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Abstract—This work presents a graph-based representation (a.k.a., cell-graph) of histopathological images for automated cancer

diagnosis by probabilistically assigning a link between a pair of cells (or cell clusters). Since the node set of a cell-graph can include a

cluster of cells as well as individual ones, it enables working with low-cost, low-magnification photomicrographs. The contributions of

this work are twofold. First, it is shown that without establishing a pairwise spatial relation between the cells (i.e., the edges of a cell-

graph), neither the spatial distribution of the cells nor the texture analysis of the images yields accurate results for tissue level diagnosis

of brain cancer called malignant glioma. Second, this work defines a set of global metrics by processing the entire cell-graph to capture

tissue level information coded into the histopathological images. In this work, the results are obtained on the photomicrographs of

646 archival brain biopsy samples of 60 different patients. It is shown that the global metrics of cell-graphs distinguish cancerous

tissues from noncancerous ones with high accuracy (at least 99 percent accuracy for healthy tissues with lower cellular density level,

and at least 92 percent accuracy for benign tissues with similar high cellular density level such as nonneoplastic reactive/inflammatory

conditions).

Index Terms—Image representation, machine learning, model development, graph theory, medical information systems.
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1 INTRODUCTION

AUTOMATED classification of histopathological images has
been extensively studied for cancer diagnosis. These

studies make use of various classifiers that employ a subset
of different types of features. For example, a large subset of
these studies uses feature sets that typically consist of
morphological features such as area, perimeter, and round-
ness of a nucleus [7], [11], [12], [14], [19], [20], [21], [23], [25],
[27] and/or textural features such as the angular second
moment, inverse difference moment, dissimilarity, and
entropy derived from the co-occurrence matrix [7], [8],
[12], [15], [22], [23], [25]. These studies train their systems to
distinguish the healthy and cancerous tissues using
artificial neural networks [22], [23], [27], the k-nearest
neighborhood algorithm [8], [11], support vector machines
[12], linear programming [20], logistic regression [25], fuzzy
[19], and genetic [21] algorithms. Complimentary to the
morphological and textural features, a few of these studies
use colorimetric features such as the intensity, saturation,
red, green, and blue components of pixels [11], [27] and
densitometric features such as the number of low optical
density pixels in an image [8], [15], [22].

Another subset of these studies uses fractals that describe

the similarity levels of different structures found in a tissue

image over a range of scales [6], [9]. These studies use the

fractal dimensions as their features and use the k-nearest

neighborhood algorithm [9], neural networks, and logistic

regression [6] as their classifiers. Finally, the orientational

features are extracted by making use of Gabor filters that

respond to contrast edges and line-like features of a specific

orientation [24].
Recently, we have demonstrated that the use of cell-

graphs generated from the tissue images according to the

spatial distribution of the cells leads to successful tissue

diagnosis of cancer [13]. In the generation of cell-graphs, a

node corresponds to a cell or a cell cluster and the

probability of a link between a pair of nodes is calculated

as a decaying function of the Euclidean distance between

this node pair. Since this approach defines a graph node as

a cell cluster rather than an individual cell, it does not

require resolving the exact details of a cell and, thus, it does

not require high magnification images. In [13], we show that

the topological features defined on each node of this cell-

graph, i.e., local graph metrics, can be used by a machine

learning algorithm to distinguish the images of cancerous

brain tissues from those of healthy or nonneoplastic

primary inflammatory processes (herein referred to as

“inflamed tissues”).
In this work, as our first contribution, we show that the

cell-graphs provide an effective tool to represent tissue

images not only because they encode the spatial distribu-

tion of the cells, but also because they encode a pairwise

relation between the cells by assigning a link between them.

In particular, we compare the cell-graph approach against

two other techniques; 1) the first one uses only the spatial

distribution of the cells without defining links, and 2) the

other one uses the textural features. While the cell-graph

representation encodes the pairwise relation between the

cells, the textural features reflect the spatial interrelation-

ships of pixel gray values. Our experiments show that

defining a pairwise relation is crucial in obtaining a high

classification accuracy to distinguish different types of
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tissue images, even when they have similar levels of cellular
density.

