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Abstract 
The cell-graph approach captures the information en-
coded in tissue samples by capturing the spatial distri-
bution of cells and their cluster formations. In a cell-
graph, nodes and edges represent the cell clusters and 
pairwise relationships between them, respectively. It is 
shown in [1] that the features of cell-graphs of cancer-
ous tissues are significantly different from those of 
healthy tissues and benign reactive/inflammatory proc-
esses. Thus, cell-graphs can be used for the purpose of 
automated cancer diagnosis [1]. In this paper, we pre-
sent a new set of features and show how effectively 
they aid to automated cancer diagnosis. In particular, 
we investigate the spectral decomposition of adjacency 
matrices and normalized Laplacian of the cell-graphs. 
To the best of our knowledge, this is the first use of the 
spectral graph theory in tissue-based automated can-
cer diagnosis. Working with 646 brain biopsy samples 
of 60 different human patients, we demonstrate that the 
spectra of the cell-graphs of cancerous tissues are 
unique and distinguishable from those of the healthy 
and inflamed tissues with accuracy >90% (with a sen-
sitivity of 91.57% and specificities of 93.75% and 
98.15% for the inflamed and healthy tissues, respec-
tively). 
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1. Introduction 
In traditional cancer diagnosis, pathologists manually 
examine biopsies to make diagnostic assessments. The 
assessments are largely based on visual interpretation 
of cell morphology and tissue distribution, lacking of 
quantitative measures. Therefore, they are subject to 
considerable inter-observer variability [2-4]. To cir-
cumvent this problem, numerous studies aim at quanti-
fying the characteristics of cancerous cells and tissues 
that distinguish them from their counterparts. Such 
quantification facilitates to design automated systems 
that operate on quantitative measures and, in turn, to 
reduce the inter-observer variability. However, this is 
not a straightforward task because of the complex na-
ture of the image scenes; a typical tissue image consists 

of touching and overlapping cells. Additionally, in the 
tissue image, there is usually a considerable amount of 
noise that arises from staining the tissue; uneven distri-
bution of stain usually causes problems in processing 
the stained material [5]. 

In literature, there are different approaches to quantify 
the characteristics (features) of cells and tissues: mor-
phological, textural, intensity-based, and topological. 
The morphological approach quantifies the size and 
shape of a cell or its nucleus [6-9]. The textural ap-
proach makes use of spatial inter-relationships for the 
pixels to extract features [10-11] and quantifies proper-
ties such as the smoothness, regularity, and coarseness 
of the image [12-16].  The intensity-based approach 
employs the distribution of the intensity values of pix-
els to define its features [17-19]. The topological ap-
proach quantifies the spatial distribution of the cells 
within a tissue [20-22]. Although these approaches 
lead to promising results in automated cancer diagno-
sis, they suffer from one or both of the two problems: 
(i) the difficulty of determining the exact locations of 
cells/nuclei in the biopsy image or (ii) the noise that 
arises from its staining process. 

The cell-graph approach relies on cluster formation in 
cancerous cells to define their distinctive features. In 
this method, we identify the cell clusters on a tissue 
image as the nodes and compute the spatial depend-
ency between every pair of these nodes to probabilisti-
cally assign the edges [1]. Unlike the previous demon-
strations, the cell-graph approach makes use of the cell 
clusters instead of the individual cells. Therefore, it 
eliminates the necessity of determining the exact loca-
tions of cells/nuclei on a tissue image, which allows 
using the low-magnification images. Furthermore, this 
approach relies on the dependency between the cell 
clusters rather than the pixels themselves and does not 
directly use the pixel values in feature extraction. Be-
cause of that, it is likely immune to noise inherit in a 
biopsy image.  

1.1 Contribution of this paper 
In this paper, we investigate the spectral decomposi-
tion (i.e., eigenvalue decomposition) of the cell-graphs 
extracted from biopsy images and define a new set of 



features derived from the spectra of the cell-graphs to 
distinguish the cancerous tissues from their counter-
parts. To the best of our knowledge, this is the first 
proposal for the use of the spectral graph theory for the 
purpose of automated cancer diagnosis.  

