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ABSTRACT

The complexity and computational intensity of scienti�c computing has fueled re-

search on parallel computing and performance analysis. The purpose of this thesis

is to critically investigate the state of the art in performance analysis for scienti�c

computing and then propose and demonstrate through implementation, the feasi-

bility of a novel approach to performance analysis and experiment design. The core

of this approach is an Instrumentation Database (IDB) that enables comparative

analysis of parallel code performance across architectures and algorithms.

The basis of the IDB approach is scalable collection of performance data so

that problem size and run-time environments do not a�ect the amount of informa-

tion collected. This is achieved by uncoupling performance data from the underlying

architecture and associating it with the control 
ow graph of the program. We con-

sider the subset of nodes that are critical to performance: procedures, loops, calls,

and communications/synchronization events. The resulting structure, a control 
ow

hierarchy, is comprised of these nodes. Each node has statistical data collected for

it; namely, a minimum, maximum, average, and standard deviation of its execution

time, along with the number of times it was executed. Since these values are of �xed

size, and the number of nodes is not a function of either problem size, system archi-

tecture or execution environments, data scalability is ensured. Another important

contribution of the IDB approach is the use of database technology to map pro-

gram structure onto relational schema that represent the control 
ow hierarchy, its

corresponding statistical data, and static information that describes the execution

environment.

To demonstrate the bene�ts of the proposed approach, we have implemented a

POSIX compliant probe library, automated instrumentation tool, front-end visual-

ization programs, database schema using an object-relational DBMS (PostgreSQL),

and SQL queries. We also developed a methodology, based on these tools, for inter-

active performance analysis which we demonstrated by analyzing several di�erent

parallel scienti�c applications.
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CHAPTER 1

Introduction and Historical Overview

The complex and computationally demanding nature of scienti�c applications has

fueled research in the area of parallel computing. Moving from conventional unipro-

cessor systems to multiprocessor systems makes designing, developing, testing, tun-

ing, and maintaining scienti�c codes much more diÆcult. These diÆculties are

counterbalanced by the signi�cant speedup that parallel computing can provide.

Since the primary reason for writing parallel codes is speed [32], it comes as

no surprise that performance analysis is a vital part of the development process.

Analysis tries to determine if a given algorithm is as fast as it can be, where the

program can be further optimized, and how eÆciently the underlying system is being

used. Raj Jain [35] explains that analysis, for both sequential and parallel systems,

can be done in one of three ways:

� Analytic Modeling which involves using models of the executing program

and its underlying architecture to derive performance information. While this

technique can yield data quickly, the accuracy of this data is subject to the

number of initial assumptions and complexity of the models used.

� Simulation that a�ords more accuracy than analytic modeling. In this ap-

proach, the target system's response to the executing program is simulated. It

requires less assumptions to be made about the execution environment. The

drawback is that simulation quickly becomes too time consuming, and, in some

cases, not feasible as the system complexity or size grows.

� Measurement that is the focus of the research described in this thesis. It

involves instrumenting an executing application. This is the most time con-

suming of the analysis techniques, but, since measurements are taken on the

target system, it is clearly the most accurate [34].

We begin with a brief overview of the basic structure of performance analysis

tools. It is here that we de�ne the criterion with which we evaluate tools that are

1
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representative of the state of the art in performance analysis. Following chapters

present a description of the Instrumentation Database (IDB) approach, a system

which we realized based on our evaluations and proposed criterion; it is the main

contribution of this thesis. In addition to describing the approach, we present a

detailed description of its primary components:

� Automated Instrumentation Tool

� Probe Library and multi-language API

� EDFtool and Vistool graphical front-end

We demonstrate the features of the framework and resulting methodology

by evaluating performance results of several scienti�c computing applications. We

conclude with a discussion of IDB's contributions, and list future directions for

further research in this area.

1.1 Motivation of Research

The goal of this research is to explore new techniques in which both sequen-

tial and parallel scienti�c applications can be analyzed for purposes of optimization

and performance tuning. This involves exploiting technology from other areas of

computer science, speci�cally databases, to collect, store, and analyze collected per-

formance data.

To be useful, such techniques must a�ord the programmer 
exibility to con-

duct and manage customized performance experiments, power to answer key perfor-

mance related questions, support for multiple languages and platforms, and, lastly,

extensibility to analyze data and task parallel object-oriented codes.

1.1.1 Analysis Techniques

Analyzing the performance of an application is an iterative process which be-

gins with executing the program to determine if further analysis is necessary. The

next step involves pro�ling the code at a high level to determine which modules

spend the most time executing. These performance critical modules are analyzed
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further to localize bottlenecks to speci�c program constructs. It is up to the pro-

grammer to determine the cause of these bottlenecks and to remove them. This

top-down approach to performance analysis prevents the programmer from spend-

ing time optimizing areas that are not on the critical path [7] [32]. Analysis of this

nature is carried out mainly for two reasons:

� Optimization.

� Comparative Analysis.

In addition to ensuring that a code is as fast as possible, it is important to

be able to determine how e�ectively the code is able to make use of the target

architecture. In many cases, a code will perform signi�cantly better on one system

than another, depending on where the strengths of that system lie and the demands

the executing program places on resources. This is of particular importance when

evaluating di�erent architectures for speci�c applications [11] [19] [31].

Adaptive parallel �nite element codes represent a class of applications that

can bene�t signi�cantly from the analysis approach we present. Typically, these

codes impose signi�cant computational demand, hence the need for parallelism.

The diÆculties that typically arise from analyzing these large and computationally

demanding applications are exacerbated because these codes have scores of input

and tuning parameters that drastically e�ect performance as a function of the un-

derlying system and the speci�c problem being solved. The scalable instrumentation

and program database approach that we present addresses these issues by de�ning

each program execution as an experiment and providing a formal framework for

experiment management.

1.1.2 Structure of Analysis Tools

Performance analysis tools are comprised of three basic components: instru-

mentation, visualization, and support for analysis [34]. Instrumentation refers to

steps taken to collect performance related information from executing programs.

Visualization involves processing this data in such a way that program behavior

can be viewed graphically. Support for analysis is assigning causes and prescribing
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solutions to performance problems exposed in the instrumentation and visualization

phases.

Instrumentation includes counters showing how frequently a module is invoked,

timers showing how much time is spent executing, or timers measuring communi-

cation and synchronization delays. There are four metrics on which the quality of

instrumentation should be judged:

� Probe e�ect

� Granularity of data

� Mapping to source code

� Cost of invocation

All instrumentation is subject to the Probe E�ect [58] to varying degrees.

Introducing instrumentation alters the behavior of the program being analyzed. In-

strumentation not only changes the execution time of the program, but asynchronous

events that were governed by the program are now governed by the program and its

accompanying instrumentation [43]. The probe e�ect goes beyond tainting timing

and altering synchronization; it can drastically alter memory access patterns, thus

a�ecting cache utilization. Minimizing probe e�ect is a signi�cant issue in the area

of performance analysis research.

The granularity of instrumentation data range from individual statements to

a holistic view of the state of the machine. This leads to the issue of data scalability,

in which the amount of instrumentation data collected is often proportional to the

execution time of the program, the size of the problem, and the number of processors

used. In some cases, tools such as AIMS [34] collect and write instrumentation data

to disk at a rate of megabytes per second. Overwhelming system resources in this

way taints measured performance because the instrumented program has to wait

for resources, in this case the disk, when it normally would not. The same applies

to other resources such as memory, or CPU. Preserving data scalability is a guiding

principle in our research.
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Instrumentation Observable
Unit Event

FXU Branch delays
Data cache misses
TLB reloads
Floating-point interactions

ICU Instruction cache
TLB misses
Fetched instructions
Dispatched instructions
Executed instructions
Number of interrupts

FPU Floating-point cycles
Floating-point instructions executed
IEEE Inf and NaN delays
Register renaming / queue stalls

SCU Number and type of storage operations
Storage request latencies
DMA activity
Bus activity

Table 1.1: Observable events for IBM POWER2 hardware instrumenta-
tion units.

Performance data showing the state of the underlying system is not suÆcient

for localizing bottlenecks and analyzing an executing program. This information

needs to be mapped to speci�c source code constructs. In this way, the program's

e�ect on the system can be understood in terms of speci�c modules, loops, commu-

nication, and synchronization events. We present a novel approach that addresses

the issue of mapping instrumentation to source code features.