For example, although the spatial distribution of cells
alone provides sufficient information to distinguish the
cancerous tissues1 with higher cellular density (as shown in
Fig. 1a) from the healthy tissues with lower cellular density
(as shown in Fig. 1b), it is not sufficient to distinguish the
cancerous tissues from the inflamed tissues (as shown in
Fig. 1c) whose cellular density is equally high. Similarly, a
textural feature based classifier is as accurate as in the case
of the cell-graph approach to distinguish the cancerous and
healthy tissues, but it yields lower accuracy values than the
cell-graph approach to distinguish the cancerous and
inflamed tissues. In contrast, the cell-graphs successfully
distinguish the cancerous tissues from both healthy and
inflamed tissues regardless of their cellular density levels.

The results obtained on a total of 646 images of tissue
samples surgically removed from 60 different patients
demonstrate that in cancerous-healthy-inflamed classifica-
tion, the cell-graph approach leads to 95.45 percent testing
accuracy, whereas the cell spatial distribution and textural
approaches yield only 78.66 percent and 89.03 percent
testing accuracy, respectively. This demonstrates that the
cell-graph approach provides further information for
accurate classification of different types of tissues with
different cellular density levels.

The second contribution is the introduction of a new set
of features to study the topological properties defined on
the entire graph, i.e., global graph metrics. The global
graph metrics provide information at the tissue level
extending the local graph metrics that provide information
at the cellular level [13]. In this work, the global metrics are
used as the feature set, and artificial neural networks and
Bayesian networks are used as the classifiers in the
diagnosis of malignant glioma. These global graph metrics
include the average degree, the clustering coefficient, the
average eccentricity, the ratio of the giant connected
component, the percentage of the end nodes, the percentage
of the isolated nodes, the spectral radius, and the eigen
exponent.

The remaining of this paper is organized as follows: In
Section 2, we briefly explain the methodology to generate a
cell-graph from a tissue image. In this section, we also

define global graph metrics to quantify the topological
properties of cell-graphs. In Section 3, we present experi-
mental results and their interpretations. Finally, we provide

a summary of our work in Section 4.

2 METHODOLOGY

In this section, we first explain the main steps to construct a
cell-graph and then define precisely the global graph

metrics to be used as a feature set for classification.

2.1 Cell-Graph Generation

A cell-graph captures the clustering information of the cells
in a tissue and its topological properties are used in the

classification of different types of tissue images. Formally, a
cell-graph is denoted by G ¼ ðV ;EÞ, where V and E are the
sets of nodes and edges, respectively. Construction of a cell-

graph is achieved in three steps as summarized below; the
details can be found in [13].

The first step is the color quantization to distinguish the

cells from their background based on the color information
of the pixels. We use the k-means algorithm [16] to cluster
the pixels of training samples and to learn the clustering

vectors. Each of these clustering vectors is assigned to be
either “cell” or “background” class by a pathologist. These

clustering vectors and their class assignments are used later
in the testing phase, to classify the pixels of testing images
as either “cell” or “background.”

The second step is the node identification where the

class information of pixels in an image is translated to the
node information of a cell-graph. Node identification is
done by embedding a grid over a tissue image and

computing a probability for each grid entry for being a
node in a cell-graph. For a grid entry, the probability is

computed by assigning a value of 1 to the pixels of “cell”
class and a value of 0 to the pixels of “background” class
and then computing the average over the pixels located in

this grid entry. A grid entry with a probability greater than
a threshold is considered as the node of a cell-graph. In this
step, a node can represent a single cell, a part of a cell, or a

bunch of cells depending on the grid size. Thus, the
topological features extracted using the cell-graph method

do not require high magnification images to resolve the
details of a cell in contrast with the morphological features.
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1. We consider a particular type of brain tumor called malignant glioma.

Fig. 1. Microscopic images of brain biopsies stained with hematoxylin and eosin technique: (a) a brain tumor sample (glioma), (b) a healthy tissue

sample, and (c) an inflamed tissue sample.