Our motivation in this work is the fact that the spectral 
decomposition of a graph is strongly related with its 
structural properties [23, 24]. Besides this relationship, 
there is a strong theoretical work and a large literature 
behind the spectral graph theory which is applied in 
several research fields such as chemistry and commu-
nication networking. We believe that, this work will 
open up the possibility to explore the characteristics of 
cancerous tissues with a strong and well-studied 
mathematical tool and, hence, this paper could stimu-
late further investigation of the spectral graph theory 
into the area of automated cancer diagnosis. 

In this work, we conduct our experiments on a total of 
646 human brain biopsy samples of 60 different pa-
tients. This data set includes cancerous (malignant 
glioma) samples, benign inflammatory processes 
(thereafter referred to as “inflamed”), and healthy 
samples. Although, the cancerous and healthy tissues 
can easily be distinguished even with untrained eyes 
(as shown in Fig.1(a) and Fig.1(c)), it is not straight-
forward to differentiate the cancerous and inflamed tis-
sues (as shown in Fig.1(a) and Fig.1(b)). Our experi-
ments demonstrate that, the graph spectra of cancerous 
and non-cancerous (inflamed and healthy) tissues ex-
hibit different characteristics, yielding a sensitivity of 
91.57% and specificities of 93.75% and 98.15% for the 
inflamed and the healthy, respectively.  

 
Figure 2. Microscopic images of brain biopsy samples: 
(a) a cancerous (malignant glioma) tissue, (b) a benign re-
active/inflammatory process, (c) a healthy tissue. 

2. Background 

2.1 Cell-graph generation 

A cell-graph ),( EVG =  is an undirected and un-
weighted graph without loops, with V and E being 
the nodes and edges of the cell-graph G. In generat-
ing the cell-graph from a tissue image, we first de-
termine the node set V by identifying the cell clus-
ters in the image and then probabilistically establish 
the edges between the nodes in V [1]. 
In node identification, we first classify the pixels of 
the image as “cell” or “background”. To do so, we 
first learn how to classify them by using the k-means 
algorithm [25]. On the training samples, the k-means 
algorithm clusters the pixels into k clusters based on 
their color information. Subsequently, a human ex-
pert assigns these clusters to either “cell” or “back-
ground” class. Once learned, the clusters and their 
corresponding class assignments are used for classi-
fying the pixels of the other images. Next, we embed 
a grid on the image and compute the probability of 
being a cell cluster for each grid entry. For a grid en-
try, the probability is computed as the average of the 
values of the pixels located in this particular grid en-
try, assigning 1 to the pixels of cell class and 0 to the 
pixels of background class. Then, the grid entries 
with a probability greater than a threshold are identi-
fied as the nodes of the cell-graph. 
In edge establishing, we probabilistically set an edge 
between any pairs of nodes using a probability func-
tion that decays with the increasing Euclidean dis-
tance between the nodes. In this work, we use a 
probability function of α),(),( vudvuP = , with d(u,v) 
being the Euclidean distance between the nodes u 
and v, and α  is the exponent that controls the con-
nectivity level of the graph ( 0≤α ). 

2.2 Spectral graph theory 
The spectrum of a graph is the set of all eigenvalues of 
its adjacency matrix or its Laplacian. The eigenvalues 
of a graph are known to be closely related to major 
graph invariants [23, 24]. 

The adjacency matrix of a cell-graph ),( EVG =  is de-
fined by 
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Although the adjacency matrix of a graph was much 
more studied in the past, the eigenvalues of the Lapla-
cian relate to the graph invariants better than the eigen-
values of the adjacency matrix [24, 26]. For instance, 
the number of the connected components in a graph is 
equal to the number of eigenvalues of its normalized 
Laplacian that have a value of 0. Moreover, as the ei-
genvalues of the normalized Laplacian lie in the range 
of [0,2], it is easier to quantify the properties on the 
normalized Laplacian spectra of the graphs with differ-
ent sizes and, in turn, to compare the normalized 
Laplacian spectra of such graphs. 