If the cost of adding instrumentation to an application is high, it is not likely

that it will be used. In the ideal case, instrumentation should be controlled by a

parameter that is turned on or o�; instrumentation itself should not involve any

additional e�ort on the user's part, aside from customization. Performance tools

that require instrumentation to be added manually become impractical for large

applications.

Instrumentation can be introduced at various levels:
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Event Counter 0 Counter 1
0 Cycles Cycles
1 Instructions issued Instructions graduated
2 Loads/syncs issued Loads/syncs graduated
3 Stores issued Stores graduated
4 Conditionals issued Conditionals graduated
5 Failed conditional Floating-point instr. graduated
6 Branches decoded Write back from data cache

to secondary cache
7 Write back from secondary TLB re�ll exceptions

cache to system interface
8 ECC cache errors Branches mispredicted
9 Instruction cache misses Data cache misses
10 Secondary cache misses Secondary cache misses

(instruction) (data)
11 Secondary cache way Secondary cache way

(instruction) (data)
12 External intervention External intervention bits

requests
13 External invalidation External invalidation

requests
14 Virtual coherency Upgrade requests on clean

secondary cache lines
15 Instructions graduated Upgrade requests on shared

secondary cache lines

Table 1.2: Assignable counter events for SGI/Cray R10000 processor.

� Hardware: Hardware can be used to count the number of mathematical op-

erations, monitor network utilization, time critical events, etc. Examples of

hardware instrumentation include network load or internal processor state in-

dicators. These impose little or no cost as they are embedded systems designed

to probe machine state. Many platforms include interfaces to instrumentation

hardware, for example:

{ IBM POWER2 provides extensive hardware facilities that are acces-

sible by software through registers. Instrumentation is controlled by a

multi-chip module that includes �ve basic units: Fixed-Point Unit (FXU),

Floating-Point Unit (FPU), Instruction Cache Unit (ICU), Storage Cache
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Unit (SCU), and Data Cache Unit (DCU). Each unit, except for the

DCU, has counters that can measure up to �ve events simultaneously;

the DCU has only one. These units are controlled by a Monitor Mode

Control Register (MMCR) where observable events are selected for each

unit. Table-1.1 shows observable events for the instrumentation units.

{ SGI/Cray MIPS R10000 supplies two hardware counters. Each counter

can track one out of sixteen possible events per counter. In conjunction

with the counters are two control registers which are used to specify

which events are to be instrumented. When the most signi�cant bit of

a counter is set, denoting an over
ow, the CPU receives an interrupt.

All software interfaces to the 32-bit counters are done through a virtual

64-bit counter. Valid events for each counter are shown in Table-1.2.

� Kernel: Special facilities can be provided by the kernel and operating sys-

tem to monitor system call usage and probe the state of the machine using

timed interrupts. For example, UNIX provides several interfaces to report

performance data collected by the operating system.

{ vmstat reports virtual memory statistics that include memory utiliza-

tion, page faults, cache utilization, etc.

{ iostat reports I/O statistics such as percentage of time spent waiting for

disk or throughput.

{ sar is the system activity reporter, that probes system counters at timed

intervals; counters include: �le accesses, bu�er activity, system calls, etc.

{ top displays and updates information about the processes consuming the

most CPU resources.

Many of these facilities are interfaces to hardware- and kernel-based instru-

mentation services.

� Binary: Some tools, e.g., Paradyn [49], modify the binary image of an execut-

ing program to collect timing and frequency information for critical areas of
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the program. This technique involves overwriting a portion of the binary with

a jump to an instrumentation module that replaces the overwritten instruction

and then starts/stops a timer or increments a counter.

� Compiler: Instrumentation can be added without modifying the original

program text by having the compiler collect information about the program

structure and linking in pro�ling libraries that extend the functionality of

standard libraries. An example of this would be the Gnu pro�ler, gprof. The

gprof utility produces an execution pro�le by incorporating call graph infor-

mation collected at compile time with basic pro�ling information collected at

run-time. Instrumentation data propagates along the call graph with total

execution times and call counters for each of the nodes. Invoking the pro�ler

involves minor changes to compile-time options and no modi�cation to the

source code. However, the granularity of information returned is limited to

that of the call graph.

� Source: When other means are not available or appropriate, adding code to

the program is the easiest way to collect performance data. This can be as

simple as adding timers and counters to measure speci�c regions of the code

where bottlenecks are likely to exist.

There are bene�ts and trade-o�s to instrumenting at each of these levels.

Hardware-based instrumentation provides the most accurate and �ne grain data with

minimal probe e�ect, but it su�ers from several drawbacks. Probing machine state in

this way provides little or no mapping of performance data to speci�c regions of the

source code. Although many supercomputers provide specialized instrumentation

hardware, it is often speci�c to each system and does not have a standard interface.

The PAPI project at University of Tennessee at Knoxville is addressing this issue

[52] and is discussed later. Another drawback is that there is also little or no

cost for invoking hardware-based instrumentation. Kernel, or operating system,

based instrumentation includes sampling environments where the machine's state

is periodically probed by the kernel. Like hardware instrumentation, this provides

�ne grain data with little or no mapping to the executing program, but with low
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invocation cost. Exclusively probing machine state (as Figure-1.1a shows) is not

suÆcient as the sole means for localizing bottlenecks and analyzing performance

because data cannot be correlated with speci�c features of the executing program's

source code.

The other instrumentation methods provide varying degrees of granularity and

invasiveness. Instrumenting at the binary level may be dynamic provided there is

external system support for it [50] [33]. This type of instrumentation is mainly

applicable to long-running programs where there is time to dynamically add and

remove probes. It is more costly to invoke because the run-time environment must

provide support for dynamic instrumentation. Compiler and source code level in-

strumentations o�er variable levels of granularity and traditionally are most invasive,

however the bene�t is that performance data is more easily mapped to the execut-

ing program's source code. The cost of invoking compiler-level instrumentation is

minimal in that it involves linking in instrumentation modules but does not provide

the 
exibility that directly instrumenting source code does.

In recent years, object-oriented languages used for parallel programming have

nearly become standard, thus exacerbating the need for new instrumentation tech-

niques [54]. Traditional instrumentations are based on the program's control 
ow

graph. Object-oriented programs require a higher level of abstraction based on

coupling control-
ows with object connectivity.

Visualization. A great deal of e�ort has gone into performance visualization.

There are a large number of tools on many platforms that provide visual displays of

performance data [29] [30] [28] [55]. Similar to data scalability, there is the notion

of visual scalability. Most visualizations work well for programs that run for a short

time on a small number of processors. As these quantities increase, the visual display

becomes less useful and more overwhelming to the user.

Support for Analysis involves more than drawing conclusions. It involves break-

ing down, �ltering, and organizing available information, thus enabling users to

draw multiple conclusions [64]. It is here that our instrumentation database ap-

proach is most useful. A framework for understanding a program's performance can

be formed based on instrumentation data collected in a scalable manner. This in-
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PROGRAM
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PROGRAM
EXECUTING

Affects Probes
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Figure 1.1: (a). Illustrates traditional performance tools that probe the
state of the machine while executing applications a�ect the
machine. (b). Illustrates an environment where the pro-
gram's a�ect on machine state is archived and mapped back
to speci�c program constructs. This information is visualized
in di�erent ways.

formation, in conjunction with static information about the architecture, program,

and inputs, can be used to derive an integrated view of the program's performance

across multiple runs, input vectors, and architectures.

1.2 IDB Overview and Objectives

The focus of this work is to explore issues and research problems central to

performance analysis of parallel and object-oriented scienti�c applications. The key

issues we address include:

� Support for comparative analysis / experiment management.

� Data scalability.

� Mapping of performance data to source code.

� Support for object oriented parallel codes.



11

� Ease of use and accuracy.

� Standardizing interfaces to performance data.

After considering these issues, it follows that performance data should be

uncoupled from the underlying architecture and associated with the control 
ow

graph of the executing program. The resulting data structures are too complex to

be captured using event trace �les. Instead, we exploit existing database technology

by mapping program structure and �xed-size statistical data onto formal database

schema. This novel use of an instrumentation database provides a framework for

experiment management, and enables source code mapping since performance data

is cast in terms of program structure and not underlying architecture. Scalability is

maintained by aggregating statistical data during data collection. Database queries

provide a powerful interface for front-end visualization and analysis tools.