The last step is the link establishing where the pairwise
spatial relation between the nodes is translated to the edges
(links) of a cell-graph with a certain probability. The
probability for a link between the nodes u and v reflects
the Euclidean distance dðu; vÞ between them and is given by
P ðu; vÞ ¼ dðu; vÞ��, where � is the exponent that controls
the density of a graph; note that probability of being
connected is a decaying function of the relative distance.2

This probability aims to quantify the possibility for one of
these nodes to be grown from the other. Since the
probability of a cell being grown from a closer cell is higher
than being grown from a distant cell, we use the relative
distance between two cells to probabilistically establish a
link between them. Thus, for a node set V , we define an
edge set E such that E ¼ fðu; vÞ : r < dðu; vÞ��; 8u; v 2 V g,
where r is a real number between 0 and 1 that is generated
by a random number generator.

2.2 Global Graph Metrics

In this work, we use eight different topological properties
defined on the entire graph (i.e., global graph metrics),
namely, the average degree, the clustering coefficient, the
average eccentricity, the ratio of the giant connected
component, the percentage of the end nodes, the percentage
of the isolated nodes, the spectral radius, and the eigen
exponent.

1. The degree of a node is defined as the number of its
links. Using the distribution of the node degrees, we
compute the average degree as a global metric.

2. The clustering coefficient Ci of a node i is defined as
Ci ¼ ð2 � EiÞ=ðk � ðkþ 1ÞÞ, where k is the number of
neighbors of the node i and Ei is the number of
existing links between its neighbors [5]. This metric
quantifies the connectivity information in the neigh-
borhood of a node. We use the average clustering
coefficient as a global metric.

3. The eccentricity of a node i is the length of the
maximum of the shortest paths between the node i
and every other nodes reachable from i. We use the
average eccentricity as a global metric.

4. The giant connected component of a graph is the
largest set of the nodes where all of the nodes in this
set are reachable from each other. We use the ratio of
the size of the giant connected component over the size
of the entire graph as a global metric.

5. A node in a graph is an “isolated node” if it does not
have any neighbors, i.e., if it has a degree of 0. A
node in a graph is an “end node” if it is connected to
a single node, i.e., if it has a degree of 1. We use the
percentages of the isolated and the end nodes in the entire
graph as global metrics.

6. The last two metrics are related to the spectrum of a
graph, which is the set of graph eigenvalues (i.e.,
eigenvalues of the adjacency matrix of a graph). The
spectrum of a graph is closely related to the

topological properties of a graph such as the
diameter, the number of the connected components
and the number of spanning trees [4]. In this work,
we use the spectral radius, which is defined as the
maximum absolute value of eigenvalues in the
spectrum, as a global metric. The eigen exponent is
defined as the slope of the sorted eigenvalues as a
function of their orders in log-log scale [10]. As our
last global metric, we use the eigen exponent
computed on the first largest 50 eigenvalues of each
graph.

3 EXPERIMENTS

In this section, we explain our experimental setting, data set
preparation, and parameter selection. We also present the
results of classification and their interpretations.

3.1 Methodology

3.1.1 Data Set Preparation

The data set used in this work comprises of 646 microscopic
images of brain biopsy samples of 60 randomly chosen
patients from the Pathology Department archives in Mount
Sinai School of Medicine (MSSM). Each sample consists of a
5-6 micron-thick tissue section stained with hematoxylin
and eosin technique and mounted on a glass slide.3 The
images are taken in the RGB color space with a magnifica-
tion of 100X and each image consists of 480� 480 pixels.
The data set includes samples of 41 cancerous (glioma),
14 healthy, and nine reactive/inflammatory processes; for
four of these patients, we have both cancerous and healthy
tissue samples. This data set only includes the glioma cases,
excluding the other types of brain cancer. Since we
randomly selected these patients from the pathology
archives, the patient distribution represents the real life
situation in MSSM Pathology Department. We note that this
distribution might show differences in other pathology
departments.

