

Learning Mixtures of Plackett-Luce Models from Structured Partial Orders

Zhibing Zhao and Lirong Xia, Rensselaer Polytechnic Institute

Introduction:

Background

Plackett-Luce Model

Mixtures of Plackett-Luce Models

$$\Pr_{\text{PL}}(R|\vec{\theta}) = \prod_{i=1}^{m-1} \frac{\theta_i}{\sum_{p=i}^{m} \theta_p}$$

$$\Pr_{k-\text{PL}}(R|\vec{\theta}) = \sum_{r=1}^{k} \alpha_r \Pr_{\text{PL}}(R|\vec{\theta}_r) \quad \alpha = 0.2$$

$$0.4 \quad 0.3$$

$$0.1 \quad 0.2$$

$$1-\alpha = 0.8$$

- Identifiability
- Full rankings (Zhao et al. 16)
- Structured partial orders?

Contributions:

Modeling

- ☐ Theoretical Contribution
- Nonidentifiability: given top- l_1 and l_2 -way orders, k-PL is not identifiable if $k \leq (l_1 + l_2 1)/2$.
- **Identifiability**: 2-PL over 4 or more alternatives are identifiable given: (i) top-3, (ii) top-2 and pairwise, (iii) 4-way, or (iv) choice over 2, 3, 4 alternatives.
- ☐ Algorithmic Contribution: Generalized-Method-of-Moments
- First step:

$$\phi^s_{\mathcal{A}_s} = rac{\# ext{ of orders with structure } (s,\mathcal{A}_s)}{n}$$

Second step:

$$ec{ heta}' = rg\min\sum_{t=1}^q (rac{\Pr_{k ext{-PL-}\Phi}(\mathcal{E}_t|ec{ heta})}{\phi_{\mathcal{A}_t}^{s_t}} - rac{\#\operatorname{of}\mathcal{E}_t}{n\phi_{\mathcal{A}_t}^{s_t}})^2$$

- Selection of events:
- top-2 and 2-way: all
- choice-2, 3, 4: groups of 4 alternatives with at least one overlapping alternative.

- Each group has four alternatives
- Each group has at least one alternative which is also in another group

Results:

- ☐ Synthetic data with the following settings:
- Full rankings (linear orders) available
- Only structured partial orders available
- Algorithms
 - Top-3: GMM with events of top-3 orders (Zhao et al. 2016)
- Top-2 and 2-way: GMM with events of ranked top-2 orders and pairwise comparisons (proposed)
- Choice: GMM with events of choice-2, 3, 4 orders
- Results

Conclusions and Future Work:

- ☐ We propose a class of models (k-PL-partial) that generate partial orders from k-PL; we prove theorems on (non)-identifiability of k-PL-partial under certain combinations of structures; we propose efficient GMM based algorithms to learn 2-PL-partial.
- ☐ Interesting future directions include:
 - Efficient algorithms for more general partial orders
- Theoretical and algorithmic results for 3 or more components
- Exploring mixtures of more general RUMs beyond PL

Contact:

Zhibing Zhao

zhaozb08@gmail.com or zhaoz6@rpi.edu

Homepage: http://homepages.rpi.edu/~zhaoz6/

Code available at https://github.com/zhaozb08/MixPL-SPO