Figure 1.2: Instrumentation database architecture.

This instrumentation database framework (see Figure-1.2) archives collected

performance data for a given program. As the program is run repeatedly with

di�erent parameters, the database can be used to derive conclusions about overall

performance (see Figure-1.1b). [36] [53]



CHAPTER 2

Survey of Previous Work

Analyzing program performance on a speci�c platform is possible due to the large

number of performance visualization and analysis tools provided by computer man-

ufacturers and vendors [34] [9]. Problems arise when there is a need to compare

program performance across multiple architectures. In addition to these vendor

provided tools, there are systems being developed by various research teams that

are portable from one architecture to another [72], [52], [49].

We critically evaluate some of these tools, summarized in Table-2.2, that are

representative of the state of the art in performance analysis with respect to the

criteria we outlined in the preceding chapter. The approach that we present com-

bines the innovation from some of these research tools with the sophistication and

power of the platform speci�c vendor tools while realizing issues that are not fully

addressed by any of the tools that we considered.

2.1 Upshot

Message Passing Interface (MPI) [58] [65] has been implemented on many sys-

tems. The MPIch implementation comes bundled with Upshot, a TCL/Tk program

used to visualize the performance of MPI programs. Upshot works as a visual front-

end for MPE, a pro�ling interface for MPI. Instrumentation is added when the user

links in MPI pro�ling libraries by specifying command-line options at compile-time.

Upshot provides a graphical front-end to the resulting pro�ler data for MPI spe-

ci�c functions. Instrumentation is transparent to the user because MPI functions

are overloaded with calls to instrumented functions in the pro�ling library. The

user can further extend instrumentation by bracketing code segments with explicit

instrumentation calls.

Gantt charts, which show processor state and arrows between each processor

represent message passing, are a powerful visualization tool, but su�er from poor

scalability. Figure-2.1 shows an Upshot visualization of an adaptive �nite element

12
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Figure 2.1: Upshot visualization of mesh partitioning algorithm using 8
processors. High degree of interprocessor communication ren-
der this an ine�ective way to visualize performance.

application [44] with heavy interprocessor communication. Heavy communication,

many processing elements, or long running programs quickly make this type of

visualization unwieldy for analysis. Upshot's usefulness is bound by the size of the

application being analyzed.

In addition to visual scalability, it is desirable to be able to answer di�erent

performance questions from the same instrumentation data set. Upshot does not

provide the 
exibility of multiple visualization modes to meet this need. This di�ers

from the approach we propose; IDB instrumentation data is uncoupled from the

visualization front-end thus allowing independent development of visualization tools.

2.2 MPP Apprentice

MPP Apprentice instruments and visualizes performance of C and FORTRAN

parallel programs on SGI/CrayT3D and T3E systems [9] [34]. Instrumentation is

done at the compiler level with the creation of a compiler information �le (CIF

�le) that contains static information about program structure. When the program

executes, a run-time information �le (RIF �le) is created automatically. These

two �les are used by the visualization front-end to generate scalable performance

displays. Instrumentation is introduced automatically when the user links MPP



14

Apprentice libraries by specifying appropriate command-line options at compile-

time.

Apprentice provides multiple program visualizations, as illustrated in Figures-

2.2, 2.3, 2.4, and 2.5, which show performance results of an MPI application that

enumerates twin primes [24]. Visual scalability is achieved because module perfor-

mance is displayed as a histogram (see Figure-2.2) and is coupled with program

structure. Timing information derived from the RIF �le is used in conjunction with

structural data contained in the CIF �le (see Figure-2.3).

Figure 2.2: Main screen of Apprentice running on a CrayT3D.
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Figure 2.3: Call graph view of Apprentice running on a CrayT3D.

Apprentice makes use of hardware instrumentation facilities provided by the

Cray T3D/T3E, that include information about cache utilization, 
oating point

operations, I/O performance, etc. An extensive knowledge base uses this data to

simplify analysis. Speci�cally, it correlates machine state information collected in

hardware with structural information about the program and generates a report of

where bottlenecks may exist in speci�c regions of the program based on accurate

statistics showing 
oating point operations and cache utilization. Figure-2.5 shows

suggestions for where in the code bottlenecks may exist. The sophistication of these

suggestions are limited to observations such as poor cache utilization or time spent

waiting for I/O in a given subroutine.

MPP Apprentice excels in a number of areas. It provides clear and scalable vi-

sualizations of program activity and e�ectively maps performance data to the source

code, as Figure-2.4 shows, due to compile-time instrumentation used in conjunction

with traditional run-time instrumentation. Conversely, some drawbacks are that

Apprentice only runs on Cray computers and that instrumentation adds noticeable



16

Figure 2.4: Source view of Apprentice running on a CrayT3D.

overhead to program execution. In some cases the overhead is so great that the

problem size must be reduced in order for the tool to run.

Portability and scalability are not issues in the mechanism that we propose as

instrumentation data is uncoupled from the underlying architecture. Furthermore,

structural information is computed at run-time. This reduces overhead because, un-

like the CIF �les used by MPP Apprentice, IDB only collects structural information

for code that is executed at run-time.
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Figure 2.5: Observations view of Apprentice running on CrayT3D.

2.3 PAT

Performance Analysis Tool [1], or PAT, provides a low-overhead method for

viewing execution time of functions, processor load, event traces, run-time stack, and

hardware instrumentation output. PAT can be used to analyze programs written in

C, C++, and FORTRAN 90 by linking in PAT libraries.

Instrumentation is done by using the real time clock and the program counter

to time-stamp events. This information is stored in pdf.nnn �les, where nnn is

the process ID of the executing program. PAT provides accurate measurements

of program performance while introducing very little overhead. This comes at the

expense of being able to map this data to the source code of the executing program.

Module level data is the �nest granularity that can be achieved. When using libraries

not linked with PAT, it is not possible to get module level information. Data

scalability is also a signi�cant issue, as the instrumentation �les can become very

large for non-trivial applications. In terms of accuracy, PAT is the clear leader
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among the tools that we considered.

PAT is lacking in its ability to reconcile instrumentation with the executing

program, because it is tightly coupled with the underlying hardware. This di�ers

from the approach that we propose in that performance data is coupled tightly with

the source code and completely separate from the underlying system. Moreover,

maintaining time-stamps of critical performance events is not scalable. IDB di�ers

in that it aggregates statistical data at run time.

2.4 AIMS

AIMS, or Automated Instrumentation and Monitoring System [72], was devel-

oped at NASA Ames Research Center, and includes the following tools for analyzing

performance of parallel programs:

� Source instrumentors that are capable of instrumenting multiple languages

and parallel programming libraries.

� Monitoring libraries that provide architecture dependent support for run-

time instrumentation.

� Intrusion compensator which factors out instrumentation overhead and

preserves partial ordering of events.

� View kernel that generates performance visualizations.

� Statistics kernel for pro�ling.

� Index kernel to facilitate performance tuning.

� Modeling kernel for performance modeling and prediction.

� Trace converters to convert AIMS trace �les to formats used by other per-

formance analysis tools.

AIMS is more than a performance analysis tool; it is a framework containing

many tools which are available on several platforms and can be extended easily. All
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the components of AIMS fall into one of four categories: source code instrumenta-

tion, run-time performance monitoring, noise reduction, and trace post-processing.

Inserting source-level instrumentation in large codes can be a tedious process; AIMS

automates this process by automatically adding instrumentation at the module level

and at communication points. That is, data is gathered at each subroutine and

message passing call. It also allows the user to manually de�ne additional instru-

mentation points. Source level instrumentation is stored in a 
at �le that resides at

the beginning of run-time instrumentation trace �les. This allows collected run-time

data to be mapped to source code constructs.

Run-time instrumentation enables collecting information when speci�c events

are encountered. These events include:

� Subroutines, loops, and user speci�ed regions.

� Communication events.

� File I/O.

� Global reduction operations, barrier synchronizations, and blocking events.

Information collected for these events include time-stamps, processor ID, event

types, and additional data speci�c to each event. As the program runs, a trace �le

is generated containing results of static and run-time instrumentation. This trace

�le is then post-processed by an intrusion compensator which factors out instru-

mentation overhead, speci�cally calls made to run-time instrumentation functions.