The data set is divided into training and test sets. In the
test set, the number of images that come from the same
patient varies between 6 and 10 (approximately 8 on
average). In the training set, a larger number of images of
the same patient with healthy and inflamed tissues are
used,4 while approximately eight images still come from
each of the cancerous patients. Note that different biopsy
samples obtained from the same patient are not indepen-
dent and should not be used in both training and testing to
prevent overoptimistic accuracy results. Thus, in our data
set, we use the samples of the same patient either in the
training set or in the test set, but not in both.

As a result, the training set consists of 163 cancerous
tissues of 20 patients, 150 inflamed tissues of five patients
(the data set includes 75 inflamed tissues prior to the
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2. There are an infinite number of such decaying functions. Among those
functions, we select a function with a minimum number of free parameters.
We believe that it is also possible to select another probability function and
it should also lead to accurate results provided that its parameter(s) is
optimized.

3. All patients were adults with both sexes included. The identifiers were
removed, and slides were numerically recoded corresponding to diagnostic
categories by the pathologist, prior to obtaining digital images of the tissues.
Therefore, two nonmedical investigators in this work had access to images
and diagnoses only, without retraceable personal identifiers.

4. We also replicate the inflamed samples in the training set since the
number of available inflamed samples is less than those of healthy and
cancerous samples and it might be harder for a neural network to learn the
rarer classes if the number of training samples of each class varies
significantly between the different classes.



replication), and 156 healthy tissues of seven patients. The
test set consists of 166 cancerous tissues of 21 patients,
32 inflamed tissues of four patients, and 54 healthy tissues
of seven patients.5

3.1.2 Cell-Graph Parameters

After taking the images, we convert the RGB values of the
pixels into their corresponding values in the La*b* color
space [26]. Unlike the RGB color space, the La*b* color
space is a uniform color space and the color and detail
information are completely separate entities. Therefore,
using the La*b* color space yields better quantization
results in our experiments.

Clustering parameter (kk): We cluster the La*b* values of
pixels into k clusters using the k-means algorithm. Unlike
other parameters, the selection of the value of this
parameter is limited to the perception of a human expert.
The k value should be selected large enough to represent all
different parts of a tissue sample such as nuclei, cytoplasm,
and blood vessels. On the other hand, its value should be
selected small enough so that the human expert can
distinguish different clusters and successfully assign the
corresponding classes to these clusters. In our case, we
conveniently set the value of this parameter to be 16 since
our human expert was able to reproducibly distinguish
different color clusters only up to 16 in our images.

Node parameters: In identifying the nodes of the cell-
graph, we have two control parameters: 1) grid size and
2) node threshold. The grid size determines the size of a node.
Depending on the grid size, a node can represent a single
cell, a part of a cell or a bunch of cells. The node threshold
determines the density of the nodes in a cell-graph. A larger
threshold produces sparser graphs, whereas a smaller
threshold makes the assignment of the nodes more sensitive
to the noise arising from the misassignment of “cell” classes
in the color quantization step.

Link (edge) parameters: In establishing the edges of the
cell-graph, we use a decaying probability function with an
exponent of �� with 0 � �. The value of � determines the
density of the edges in a cell-graph; largervalues of�produce
sparser graphs. On the other hand, as � approaches to 0, the
graphs become densely connected and approach to a
complete graph. We note that in both cases, it is not possible
to extract the distinguishing topological properties.

3.1.3 Parameter Selection by Cross-Validation

We select the value of these parameters according to the
classification performance obtained using cross-validation
within the training set. For that, we use 30-fold cross-
validation. In k-fold cross validation, the training set is
randomly partitioned into k subsets; k� 1 subsets are used
to train the classifier and the remaining subset is used to
estimate its error rate. This is repeated for all distinct
choices of k subsets and the average of the error rates is
computed.

In particular, we consider a candidate set of {4, 6, 8, 10}
for the grid size, a set of {0.10, 0.25, 0.50} for the node

threshold, and a set of {2.8, 3.2, 3.6, 4.0, 4.4} for the link
exponent. In a multilayer perceptron, the number of hidden
units is another free parameter; we consider a set of {2, 3, 5,
8, 12, 16, 20, 24, 32} for this parameter.