In this work, by using the adjacency and normalized 
Laplacian spectra of the cell-graphs, we define new 
sets of features as detailed below. 
 
Features derived from the adjacency spectrum 
Let 110 −≤≤≤ nλλλ K  be the eigenvalues of the 
adjacency matrix of a graph G with n nodes.  The 
range of these eigenvalues can vary according to the 
graph in contrast with those of the normalized 
Laplacian matrix. We define the following spectral 
features for adjacency spectrum: 

• The spectral radius, which is defined as a 
maximum absolute value of eigenvalues in the 
spectrum ( i

ni
λ

≤≤1
max ). 

• The second largest absolute value of the ei-
genvalues in the spectrum.  

• The eigen exponent which is defined as the 
slope of the sorted eigenvalues as a function of 
their orders in log-log scale [27]. In this work, 
we use the slope between the first largest and 
its next largest 50 eigenvalues. 

• The sum of the eigenvalues. 
• The sum of the squared eigenvalues (thereafter 

referred as to “energy”). 
 

Features derived from the Laplacian spectrum 
Let  20 110 ≤≤≤≤= −nλλλ K  be the eigenvalues 
of the normalized Laplacian of a graph G with n 
nodes. We define the following spectral features for 
normalized Laplacian spectrum; in Fig.2, the first 5 
of them are illustrated on an exemplary cell-graph: 

• The number of the eigenvalues with a value of 
0, which gives the number of connected com-
ponents in the graph. 

• The slope of the line segment representing the 
eigenvalues that have a value between 0 and 1. 
For its computation, we first fit a line on these 
eigenvalues by using linear regression, and 
then compute the slope of this line (thereafter 
referred as to “lower-slope”). 

• The number of the eigenvalues with a value of 
1. This feature was previously defined for the 
analysis of the Internet graphs [28]; it was 
used to compare the empirical data collected 
from the Internet and the data generated by the 
synthetic data generators. 

• The slope of the line segment representing the 
eigenvalues that have a value between 1 and 2 
(thereafter referred as to “upper-slope”). 

• The number of the eigenvalues with a value of 
2. Its value is only greater than 0 if and only if 
a connected component of the graph is bipar-
tite and nontrivial [24]. 

• The sum of the eigenvalues. For the graph 
spectrum, n

i
i ≤∑λ  with n being the number 

of the nodes in the graph. The equality holds 
for the graphs that have no isolated vertices 
(the vertices with a degree of 0). 

• The sum of the squared eigenvalues (thereafter 
referred as to “energy”). 
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Figure 2. Laplacian spectrum of an exemplary cell-graph. 
First 5 spectral features are illustrated.  

3. Experiments  

3.1 Data set preparation 

We conduct our experiments on a data set that con-
sists of 646 microscopic images of brain biopsy 



samples of 60 different patients1. This data set con-
sists of 329 cancerous samples of 41 patients, 210 
healthy samples of 14 patients, and 107 inflamed 
samples of 9 patients; for 4 of the patients, we have 
both the cancerous and healthy tissue samples. 
These samples consist of a 5-6 micron-thick tissue 
section stained with hematoxylin and eosin tech-
nique and mounted on a glass slide.  
We take the images of samples with a magnification 
of 100× by using a digital camera. The images are 
stored in the RGB color space. Prior to segmenta-
tion, we convert the RGB values to their correspond-
ing La*b* values since the La*b* is a uniform color 
space that provides separate color and detail infor-
mation [29]. The images used in this data set consist 
of 480×480 pixels. 
We divide this data set into training and test data 
sets. We use half of the patients of each type in the 
training set and the rest in the test set. The test set 
includes approximately 8 tissue images from each 
patient. The training set still includes 8 tissue images 
from each cancerous patient. Since the number of 
the patients of other types is less than that of the 
cancerous patients, we use larger amounts of the tis-
sue images for the healthy and inflamed. Addition-
ally, since the number of available inflamed tissues 
is less than those of healthy and cancerous, we repli-
cate the inflamed tissues in the training set. In sum-
mary, in the training set, we use 163 cancerous tis-
sues of 20 patients, 150 inflamed tissues of 5 pa-
tients (the data set included 75 inflamed tissues prior 
to the replication), and 156 healthy tissues of 7 pa-
tients. In the test set, we use 166 cancerous tissues of 
21 patients, 32 inflamed tissues of 4 patients, and 54 
healthy tissues of 7 patients. Note that the tissues 
that come from the same patient are either in the 
training or the test set, but not in both. This prevents 
over-optimistic test accuracies. 