Trace �les are then used by various visualization, modeling, and tuning kernels for

analysis. The VK, or visualization kernel, provides a powerful interface for gener-

ating performance displays of event trace �les, and uses static instrumentation to

map run-time data to speci�c source code constructs. In addition to providing basic

analysis tools, AIMS provides a set of converters for using trace �les with other

performance analysis tools.

Overall, AIMS is a very powerful tool which has made many innovative break-

throughs in this area. It is lacking in that it does not enable re-use of trace �les

across multiple platforms for the purposes of comparative analysis. Moreover, the
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run-time instrumentation is not data scalable. For long running programs, trace

�les can become very large. Yan [72] describes this by saying:

Although we have shown that AIMS can be a powerful tool for the de-

velopment of parallel applications, there is much room for improvements

. . . Scalability: The 2-dimensional display formats and "event trace" ap-

proaches are not scalable. Enormous amount of performance data can be

generated rather easily. The run-time overhead (e.g. 
ushing) and anal-

ysis overhead (e.g. the need to sort the records before feeding them to

the visualization/analysis toolkit) could render the performance tuning

methodology described here impractical. [72]

There are three scalability issues raised here: data scalability, where trace

�les get very large; visual scalability, where the performance displays do not convey

large amounts of performance data well; and the notion of analysis scalability, where

post processing is time-consuming because of large amounts of data produced by

instrumentation. These limit the usefulness of AIMS to applications of manageable

size. Also, while AIMS is portable across di�erent architectures, it does not formally

provide the support for comparative analysis or experiment management that IDB

provides.

2.5 Godiva

Godiva, or Goddard Instrumentation Visualizer and Analyzer was developed

at NASA's Goddard Space Flight Center to analyze FORTRAN90 and C codes

running on SGI/CRAY T3E and Beowulf class supercomputers [59]. Godiva works

in stages. First, the source �les are annotated with instrumentation directives by

the user. Next, these annotated source �les are run through a preprocessor, which

expands annotations to executable instrumentation code. This new source program

is linked with the Godiva run-time library. When the program executes, trace �les

are generated for each processor based on this instrumentation. These trace �les are

then used to generate histograms, tables, and graphs showing various performance

metrics.
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There are a number of aspects that make Godiva unique with respect to the

other tools. Foremost is the manually introduced source level instrumentation; it

can be easily mapped to speci�c program constructs. The disadvantage of this

approach is that manually introducing instrumentation is both tedious and prone to

error. A preprocessor expands this instrumentation to actual code making use of the

Godiva run-time components. This code is, by default, introduced outside of deeply

nested iterative constructs to reduce intrusion. This di�ers from the approach we

present in that all IDB instrumentation consists of calls to a standard application

programmer's interface (API) that can be automatically introduced. Both tools are

similar in that performance data is aggregated to preserve data scalability. Earlier

versions of Godiva kept event trace �les which quickly became too large to handle.

Godiva, like AIMS, is one of a few tools designed to enable limited comparative

analysis between di�erent architectures, in this case SGI/Cray and Beowulf systems

[40].

2.6 Paradyn

Among the most unique analysis tools that we considered is Paradyn [49],

which uses dynamic instrumentation to reduce instrumentation overhead. Paradyn

is ideal for analysis of long running programs. In addition to instrumenting and

visualizing performance, it attempts to draw analytic conclusions. Initially, when a

program runs, the user selects metrics to be considered. Some of these include:

� Execution time.

� Message bytes sent.

� Message bytes received.

� I/O wait.

� I/O bytes.

� Synchronization wait.
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The user also has the option to restrict data collection to individual modules or

execution phases. These phases are classi�ed as intervals where overall performance

is uniform with respect to time; for example, input, decomposition, output, fan-in,

or computation. Paradyn searches for high-level problems relating to synchroniza-

tion, blocking, I/O, and memory. Once a general bottleneck is found, �ne-grained

instrumentation to �nd more speci�c causes is added dynamically while the program

is running. There are two abstractions for collecting, presenting, and analyzing per-

formance data:

� Multi-focus grid.

� Time-histogram.

The multi-focus grid is comprised of two lists. The �rst is a list of performance

metrics: CPU time, blocking time, message rates, I/O rates, etc. The second cor-

responds to program components, such as procedures, processors, shared resources,

etc. These lists are used to de�ne a matrix where metric data is recorded for pro-

gram components. The metrics contained in this matrix can be single values or

time-histograms which describe how the metric changes with time.

The overriding design goal is to automate the search for performance limiting

regions of a given program. Figure-2.6 shows a schematic of Paradyn's run-time en-

vironment. There is a single multi-threaded process that contains the Performance

Consultant, Metric Manager, Visualization manager, and User Interface Manager.

Outside of this process, there are multiple daemon processes that act as Instru-

mentation and Metric Managers that connect to executing applications. There are

also multiple visualization processes. The Performance Consultant searches for bot-

tlenecks by using a W 3 search model [49]. It re�nes its search by dynamically

introducing and removing instrumentation from the program as it executes.

2.6.1 W 3 Search Model

Performance tuning requires answering three basic questions:

� Why is the program performing poorly?
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Figure 2.6: Schematic of Paradyn software. Solid boxes represent proces-
sors and dotted boxes represent threads.

� When do the problems occur?

� Where are the bottlenecks?

To determine why the application is performing the way it is, Paradyn poses a

number of hypotheses as to which shared system resources are causing the problem.

Each of these high-level hypotheses is validated or dismissed based on collected

performance data. If validated, the hypothesis is further re�ned with respect to

where and when it occurs. Determining where involves mapping one or more of these

hypotheses to a speci�c region of the executing program. When involves localizing

bottlenecks to a speci�c \execution phase" of the program. Figure-2.7 shows the

Performance Consultant traversing a tree of hypotheses, with each level representing
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the re�nement of a hypothesis based on conclusions reached from the introduction

of dynamic instrumentation in the previous level.

Figure 2.7: Performance Consultant search through w3 tree for Graph
Coloring program.

The method of forming hypotheses (why), and iteratively re�ning them with

respect to where and when can be done interactively with the approach that we

present. Instead of dynamically instrumenting the application as it executes, IDB

draws on data from previous executions that reside in a database. It currently relies

on the user to manually introduce or remove probes.

2.6.2 Dynamic Instrumentation

High-level requests for dynamic instrumentation are converted to architec-

ture speci�c instructions by the Instrumentation Manager. Once Paradyn connects

to the executing application, parts of the binary image are then overwritten with

branch instructions called \trampolines". These trampolines perform a jump, intro-

duce the instruction that was overwritten, and execute instrumentation operations.

Execution is then diverted back to the point after the trampoline was introduced.
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These trampolines are added and removed during execution. Although IDB does

not provide support for dynamic instrumentation, it does provide an interface for

automatically introducing instrumentation between subsequent runs.

2.7 Performance Application Programmer Interface (PAPI)

Modern microprocessors provide facilities in hardware for measuring system

performance. These facilities include instrumentation registers, counters, and sig-

nals built directly into the hardware that are designed to collect information about

the state of the machine. Some examples include registers that are updated with

internal state information for such systems as: instruction/data cache, translation

look-aside bu�er (TLB), 
oating point unit, I/O bu�ers, etc. These facilities are po-

tentially very useful, but there is no easy way to reconcile this data across di�erent

architectures.

The PAPI project [52] addresses this problem; it provides a platform indepen-

dent interface to hardware instrumentation facilities across multiple platforms.