We evaluate the cancerous-healthy-inflamed classification
(which is explained in detail in the next section) perfor-
mance of the cross-validation for all possible combinations
of the prospective parameter sets given above and select the
combination that leads to the best average accuracy.6 As a
result, we set the values of the parameters as follows: the
grid size is 4, the node threshold is 0.50, the link exponent is
4.4, and the number of hidden units is 12.

3.1.4 Classification

We conduct two different classifications 1) cancerous versus
healthy tissue classification and 2) cancerous versus healthy
versus inflamed tissue classification.

As shown in Fig. 2, there is a significant difference
between the number of nodes, i.e., cellular density, in the
graphs of healthy and cancerous tissues. However, the
numbers of nodes in the graphs of inflamed and cancerous
tissues fall in the same range. Due to the significant
difference in the density of cells between cancerous and
healthy tissues, it is an easy task to distinguish cancerous
tissues from healthy tissues. However, it is not a straight-
forward task to tell apart malignant tissues from inflamed
tissues because the cell densities in both tissue samples are
comparable. The ability to differentiate the cancerous from
the inflamed critically depends upon the resolution of the
tissue image. Pathologists typically make use of the detailed
features in such tissue images such as nuclei shape; such
details, however, require high resolution. Thus, this ability
can aid pathologist to make a decision with low resolution
images.

In both of the classifications, we use 1) a multilayer
perceptron-based neural network and 2) a Bayesian net-
work classifier. A major advantage of neural networks is
their ability to make decisions based on complex, noisy, and
irrelevant information [2]. Neural networks can capture
complex interactions among the input variables as they are
nonlinear models. They have high tolerance to noisy data as
they can generalize the training samples, i.e., they can
classify unknown samples that only roughly resemble the
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5. We note that the data set in this work is completely different from the
preliminary data set used in [13] which was obtained from 12 different
patients (as opposed to 60 patients here), and these images were taken by
using a different imaging system. The new imaging system used in this
work produces higher quality images and, hence, makes the quantization
easier.

6. Here, we use the performance of the cancerous-healthy-inflamed
classification as the criterion for the evaluation since the cancerous-healthy
classification yields good accuracy results regardless of the specific
parameter combination.

Fig. 2. Histograms of the number of nodes in the graphs extracted from

the different types of tissue images.



samples in the training set. However, the most significant
disadvantage of neural networks is their ”black box”
nature; it is usually difficult to interpret the output of a
neural network.

A major advantage of Bayesian networks is their ability
to learn the causal relations between the inputs and the
output. As a result, the decision of a Bayesian network can
be easily interpreted. Moreover, Bayesian networks can
handle incomplete data sets and facilitate the incorporation
of prior [17]. However, the most significant disadvantage of
Bayesian networks is the NP-completeness of learning the
optimal network structure [3]. In order for the computa-
tional complexity to be tractable, heuristic algorithms need
to be used in structure learning. Another problem in using
Bayesian networks is the discretization of the continuous
variables [1].

In our experiments, we generate five different graphs for
every image in the data set and evaluate the classifiers on
these five different graph sets. We run a multilayer
perceptron classifier for each set six times; therefore, we
compute the average accuracy over the 30 runs. Since the
same network is computed for a Bayesian network
classifier, we have only one network for a single graph
set; therefore, we compute the average accuracy over the
five runs.

3.1.5 Evaluation of the Cell-Graph Approach

To investigate the significance of encoding pairwise spatial
relation between the nodes, we compare the cell-graph
approach against two other approaches 1) cell-distribution
approach in which features are extracted from the spatial
distribution of the cells that do not include any link
information, and 2) textural approach in which the features
are derived from the gray-level co-occurrence matrix in the
classification of different tissues.

Cell-Distribution Approach: After the node identifica-

tion step, we embed a grid over the nodes in their two-

dimensional space. For each grid entry, we compute the

percentage of the nodes located in this particular grid entry.

