang, J. 2021. Topology-aware
correlations between relations for inductive link prediction
in knowledge graphs. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 35, 6271–6278.
Kazemi, S. M.; and Poole, D. 2018. Simple embedding for
link prediction in knowledge graphs. Advances in neural
information processing systems, 31.
Li, J.; Wang, Q.; and Mao, Z. 2023. Inductive relation
prediction from relational paths and context with hierar-
chical transformers. In ICASSP 2023-2023 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), 1–5. IEEE.

Lin, Q.; Liu, J.; Xu, F.; Pan, Y.; Zhu, Y.; Zhang, L.; and
Zhao, T. 2022. Incorporating context graph with logical rea-
soning for inductive relation prediction. In Proceedings of
the 45th international ACM SIGIR conference on research
and development in information retrieval, 893–903.
Liu, H.; Chen, Y.; He, P.; Zhang, C.; Wu, H.; and Zhang, J.
2023. An inductive knowledge graph embedding via combi-
nation of subgraph and type information. Scientific Reports,
13(1): 21228.
Mai, S.; Zheng, S.; Yang, Y.; and Hu, H. 2021. Commu-
nicative message passing for inductive relation reasoning.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, 4294–4302.
Meilicke, C.; Fink, M.; Wang, Y.; Ruffinelli, D.; Gemulla,
R.; and Stuckenschmidt, H. 2018. Fine-grained evaluation
of rule-and embedding-based systems for knowledge graph
completion. In The Semantic Web–ISWC 2018: 17th Inter-
national Semantic Web Conference, Monterey, CA, USA, Oc-
tober 8–12, 2018, Proceedings, Part I 17, 3–20. Springer.
Nickel, M.; Tresp, V.; and Kriegel, H.-P. 2011. A three-way
model for collective learning on multi-relational data. In
Proceedings of the 28th International Conference on Inter-
national Conference on Machine Learning, 809–816.
Niu, G.; Zhang, Y.; Li, B.; Cui, P.; Liu, S.; Li, J.; and Zhang,
X. 2020. Rule-guided compositional representation learning
on knowledge graphs. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 34, 2950–2958.
Pan, Y.; Liu, J.; Zhang, L.; Zhao, T.; Lin, Q.; Hu, X.; and
Wang, Q. 2022. Inductive relation prediction with logical
reasoning using contrastive representations. In Proceedings
of the 2022 Conference on Empirical Methods in Natural
Language Processing, 4261–4274.
Sadeghian, A.; Armandpour, M.; Ding, P.; and Wang, D. Z.
2019. Drum: End-to-end differentiable rule mining on
knowledge graphs. Advances in Neural Information Pro-
cessing Systems, 32.
Sun, Z.; Deng, Z.-H.; Nie, J.-Y.; and Tang, J. 2018. Ro-
tatE: Knowledge Graph Embedding by Relational Rotation
in Complex Space. In International Conference on Learning
Representations.
Teru, K.; Denis, E.; and Hamilton, W. 2020. Inductive re-
lation prediction by subgraph reasoning. In International
Conference on Machine Learning, 9448–9457. PMLR.
Toutanova, K.; and Chen, D. 2015. Observed versus latent
features for knowledge base and text inference. In Proceed-
ings of the 3rd workshop on continuous vector space models
and their compositionality, 57–66.

Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, É.; and
Bouchard, G. 2016. Complex embeddings for simple link
prediction. In International conference on machine learn-
ing, 2071–2080. PMLR.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in neural information pro-
cessing systems, 30.

Wang, H.; Ren, H.; and Leskovec, J. 2021. Relational mes-
sage passing for knowledge graph completion. In Proceed-
ings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, 1697–1707.
Wang, Q.; Wang, H.; Lyu, Y.; and Zhu, Y. 2021. Link Predic-
tion on N-ary Relational Facts: A Graph-based Approach. In
Findings of the Association for Computational Linguistics:
ACL-IJCNLP 2021, 396–407.
Yang, B.; Yih, S. W.-t.; He, X.; Gao, J.; and Deng, L. 2015.
Embedding Entities and Relations for Learning and Infer-
ence in Knowledge Bases. In Proceedings of the Inter-
national Conference on Learning Representations (ICLR)
2015.
Yang, F.; Yang, Z.; and Cohen, W. W. 2017. Differentiable
learning of logical rules for knowledge base reasoning. Ad-
vances in neural information processing systems, 30.
Zhang, S.; Tay, Y.; Yao, L.; and Liu, Q. 2019. Quaternion
knowledge graph embeddings. Advances in neural informa-
tion processing systems, 32.
Zhu, Z.; Zhang, Z.; Xhonneux, L.-P.; and Tang, J. 2021.
Neural bellman-ford networks: A general graph neural net-
work framework for link prediction. Advances in Neural
Information Processing Systems, 34: 29476–29490.