PAPI provides portability across platforms. It uses the same routines

with similar argument lists to control and access the counters for ev-

ery [supported] architecture. PAPI includes a prede�ned set of events

that we feel represents the lowest common denominator of every good

[hardware] counter implementation . . . These features provide the neces-

sary basis for any source level performance analysis software. . . . for any

architecture with even the most rudimentary access to hardware perfor-

mance counters, PAPI provides the foundation for truly portable, source

level, performance analysis tools based on real processor statistics. [52]

PAPI is comprised of low-level and high-level interfaces that are both platform

independent. These layers are built on top of a platform dependent substrate that,

in conjunction with a kernel patch, connects the portable interface to the hardware

instrumentation facilities provided by a speci�c platform (see Figure-2.8)

Substrates and kernel patches enable PAPI support for numerous operating

systems on multiple processors, ranging from Intel Pentium-II, Pentium-III, MIPS
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Figure 2.8: PAPI Architecture

R10K, R12K, and IBM POWER series processors. Tool developers and performance

analysts can probe numerous events, some of which include:

� L1 Data/Instruction cache misses

� L2 Data/Instruction cache misses

� TLB Data/Instruction misses

� Total instructions executed

� Integer/
oating point instructions executed

� Store/load instructions executed

� Total cycles

� MIPS/FLOPS

In addition to probing hardware counters, the PAPI provides sophisticated

tools for setting over
ow thresholds and multiplexing hardware counters. PAPI

represents a signi�cant contribution to performance analysis by making hardware

dependent instrumentation accessible through a consistent and robust interface that
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Call Description

PAPI library init Initialize PAPI
PAPI get opt Return system speci�c attributes. Including:

PAPI GET DEFGRN, PAPI GET HWCTRS,
PAPI add event Add event to event list
PAPI start Begin collecting data for an event list
PAPI stop Stop collecting data for an event list
PAPI shutdown Shut down PAPI

Table 2.1: Commonly used high level PAPI calls.

can be used by performance analysts and tool developers alike. The cost of invoca-

tion is high because PAPI calls must be manually introduced by the user. Table-2.1

shows some sample PAPI calls that would be added to a target application.

IDB goes to great lengths to ensure that there are no underlying hardware

dependencies. As a result, the type of performance information that can be collected

is limited to wall clock and CPU timing. Integration with PAPI will enable IDB

to exploit hardware instrumentation facilities that are available while preserving

platform independence. As a result, the high cost of invocation associated with

PAPI would be greatly reduced with the use of IDB's automated instrumentation

tool.

2.8 Discussion of Previous Work

The tools we evaluated in the previous sections are representative of the state

of the art in performance analysis for parallel applications. They address the criteria

we de�ned in di�erent ways:

� Source code mapping. Mapping performance data to speci�c program con-

structs is vital for optimization. Some performance tools simply probe the

state of the machine, while the executing program a�ects the machine's state.

In this way, there is no easy way to reconcile performance bottlenecks with

speci�c code constructs. (see Figure-1.1a). The degree to which data can be

mapped to code varies greatly; from a holistic view of machine state, to map-

ping performance data to call graph or run-time stack, to an instruction level
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view of system performance.

� Customizable visualization front-end. Demand on system resources varies

greatly from program to program. Moreover, resource availability is tightly

coupled with the underlying system architecture. Program demand on system

speci�c resources mandates that visualization tools support multiple views

that emphasize both program structure and machine state. Front-end visual-

ization tools should access performance data through a standard interface thus

removing dependencies on underlying system and maximizing re-usability.

� Comparative Analysis. When determining which architecture is most ap-

propriate for a given program, it is important to collect and analyze visual-

ization data in a platform independent and re-usable way. Analysts can then

gauge how well an application will migrate to a new system. Most tools do

not support this type of analysis, and the few that do only provide support for

selected architectures. The notion of comparative analysis can be extended to

the more general notion of experiment management. In comparative analysis,

system architecture is simply a parameter that we permute whereas experi-

ment management provides a framework for managing data where many such

parameters are permuted. These parameters include input vectors, number

of processors, and even program modules. Of the tools we considered, AIMS

and Godiva come closest to providing rudimentary support for comparative

analysis; neither provide support for experiment management.

� Probe E�ect and Dilation. Introducing instrumentation involves some

degree of intrusion on the performance being measured. Instrumentation and

accompanying intrusion compensation take time to compute and contribute

signi�cant overhead to executing programs. Ideally, instrumentation should

provide a minimum of invasiveness such that dilation in \real" running time is

minimal, as with PAT and PAPI. This way, programs can be evaluated with

large, realistic, input vectors.

� Easy to use and extensible. In order for a tool to be useful, it must be

used. It is vital that the cost of invoking the tool and adding instrumentation
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is minimal. It should also be possible to extend functionality to enable anal-

ysis of diverse programs and architectures. AIMS and Paradyn provide this

extensibility, but at the expense of being easy to use.

These items represent research problems that need to be addressed. The sys-

tem that we realized to address these issues, IDB, involved a multidisciplinary ap-

proach drawing upon areas such as user interfaces, data visualization, compilers,

automated testing, experiment management, and databases [34] [61].

2.9 Summary of Evaluation

Table-2.2 shows a summary of the tools we evaluated with respect to data

and visual scalability, support of multiple views, overhead, cost, and source code

mapping.

Tool Data Visually Multiple Portable Overhead Source code
Scalable Scalable Views and Cost Mapping

Upshot Moderate No No Yes Low Moderate
Apprentice Poor Yes Yes No High High
PAT Poor Yes No No Low Moderate
AIMS Poor Yes Yes Yes High High
Godiva Good Yes Yes Limited High Moderate
Paradyn Good Yes Yes Yes High Moderate
PAPI N/A N/A N/A Yes Low Low
IDB Good Yes Yes Yes Low High

Table 2.2: Survey of evaluated tools. Note that PAPI is not a stand alone
tool; rather it is an application programmer interface used by
tool developers.

We see that Apprentice, PAT, and AIMS su�er from poor data scalability

whereas Upshot su�ers from poor visual scalability. This leaves Godiva and Para-

dyn. While both are scalable, the cost of invocation is high because of manual

instrumentation and dynamic instrumentation support, respectively. PAPI pro-

vides a portable interface to hardware counters for increased accuracy. It is up to

tool developers to use PAPI to build data scalable tools with support for multiple

visually scalable views that can be easily reconciled with the program source code.
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Scalable Instrumentation

Scalable instrumentation and the use of a program database are two novel charac-

teristics of our approach. Program structure is mapped onto relational database

schema using a minimal amount of performance data that is collected in a scalable

way at run-time.

3.1 Scalable Instrumentation

Traditionally, the amount of performance data collected is a function of the

number of processors used; and trace �le size is a function of the execution time of

the application. This limitation restricts programs that can be analyzed to those

with small input vectors, or which runn for short durations of time. There is a need

for scalable data collection where size is a function of program structure. There is

also a need to map this data back to the source code of the executing program.

These issues are addressed by tightly coupling instrumentation with the program's

control 
ow graph (CFG). A CFG based view of the program ensures that data

scalability is achieved, provided that the data collected for each node in the CFG

is of �xed size. Moreover, CFG nodes are readily mapped to speci�c source code

constructs. This mapping is one of our main contributions.

3.1.1 Overview of Sample Codes

The use of scalable instrumentation that we illustrate in this chapter is mo-

tivated using two applications, Spark98 Sparse Matrix Vector Product Kernels and

Pyramid Adaptive Mesh Re�nement Library.

� Spark98 Sparse Matrix Vector Product Kernels The examples in this

chapter are derived from Spark98, a set of sparse matrix vector product

(SMVP) kernels that include shared memory and message passing parallel

codes. Spark98, extracted from Carnegie Mellon's Quake Project which mod-

els ground movement during earthquakes (see Figure-3.1), is designed to pro-

30



31

vide system designers and analysts with a small set of kernels that represent

realistic SMVP applications [56]. The control 
ow hierarchies shown in this

chapter are derived from this code.

Figure 3.1: Spark98 input mesh modeling ground movement during an
earthquake.

The �ne-grained instrumentation that was applied to this code demonstrated

the need for noise reduction algorithms. Analysis of standard POSIX compli-

ant timing routines showed that overhead was highly platform and operating

system dependent. For example, a call to gettimeofday() took four times

longer under IRIX than on Solaris based computers. Introduction of noise

reduction, which we describe later, compensated for this overhead. Actual

program execution, however, took 20% longer. This dilation was attributed to

system call overhead and a�ected sequential codes that do not use MPI based

timing routines.

� Pyramid Adaptive Mesh Re�nement Library Pyramid is a software li-

brary for performing parallel adaptive mesh re�nement on unstructured meshes

[44]. The library is designed to work on triangular and tetrahedral meshes

and supports development of unstructured parallel applications such as �nite
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element, �nite volume, and visualization. The library is implemented in FOR-

TRAN 90 and has an interface to MPI.