We use the percentages of the entries as the feature set of

the cell-distribution approach.
Textural approach: The co-occurrencematrixC computed

on a gray-level image P is defined by a distance d and an

angle �. Cði; jÞ indicates howmany times the gray value i co-

occurswith thegrayvalue j in aparticular spatial relationship

defined by d and �. Mathematically, it is given as

Cði; jÞ ¼ jfm;ng : P ðm;nÞ ¼ i and

P ðmþ d cos �; nþ d sin �Þ ¼ jj:

We compute 12 different normalized gray-level co-occur-
rence matrices at four different angles (0, 45, 90, and 135�)
and three different distances (1, 5, and 9). On each
normalized co-occurrence matrix, we compute six different
features, including the angular second moment, contrast,
correlation, inverse difference moment, dissimilarity, and
entropy. More on these features and their derivations can be
found in [8].

As discussed in the introduction, in automated cancer
diagnosis, the two most commonly used approaches are the
textural and morphological approaches. We choose textural
approach for comparison since it does not require deter-
mining the exact locations of the cells, i.e., segmenting the
cells, prior to the feature extraction. We do not use the
morphological approach since the success of this approach
mainly depends on the success of the segmentation and
ensuring the segmentation with sufficient success is beyond
the scope of this paper.

For both the cell-distribution and textural approaches,
we use a multilayer perceptron. In these approaches, since
there is nothing to set probabilistically rather than the case
of multilayer perceptrons, we run a multilayer perceptron
30 times for these approaches and compute the accuracy
over these 30 runs. Similar to the cell-graph approach, we
select the number of hidden units from the set of {2, 3, 5, 8,
12, 16, 20, 24, 32} for both the cell-distribution and textural
approaches by using 30-fold cross-validation. As a result,
we select the number of hidden units to be 20 for the
textural approach.

In the cell-distribution approach, we have another
parameter: the size of the grid entries. Since the dimension
of the mesh for the images used in this work is 120� 120,
we choose the grid size ranging from 1 to 60 (i.e., the set of
{1, 2, 4, 8, 10, 16, 20, 30, 40, 60}). For each grid entry size, we
evaluate the cancerous-healthy-inflamed classification for the
number of hidden units given above by using 30-fold cross-
validation and select the number of hidden units that yields
the highest accuracy. In Table 1, the average accuracy
obtained on the cross-validation set and its standard
deviation are reported for each grid entry size. Considering
these accuracy values, we select the size of the grid entries
to be 20 and the number of hidden units to be 16 for the cell-
distribution approach.

3.2 Results

3.2.1 Cancerous-Healthy Classification

In this section, we examine the accuracy of each approach in
the classification of cancerous and healthy tissues and
compare these accuracy values. In Table 2, we report the
average accuracy results and their standard deviations
obtained in the cancerous-healthy classification by using the
cell-graph (both for a multilayer perceptron and a Bayesian
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TABLE 1
In the Cell-Distribution Approach, the Accuracy Results Obtained on the Cross-Validation Set for Different Sizes of Grid Entry



network classifier), cell-distribution, and textural ap-
proaches on the samples of the test set. In addition to the
overall accuracy obtained on the entire data set (including
both cancerous and healthy tissues), we report the accuracy
results for each class type. Table 2 indicates that the biopsy
samples in the test sets are classified with accuracy greater
than 98 percent for all three approaches. In this table, the
cell-graph approach with a multilayer perceptron classifier
and the cell-distribution approach give exactly the same
accuracy results. This indicates that in the cancerous-
healthy classification, the edges (links) of cell-graphs do
not carry additional information.

3.2.2 Cancerous-Healthy-Inflamed Classification

Table 2 demonstrates that the spatial distribution of the cells
provides sufficient information to distinguish different
types of tissues when their cellular density is significantly
different. To show that the cell-graph approach does not
solely rely on the difference in the cellular density of
different tissue types, we also use the images of the
inflamed tissues that are as dense as the cancerous tissues.