3.2 Parameter selection 

In the generation of cell-graphs, we have 4 control 
parameters: (i) value of k, (ii) grid size, (iii) node 
threshold, and (iv) exponent value of α. The value of 
k in k-means algorithm should be large enough to 

                                                      
1 These 60 patients were randomly chosen from Pathology 
Department archives in Mount Sinai School of Medicine. 
The patients were adults with both sexes included. The 
identifiers were removed, and slides were numerically re-
coded corresponding to diagnostic categories by the pa-
thologist, prior to obtaining digital images of the tissues. 
Therefore, the remaining two authors had access to im-
ages and diagnoses only, without retraceable personal 
identifiers. 

represent all different parts of a tissue such as nuclei, 
cytoplasm, and blood vessels. However, its value 
should be small enough so that the human expert can 
differentiate the clusters and reproducibly assign the 
corresponding classes to these clustering vectors. 
Considering this issue, we use a value of k as 16 in 
this work.  
The grid size determines the size of the cell-clusters. 
Depending on the grid size, a cell-cluster consists of 
a single cell, a part of a cell or a bunch of cells. In 
this work, we use a grid size of 6 which matches the 
size of a typical cell. The node threshold eliminates 
the noise that arises from staining the tissues. In this 
work, we use a threshold value of 0.25 which elimi-
nates the noise inherit in an image without resulting 
in significant information lost on the cell clusters for 
the selected grid size. 
The value of exponent α determines the connectivity 
level of the cell-graph. Increasing the values of α 
towards 0 yields denser graphs, whereas decreasing 
it towards -∞ produces sparser graphs. In this work, 
we conduct our experiments with different values of 
α, ranging between -4.8 and -2.0.  

3.3 Results 

In this work, we use the support vector machines 
(SVM) [30] with a kernel of the radial basis func-
tions as our classifiers. As our feature sets, we sepa-
rately use the spectral properties derived from the 
adjacency matrix of a graph and its normalized 
Laplacian.  

Table 1. Classification results obtained on the test set 
when the features extracted from the normalized Lapla-

cian spectrum are used.  
  Specificity 
Α Sensitivity Inflamed Healthy 

-2.0 100.00 34.38 98.15 
-2.4 88.55 68.75 98.15 
-2.8 89.76 78.12 98.15 
-3.2 89.76 90.62 98.15 
-3.6 91.57 93.75 98.15 
-4.0 86.75 87.50 98.15 
-4.4 89.76 90.62 98.15 
-4.8 89.16 84.38 98.15 
 
In Table 1, we report the sensitivity and specificity 
results obtained by using the features derived from 
the normalized Laplacian spectra of cell-graphs; the 
results reported in this table are all obtained on the 
test set. This table shows that the inflamed tissues 
cannot successfully be differentiated for larger val-
ues of α (i.e., relatively denser graphs). For the 



graphs extracted by using a value of α smaller 
than 8.2− , i.e., after the connectivity of a graph falls 
below a certain value, the inflamed tissues are dif-
ferentiated successfully. For 6.3−=α , it leads to the 
best sensitivity and specificity results.  