Figure 3.2: (a). Initial beam-waveguide mesh (b). The same mesh after
three re�nement phases. Shading indicates on which proces-
sors mesh elements reside.

The program used to test the Pyramid library performed three re�nements

of an input beam-waveguide mesh. Figure-3.3 shows the structure of the test

application. All tests were run on NASA Goddard's SGI/CrayT3E. Figure-3.2

shows the input test mesh and resulting mesh after three re�nements,

3.1.2 Control Flow Hierarchies

There are four events that impact performance signi�cantly: Procedures (PROC),

Loops (LOOP), Procedure Calls (CALL), and Communications / Synchronization

(COMM) [43]. Instead of considering the entire control 
ow graph (CFG), we look

at the subset of nodes consisting of only these performance critical events. The

resulting subgraph is the Control Flow Hierarchy, CFH for short. Each node in the

CFH maps these performance critical events to statistical data collected at run-time.

A probe is introduced in the source code corresponding to each of these critical event

nodes to collect aggregate timing and statistical data.

To ensure data scalability, individual data points are not collected. Instead,
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Figure 3.3: Flow of Pyramid test program for beam-waveguide mesh.

main_program

COMM recv COMM sendCALL proc1

CALL proc2 LOOP 

proc2

LOOP

proc1

Figure 3.4: Sample control 
ow hierarchy.

run-time statistics are continually re�ned when a probe is encountered. When the

statistics are updated, the data point is discarded, thus ensuring that each probe's

information is of �xed size. Moreover, the size of the CFH is strictly bound by

the program structure; hence, data scalability is ensured. Instrumentation data is

collected with calls to an instrumentation application programmer's interface (API),

as shown in Table-3.1. All probes are assigned a unique ID and TYPE corresponding

to one of the critical performance events. This information is used by a database,
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OPERATION PARAMETERS DESCRIPTION
INIT IDB-FILE, Initializes data structures, reads

CFG-FILE con�guration �le (CFG-FILE). Prepares
database (IDB-FILE) for writing.

CLOSE NONE Flushes data structures to database
and deallocates storage

START PROBE-ID, Allocates data structures for probe if
PROBE-TYPE needed, based on ID. Records event TYPE,

Starts probe timers, increments counter and
begins collecting noise reduction data.

STOP PROBE-ID Stops timer, updates noise reduction
data

Table 3.1: Instrumentation API

DATA DESCRIPTION
AVG Average time spent executing event
MIN Shortest time spent executing event
MAX Longest time spent executing event
TIME Time spent on current execution of event
SDEV Standard deviation of measured times

COUNT/ITER Number of times event was executed

Table 3.2: Statistics collected by each probe for a given PROC, CALL,
LOOP, or COMM event.

which stores probe data, to map CFH connectivity information to statistical data

for each probe. Specialized performance data can be derived, or inferred, from

a minimal set of statistical data collected at run time. Table-3.2 shows what is

collected by the probes introduced at each node of the CFH.

A database is used to capture these control 
ow hierarchies and their accom-

panying statistical data for each run of the program. Figures- 3.4, 3.5, 3.6, and 3.7

show sample control 
ow hierarchies from the Spark98 SMVP Kernels.

3.1.3 Noise Reduction Techniques

Performance tools strive to collect accurate data with as little intrusion to the

executing program as possible. Various noise reduction techniques are used to ensure

that the collected data is accurate. Instrumented programs su�er from a dilation
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CALL assemble_matrix():178

CALL assemble_matrix():177

CALL init():139

CALL assemble_vector():179

CALL assemble_vector():180

CALL smvpthreads():227

CALL main():133

/* main program */
void main (int argc, char **argv) {

    init(argc, argv, gip);

    assemble_matrix(K1, gip);
    assemble_matrix(K2, gip);

    assemble_vector(v1, gip);
    assemble_vector(v2, gip);

    smvpthreads(&cids[0];
}

Figure 3.5: A fragment of the Spark98 main program and its accompany-
ing control 
ow hierarchy.

void *smvpthread(void *a)
{
    
    for (i=0;i<gip->iters; i++) {
        /* w1 = K1*v1 */
        zero_vector(w1, 0, gip->nodes);
        local_smvp(gip->nodes, K1, gip->matrixcol,
            v1, w1, 0, gip->nodes, id, gip);

        /* w2 = K1*v2 */
        zero_vector(v2, 0, gip->nodes);
        local_smvp(gip->nodes, K2, gip->matrixcol,
            v2, w2, 0, gip->nodes, id, gip);
    }

    return NULL;
}

CALL local_smvp():331

CALL zero_vector():330CALL local_smvp():326

CALL zero_vector():325

LOOP for:319

PROC smvpthread():310

Figure 3.6: A fragment of the smvpthread module and its accompanying
control 
ow hierarchy.

e�ect, which causes the program to take longer to execute because of instrumen-

tation overhead. Dilation and noise are reduced by factoring out instrumentation

overhead, eÆciently implementing the instrumentation API, and selectively instru-

menting critical portions of the executing program [47].

Each probe in the CFH has noise associated with it. This noise is a function

of two factors: the nesting level of the probe from the root node in the CFH and the

number of times it is activated. Each time a probe is encountered, data is collected

and stored in the CFH. Thus, overhead is incurred on every PROC, CALL, LOOP,

and COMM event. We employ two techniques to minimize and factor out this noise:

� Factorization. Each probe measures how long it takes to complete its own

instrumentation activities and stores this information locally in the CFH as

its cumulative overhead contribution. Noise is factored out by summing these
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{

    for (i=0;i<gip->matrixlen; i++) {
        for (j=0;j<DOF;j++) {
            for (k=0;k<DOF;k++) {
                K[i][j][k] = 0.0;
            }
        }
    }
    for (elem = 0;elem<gip->elems;elem++) {
        for (j=0;j<gip->corners;j++) {
            for (k=0;i<gip->corners;k++) {
                

 
                }
                for (l=0;l<3;l++) {
                    for (m=0;m<3;m++) {
                        K[temp1][l][m++];
                    }
                }
            }
        }
    }
}

LOOP for:351

LOOP for:352

LOOP for:353

LOOP for:358

LOOP for:359

LOOP for:360

LOOP for:375

LOOP for:376

PROC assemble_matrix():347

LOOP while:367

void assemble_matrix(double (*K)[DOF][DOF], struct gi *gip) 

                while (gip->matrixcol[temp1] != gip->vertex[elem][k]) {

Figure 3.7: A fragment of the assemble matrix module and its accompa-
nying control 
ow hierarchy.

PROBE

PROBE

(a). (b).

PROBE

PROBE

Figure 3.8: (a). Whitebox loop instrumentation collects instrumentation
data for each iteration of the loop. (b). Blackbox loop instru-
mentation collects instrumentation data once, treating the
loop as a single event.
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values for all nested probes. For example, to factor out total noise for the

program, we sum these values for all nodes in the CFH, and then subtract the

resulting value from the total time stored at the root node. Figure-3.9 shows

accumulated noise for the Pyramid adaptive mesh re�nement library. This

noise becomes insigni�cant when compared with measured data as Figure-

3.10 shows.

Probe Noise for Mesh 9390 on 32 Processors

PE0 PE4 PE8 PE12 PE16 PE20 PE24 PE28Processing Elements Build

1st Migrate

Error Est

Logical AMR

Part/Migrate

Phys AMR

Probes

2e-05
2.5e-05

3e-05
3.5e-05

4e-05
4.5e-05

5e-05
5.5e-05

6e-05
6.5e-05

7e-05
7.5e-05

Time (s)

Figure 3.9: Measured overhead incurred by instrumenting the Pyramid

library. x-axis is processing element, y-axis is probe, and the
z-axis is the probe contribution to noise in seconds.

� Selective instrumentation. The best way to eliminate instrumentation

overhead is to avoid instrumenting at all. There are many regions of a pro-

gram that do not need to be instrumented because they are either provably

optimal or not on the critical execution path. In other words, they do not sig-

ni�cantly impact performance. Instrumentation can be selectively inserted in

areas of interest. Figure-3.8 illustrates \blackening" out loops. Instrumenting

trivial loops, like initialization loops, can contribute signi�cantly to overhead.