In Table 3, we present the average accuracy results
obtained in the classification of the cancerous, healthy, and
inflamed tissues and their standard deviations using the cell-
graph, cell-distribution, and textural approaches on the
samples of the test set. This table demonstrates that the cell-
graph approach correctly classifies the samples in the test set
with accuracy greater than 95 percent. In addition to the high
accuracy in the classificationofhealthy tissues, cancerousand
inflamed tissues are distinguished from each other as well as
fromhealthy tissueswith accuracy greater than 92 percent. In
this table, the cell-graph approach yields comparable
accuracy results in the case of a multilayer perceptron and a
Bayesian network classifier; the accuracy results of a multi-

layer perceptron are approximately 3 percent higher than
those of a Bayesian network classifier.

The cell-graph approach that either uses a multilayer
perceptron or a Bayesian network classifier leads to higher
accuracy results compared to the cell-distribution and
textural approaches. To investigate whether or not the
difference between the accuracies of the cell-graph and
other approaches is significant, we use the Wilcoxon test
with a significance level of 0.05. The Wilcoxon test exhibits
that the difference between the overall test set accuracies of
the cell-graph and other approaches is statistically signifi-
cant. We also note that, for cancerous and inflamed tissues,
the cell-graph approach (using either a multilayer percep-
tron or a Bayesian network) yields significantly better
accuracy results than the cell-distribution and textural
approaches. For healthy tissues, the cell-graph approach
(using a multilayer perceptron) and the cell-distribution
approach yield exactly the same accuracy results, which is
significantly better than the accuracy results obtained in the
textural approach.

Table 3 also indicates that although the cell-distribution
approach generally correctly classifies the healthy tissue
samples, it gives an accuracy of 82 percent and an accuracy
of 28 percent for cancerous and inflamed classes, respec-
tively. Thus, we conclude that the pairwise relation encoded
in the link establishing step of cell-graph construction
provides critical information to distinguish different types
of tissue samples regardless of their cellular density levels.
Similarly, although the textural approach generally cor-
rectly classifies the healthy, it yields an accuracy of
89 percent and an accuracy of 75 percent for the cancerous
and inflamed, respectively. The textural approach yields
better accuracy results than the cell-distribution approach;
however, it leads to worse results than the cell-graph
approach in the classification of the cancerous and
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TABLE 2
Accuracy Results of the Cancerous-Healthy Classification on the Test Set Using the

Cell-Graph, Cell-Distribution, and Textural Approaches

TABLE 3
Accuracy Results of the Cancerous-Healthy-Inflamed Classification on the Test Set Using the

Cell-Graph, Cell-Distribution, and Textural Approaches



inflamed. This indicates the effectiveness of the nodes in a
cell-graph.

Pearson correlation of global metrics: In the cancerous-
healthy-inflamed classification, we measure the relative
importance of the global metrics by measuring the Pearson
correlation between each graph feature and the outputs of a
multilayer perceptron. The Pearson correlation reflects the
degree of linear relationship between two variables and the
Pearson correlation rxy between the variables x and y that
have n data points is given as:

rxy ¼
n �

P
xi � yi �

P
xi �

P
yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n �
P

x2
i �

P
xið Þ2

� �
� n �

P
y2i �

P
yið Þ2

� �r :

We compute the Pearson correlation on the test set for
each of the 30 runs and report the average correlation for
each feature in Table 4. In this table, we also report the
accuracy obtained by using a single-feature. For a particular
feature, we rank the test data set by using this feature and
use the training set for selecting an order (ascending/
descending) and classification thresholds to apply to the
ranking. This table demonstrates that there is no single
feature that yields high accuracy results for all classes (i.e.,
the cancerous, inflamed, and healthy). A single feature may
distinguish a single class successfully and fail on the others,
e.g., the giant connected component ratio yields an accuracy
of 85 percent for the healthy while it only yields 49 percent
and 11 percent accuracy for the cancerous and inflamed,
respectively. It may distinguish two classes successfully,
but fails on the other one, e.g., the eigen exponent classifies
the cancerous and healthy with an accuracy of 80 percent
and 91 percent, respectively, while it only classifies the
inflamed with 48 percent accuracy. The samples of a class
can be successfully distinguished from those of the others
when the correlation coefficient of that class has an opposite
sign compared to those of the others. On the other hand,
this is not a necessary condition since there might be higher
degree correlations. Note that, for a particular feature, the

overall correlation coefficient reported in this table is
computed between the values of this feature and the
outputs of multilayer perceptrons regardless of the classes
of the samples. Since, for different classes, there are
different types of correlation between the feature values
and the classifier outputs, no correlation is found across an
entire class.