Table 2. Classification results obtained on the test set 
when the features extracted from the adjacency spectrum 

are used.  
  Specificity 
Α Sensitivity Inflamed Healthy 

-2.0 75.90 71.88 98.15 
-2.4 79.52 65.62 98.15 
-2.8 74.70 50.00 98.15 
-3.2 81.33 53.12 98.15 
-3.6 78.92 56.25 98.15 
-4.0 82.53 59.38 98.15 
-4.4 74.10 59.38 98.15 
-4.8 72.89 65.62 98.15 
 
Similarly, in Table 2, we report the classification re-
sults (on the test set) obtained by using the features 
derived from the adjacency spectra of cell-graphs. 
This table shows that the adjacency spectrum fea-
tures yield successful results only for classifying the 
healthy tissues. The correct classification rate of the 
cancerous (sensitivity) and inflamed tissues are less 
compared to the correct classification in the case of 
the normalized Laplacian spectrum. These results 
are consistent with the fact that the eigenvalues of 
the normalized Laplacian relate to the graph invari-
ants better than those of the adjacency matrix [24, 
26]. For the normalized Laplacian, it is easier to de-
fine the distinctive graph features that yield better 
accuracy results. 
 
Analysis of the individual normalized Laplacian 
features 
In our experiments, we also analyze the spectral 
properties of the cell-graphs derived from their nor-
malized Laplacian to identify the most distinctive 
features. For that, we train a SVM classifier by using 
a single feature. For the normalized Laplacian spec-
tra, we report the sensitivity and specificity results in 
Table 3. In this table, we use the cell-graphs ex-
tracted by using the exponent value of 6.3− , since 
this exponent yields both the best sensitivity and 
specificity results. Table 3 demonstrates that there 
exists no feature that can successfully differentiate 
all of the tissue types. Although there are many fea-
tures that distinguish the healthy from the other 
types, only the number of the eigenvalues with a 
value of 0 (the number of connected components in 

the graph) can distinguish the cancerous and in-
flamed from each other.  

Table 3. Classification results obtained on the test set 
when the classifier that employs of a single-feature of the 
Laplacian spectrum is used. The exponent is selected to 

be -3.6. 
  Specificity 

Feature Sensitivity Inflamed Healthy 
# of 0s 87.35 87.50 5.56 

lower slope 100.00 15.62 94.44 
#of 1s 1.20 71.88 98.15 

upper slope 69.28 43.75 98.15 
#of 2s 55.22 61.96 73.33 
Sum 56.63 40.62 98.15 

energy 52.41 78.12 98.15 
 

In Fig.3, we illustrate the distribution of the number 
of the connected components of the cell-graphs for 
the cancerous and inflamed tissues by using a box 
and whisker plot2. In this figure, we observe that the 
distribution of the number of the connected compo-
nents in the cell-graphs of the cancerous and in-
flamed tissues is prominently separable for the edge 
exponents smaller than 8.2− . This observation is 
closely related with the classification results re-
ported in Table 1. In Table 1, the accuracy results 
for the inflamed tissues are higher in the case of the 
edge exponents greater than 8.2− . 
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Figure 3. Distribution of the number of connected com-
ponents for the cancerous (shown in solid lines) and in-
flamed (shown in dotted lines) samples. 

                                                      
2 They are drawn by using boxplot function in Matlab. 
Each box in this figure shows the lower quartile, median, 
and upper quartile values and the whiskers show the ex-
tent of the rest of the data. 



4. Conclusion 
This work investigates the spectral decomposition (ei-
gen decomposition) of the cell-graphs for the purpose 
of automated cancer diagnosis. In this work, we pro-
pose to use new sets of the spectral features derived 
from (i) the adjacency matrix and (ii) the normalized 
Laplacian of the cell-graphs to distinguish the cancer-
ous tissues from their counterparts. 

In this work, experiments are conducted on a data set 
consisting of 646 human brain biopsy samples of 60 
different patients. These experiments demonstrate that 
the spectral features derived from the normalized 
Laplacian of the cell-graph successfully differentiate 
the cancerous from the healthy and inflamed, with a 
sensitivity of 91.57% and specificities of 98.15% and 
93.75% for the healthy and the inflamed, respectively. 
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