Blackening them out avoids unnecessary probing, thus reducing noise and di-



38

Probe Time and Noise for Mesh 9390 on 32 Processors

PE0 PE4 PE8 PE12 PE16 PE20 PE24 PE28 Build

1st Migrate

Err Est

Logical AMR

Part/Migrate

Phys AMR

0
2
4
6
8

10
12
14
16
18
20

Percent of Total Time

Figure 3.10: Measured overhead and execution time measured for Pyra-
mid application. x-axis is processing element, y-axis is
probe, and the z-axis is time measured in seconds.

lation.

Factoring out probe contribution to noise signi�cantly improves accuracy. Di-

lation e�ects are minimized by introducing less instrumentation.

3.1.3.1 Cache Pollution

Introduction of instrumentation can alter the program in many ways. In ad-

dition to noise resulting from execution of additional instructions, the data that is

acted on by these instructions has a signi�cant e�ect on memory and cache utiliza-

tion. Instrumentation data resides in cache at the expense of application data; the

time spent retrieving application data from memory that would have otherwise been

in cache is considered noise. This pollution of cache memory occurs at the start and

completion of performance critical events that are being monitored.

Some architectures provide mechanisms where data can be explicitly excluded

from the cache. Such mechanisms are not standard across multiple platforms, and
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DATA TYPE DESCRIPTION
id int User de�ned ID
xid int Logical ID
name string Probe name
type int Probe type
t1, t2 double Execution time stamps
w1, w2 double Noise time stamps
c1, c2 double CPU time stamps
cpu acc double Accumulated CPU time
count long Probe activations
avg double Average time
avg2 double Square of average time
time double Measured time
min, max, avg double Min, max, and average time
cpu min, cpu max double Min and Max CPU time

Table 3.3: Probe Data

DATA TYPE DESCRIPTION
id int User de�ned ID
name string CFH name
w1, w2 double Noise time stamps
num probes int Number of probes in CFH

Table 3.4: CFH Data

hence are not POSIX compliant. It is important to minimize cache pollution by

accessing instrumentation data in an intelligent manner. Cache pollution is intro-

duced on probe START and STOP operations, roughly 188 and 156 bytes after

basic compiler optimizations respectively. Typically, START operations are more

costly on a probe's �rst activation. Tables 3.3 and 3.4 show which data items are

frequently accessed. Noise resulting from cache pollution are less signi�cant with

scienti�c applications, as they exhibit a high degree of locality for long durations.

3.1.4 Support for Object-Oriented Codes

Object-oriented technology has signi�cantly changed the way programs are

developed. A corresponding change is needed in performance analysis of the result-

ing codes [54]. Sequential and parallel codes di�er in the number of simultaneous
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paths being traversed through the control 
ow graph. Purely CFG oriented views

are insuÆcient for some object-oriented codes.

Figure 3.11: Each application object has its own CFH instance. The CFH
is populated at run time by member functions.

Object-oriented programs can explore inter-object or intra-object parallelism.

The former is based on task parallelism in which multiple objects are executing

concurrently; the latter explores data parallelism by processing a single instance of

an object running on multiple processors. Traditional control 
ow based techniques

can be used to analyze performance of sequential and parallel member functions but

do not extend to inter-object parallelism. To make such extension, we introduce the

object space that includes all instantiated objects at a given time. Inter-object

parallelism yields many control 
ow graphs representing simultaneous execution of

member functions for objects in the object space. Some of these member functions

may be running on multiple processors (data parallelism).

Extensions for support of task parallelism go beyond traversing multiple paths

through one monolithic control 
ow graph; instead, we are confronted with multiple

graphs executing in heterogeneous environments. To adequately capture task par-

allel applications, each object in the object space maintains its own CFH instance.
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OPERATION SYNTAX DESCRIPTION
INIT CFH local cfh Instantiate a local CFH.

local cfh.init(descr) Initialize CFH and description
CLOSE local cfh.close() close active probes

local cfh.dump(id) generate SQL /populate database
with speci�c probes

local cfh.dumpall() or dump all probes.
START local cfh.start( Activate unique probe. If it exists in

id, descr, me, CFH start new counters else create new
nprocs) probe and start new counters.

STOP local cfh.stop( Stop all probe counters and update
id, descr, me, statistics
nprocs)

Table 3.5: Object-Oriented API Syntax

Member functions populate the local CFH at run time, as shown in Figure-3.11.

3.1.4.1 Object-Oriented API

Instrumentation of object-oriented C++ codes involves introducing calls to

the instrumentation database application programmer interface (IDB API). Perfor-

mance critical objects have a local instance of a control 
ow hierarchy (CFH); calls

to the CFH object either activate existing probes or create new probes. As the

program executes, the control 
ow hierarchy is populated with probes and their

respective statistics.

The API makes use of parameters such as processor ID and number of proces-

sors returned during MPI initialization so probes can be uniquely identi�ed. CFH

and probes contain description �elds that map probes to speci�c source code con-

structs.

3.2 Language Interoperability

Improvements in compiler technology and programming languages give devel-

opers of parallel scienti�c applications greater 
exibility in choosing programming

languages and environments. The Message Passing Interface (MPI) provides support

for C, C++, and FORTRAN codes. Initiatives are underway to make Java a viable
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alternative for high performance computing. Java is widely used for distributed

Internet applications outside of the scienti�c computing community.

Version 1:0 of the probe library (probelib), implemented in C, was designed to

be compact and require minimal memory resources. In version 2:0, the library was

re-architected to exploit many object-oriented features provided by C++. More-

over, the ability to support analysis of object-oriented codes did not require the

introduction of elaborate data structures to capture object hierarchies. Instead,

each CFH maintains a local class variable that maintains a unique identi�er that

is initialized on object instantiation. Thus leverages the existing object structure

to store multiple instances of control 
ow hierarchies. Exploiting features of C++

greatly simpli�ed the implementation of the 2:0 version of the probe API.1.

3.2.1 C / C++ Interface

An interface is required to access the object-oriented API from C programs.

The interface consists of a C++ function that creates a static instance of a CFH.

The state of this CFH is preserved through multiple activations of the interface

routine. In this way, an instance of the control 
ow hierarchy is global across all

functions of target C application.

Figure 3.12 shows a C++ function that is callable from C programs. In this

function, a CFH is statically instantiated. The interface executes appropriate 2:0

API calls using parameters and syntax conforming to the 1:0 API.

3.2.1.1 Support of Static Objects by ++-izing

The 2:0 version of the probe API utilizes class variables for assigning unique

identi�ers to multiply instantiated control 
ow hierarchies. The interface between

C functions and C++ methods, on some compilers, does not adequately support

static objects. Each language has subtle di�erences in the way static data is stored

by the compiler with respect to structures and objects. Since the interface method

must maintain a statically de�ned instance of a control 
ow hierarchy to preserve

state information, this limitation poses signi�cant problems.

1The IDB probe library which implements the IDB API can be downloaded from

http://www.cs.rpi.edu/research/IDB
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extern "C" void IDB_probe(int op, int type, int id,

int myid, int p, char* s)

{

static CFH local_cfh;

static int mode = SQL;

switch (op) {

case INIT:

local_cfh.init(s,myid,p);

break;

case START: local_cfh.start(type,id);

local_cfh.name(id, s);

break;

case STOP: local_cfh.stop(id);

break;

case DUMP: local_cfh.dump(-1);

break;

case DUMPALL: local_cfh.dumpall();

break;

}

}

Figure 3.12: interface.cc: C interface function to IDB

We resolve this issue by ++-izing the calling C program. This involves com-

piling all C code with a C compiler, but introducing a new main program that is

compiled and linked with a C++ compiler. This ensures that static objects are

handled correctly.

Figure-3.13 (a). shows the new main program that is run. The �le contains

a prototype for the main program to be analyzed that belongs to the target C

application and de�nes a new main routine, which is linked with the code shown in

Figure-3.13 (b), that calls and returns the main routine of the target C program.

The �le wrappedmain.c rede�nes the C program's main routine, which is called by

the new C++ main program.

The advantage of ++-izing an application in this way is that it requires no

modi�cation to the instrumented C application. The only modi�cations required of

the user to ++-ize an application are changes to the Make�le. The user is shielded

from the complexity of the �les in Figure-3.13. All that is required is to add main.cc
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#include <iostream.h>

extern "C" int oldmain (int argc, char **argv);

int main (int argc, char **argv)

{

return oldmain(argc, argv);

}

(a).main.cc

#define main oldmain

#include "application.c"

wrappedmain.c

Figure 3.13: ++-izing

and wrappedmain.c to the proper Make�le.