4 CONCLUSION AND DISCUSSIONS

This work investigates the strength of the cell-graph
representation in the diagnosis of cancer. We show that
encoding the pairwise spatial relations between the cells as
the edges of a cell-graph is crucial in classifying different
types of tissues with similar cellular density levels. This
result is obtained by comparing the cell-graph approach
against two other approaches: 1) cell-distribution and
2) textural approaches. We also show that it is possible to
identify global metrics on a cell-graph to capture the tissue-
level information in histopathological images.

The results presented in this work are obtained on
646 images of brain tissue samples of 60 different patients.
We demonstrate that the cell-graph representation success-
fully distinguishes the images of cancerous tissues from the
images of both healthy and inflamed tissues by using the
global graph metrics. We obtain 95.45 percent accuracy on
the overall testing samples; the percentages of correct
classification of the testing samples of healthy, cancerous,
and inflamed tissues are 98.15 percent, 95.14 percent, and
92.50 percent, respectively. On the other hand, the cell-
distribution approach successfully classifies only the
healthy tissues, but fails to distinguish the cancerous and
inflamed tissues from each other. The accuracy on the
overall testing samples is 78.66 percent; the percentages of
correct classification of the testing samples of healthy,
cancerous, and inflamed tissues are 98.15 percent, 82.17 per-
cent, and 27.60 percent, respectively. The textural approach
successfully (97.22 percent) classifies the healthy tissues as
well. Although the testing set accuracy in the classification
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TABLE 4
Pearson Correlations between the Values of Each Global Graph Metric and the Outputs of a

Multilayer Perceptron Classifier and the Accuracies Obtained by Using a Single-Feature Classifier



of cancerous and inflamed tissues is not as low as in the
case of the cell-distribution approach, it yields lower
accuracy results; 89.04 percent and 75.21 percent for
cancerous and inflamed tissues, respectively.

Finally, the definition of global metrics improves the
approach that is based on the use of local classification
results to obtain a global comparison, as suggested in [13].
As was defined in [13], for tissue-classification based on
node-classification using local metrics of a cell-graph, the
tissue is classified as a particular class (e.g., cancerous), if at
least M percent of its nodes is classified as the same class.
Clearly, as M increases, for a class to yield an occurrence
greater than M percent across a tissue sample becomes
difficult; thus, tissue-classification may not be possible. On
the other hand, decreasing M may reduce the reliability of
the resulting tissue-classification. To demonstrate this
reliability issue, we conduct the node-classification experi-
ments on this data set. When the threshold M is selected to
be 33.33 percent, the results show that there are two node
classification types that both prevail with occurrences larger
than M ¼ 33:33 percent across a tissue in 29.79 percent of
the samples in the test set. For example, one of the worst
possible node occurrences across a tissue sample could
consist of 51 percent of the nodes classified as cancerous
and 49 percent of the nodes classified as inflamed. In this
particular example, given M ¼ 33:33 percent and according
to the definition in [13], the tissue is supposed to be
classified as both cancerous and inflamed, which leads to
unreliability in the tissue-classification. Similarly, other
node occurrences with no dominating type (e.g., 34 per-
cent-34 percent-32 percent, 42 percent-38 percent-20 per-
cent, 55 percent-40 percent-5 percent, etc.) would also result
in such unreliable tissue-classification (in a total of
29.79 percent of the tissue samples in our test set for M ¼
33:33 percent). When M is increased (for example, from
33 percent to 35 percent to 40 percent), we observe that the
percentage of the tissue samples with unreliable tissue-
classification decreases significantly (decreases from
29.79 percent to 11.33 percent to 5.67 percent with M
increased from 33 percent to 35 percent to 40 percent,
respectively). By performing the tissue-classification using
global features that are computed over an entire cell-graph,
the global metrics eliminate the need for such a threshold
parameter (M), consequently avoiding the reliability issue.
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