3.2.2 FORTRAN 90 Support

IDB support, using the 1:0 version of the API, for FORTRAN 90 codes was

developed to enable analysis of the Pyramid adaptive mesh re�nement library being

developed by the High Performance Computing Applications and Systems Group

at the California Institute of Technology's Jet Propulsion Laboratory. Although

version 2:0 of the API did not exist at the time of this analysis, the instrumented

Pyramid library can use the newer API with little modi�cation.

3.2.2.1 Pyramid Instrumentation and Analysis

The instrumentation API was extended such that probes can be introduced

and the database can be initialized and closed from FORTRAN, as well as from

C. In the 1.0 API, this was done by developing a FORTRAN 90 function whose

interface is identical to the C function in Figure-3.12. This FORTRAN interface

simply executes the main probe function (IDB probe) which, in the 1.0 interface, is

implemented in C. The 2.0 interface can be readily extended to support FORTRAN

90 in the same way.
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Figure 3.14: At run-time, data is collected on each processing element
and integrated during a post-processing phase.

Probes include timing information speci�c to each processing element. Infor-

mation collected on each node is stored separately and needs to be integrated into

one database. Alternate implementations that we considered involved having each

node communicate probe data to the �rst node for output, or each node write data

to a single database in a round-robin scheme. Both these alternatives involved in-

troducing synchronization delays to the executing program. Figure-3.14 shows the

scheme that was implemented. Each node collects performance data locally at run-

time. During the post-processing phase, these �les are coalesced into one database.

This is done implicitly in the 2.0 API, along with automatically generating SQL

code that directly populates the database.

Prior to integration with the PostgreSQL DBMS, post-processing was done

using PERL scripts that simulate database query operations and generate visual-

izations of collected data.

Figures- 3.15 and 3.16 show execution time for a 1978 element mesh running

with 16 and 32 processors respectively. When the mesh data is read in, it is dis-

tributed to all processors. These graphs illustrate how moving from 16 to 32 nodes

appears to induce a signi�cant load imbalance in the PhysicalAMR() module. This

imbalance is a result of the application's irregularity. Random distribution of the

initial mesh was such that little or no re�nement was required for mesh elements

residing on processor 21.
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Figure 3.15: Probe times for 1978 element mesh on 16 processors.
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Figure 3.16: Probe times for 1978 element mesh on 32 processors.
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PROCESSORS IDB PAT
8 80.0 s 80.3 s
16 20.8 s 20.6 s
32 8.4 s 8.4 s

Table 3.6: IDB versus PAT for 2430 mesh on SGI/CrayT3E.

PROCESSORS PRISTINE INSTRUMENTED IDB
8 80.2 s 80.4 s 80.0 s
16 21.8 s 21.4 s 20.8 s
32 9.1 s 9.1 s 8.4 s

Table 3.7: Pristine and instrumented execution times with probe times
on SGI/CrayT3E for mesh 2430. Run times measured using
the timex command.

3.2.2.2 Veri�cation and Dilation

To ensure accuracy of IDB probe data, instrumented and pristine versions of

the application were analyzed using PAT. Table 3.6 shows the measured execution

time of the instrumented application, along with the corresponding PAT instru-

mented version. In all cases, PAT and IDB di�er by less than one percent. The

decision to use PAT was based on the low overhead and accurate timing data relative

to other tools on the SGI/CrayT3E.

To measure how probes dilate run time of the application, pristine and instru-

mented versions of the code were timed. Table 3.7 shows the run time for pristine

and instrumented versions of the code. The last column shows the run time mea-

sured using IDB instrumentation. In most cases, instrumented code appeared to run

faster than the pristine version. This is caused by the cache and small problem size:

probe data remains in cache until it is accessed again; for larger problems this data

may be displaced from the cache prior to its next access. In all cases, the measured

time is less than the wall clock time. This is because the noise reduction factors out

instrumentation and system overhead, whereas the timex command [1] does not.
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3.2.3 Java Support

Performance analysis is vital in other domains outside of scienti�c and numer-

ical computing. Danny Daglas has developed an interface using the Java Native

Interface (JNI) [25] to instrument large distributed applications and database query

tools used by �nancial markets and investment banks. Figure-3.17 shows the JNI

wrappers of the version 2.0 IDB API calls.

3.3 Automated Instrumentation

Source code instrumentation typically has a high cost of invocation. Manually

introducing instrumentation in the form of API calls that start and stop probes at

performance critical locations is a tedious and time consuming process that is also

prone to errors. To keep invocation cost low, an automated instrumentation tool

is used to selectively instrument large codes and manage performance experiments.

[8] [70]

The automated instrumentation tool (as shown in Figures- 3.18, 3.19, 3.20, and

3.21) is the product of a Master's project by Hui Wang [70] and an undergraduate

independent study project by Jonathan Chen [8].

The user begins by selecting C or C++ �les from the source tree using the

�le selection window shown in Figure-3.18. Selected �les are then parsed using the

tool's internal C/C++ parser. The instrumentation window shown in Figure-3.19

presents the user with several views:

� Function Selection View. Lists all functions and methods de�ned in the

selected �les. The �rst function in the list is the main() program. The user

checks o� the functions to be instrumented. When a function is selected, its

source code is viewable and the other views are updated.

� Loop Selection View. Lists all loop structures within the currently selected

function. The user checks o� the loops to be instrumented. When a loop is

selected, its contents can be viewed. In addition to turning instrumentation

on and o�, a probe can be designated as internal or external. Internal instru-

mentation of a loop involves placing the API probe calls within the body of
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JNIEXPORT void JNICALL Java_idbbridge_IdbInit(JNIEnv *env, jclass obj,

jint cfh_ptr, jstring s, jint myid, jint p) {

CFH *x = (CFH *)cfh_array[cfh_ptr];

const char *ptr = (*env).GetStringUTFChars(s, 0);

x->init((char *)ptr, (int) myid, (int) p);

(*env).ReleaseStringUTFChars(s, ptr);

}

(a) INIT implementation

JNIEXPORT void JNICALL Java_idbbridge_IdbStart(JNIEnv *env, jclass obj,

jint cfh_ptr, jint type, jint id) {

CFH *x = (CFH *)cfh_array[cfh_ptr]; x->start((int) type, (int) id);

}

(b) START implementation

JNIEXPORT void JNICALL Java_idbbridge_IdbName(JNIEnv *env, jclass obj,

jint cfh_ptr, jint id, jstring s) {

CFH *x = (CFH *)cfh_array[cfh_ptr];

const char *ptr = (*env).GetStringUTFChars(s, 0);

x->name((int) id, (char *) ptr);

(*env).ReleaseStringUTFChars(s, ptr);

}

(c) NAME implementation

JNIEXPORT void JNICALL Java_idbbridge_IdbStop(JNIEnv *env, jclass obj,

jint cfh_ptr, jint id) {

CFH *x = (CFH *)cfh_array[cfh_ptr]; x->stop((int) id);

}

(d) STOP implementation

JNIEXPORT void JNICALL Java_idbbridge_IdbDump(JNIEnv *env, jclass obj,

jint cfh_ptr, jint proc) {

CFH *x = (CFH *)cfh_array[cfh_ptr]; x->dump((int) proc);

}

JNIEXPORT void JNICALL Java_idbbridge_IdbDumpall(JNIEnv *env, jclass obj,

jint cfh_ptr) {

CFH *x = (CFH *)cfh_array[cfh_ptr]; x->dumpall();

}

(e) DUMP and DUMPALL implementation

Figure 3.17: JNI Implementation of 2.0 API
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Figure 3.18: Automated instrumentation tool: File selection window.
Speci�c source �les can be selected for instrumentation from
the source tree.

the loop. In this way, collected statistics account for each iteration. Exter-

nal instrumentation treats a loop as an atomic event. This avoids incurring

overhead from probe activations on each iteration.

� Call Selection View. Lists all function calls within the currently selected

function and loop. Instrumentation is added to the function calls selected by

the user.

� Source Code View. Presents a context-sensitive view of application source

code. This view can be constrained to individual functions or �les. The tool

provides rudimentary search functionality.

API calls are automatically introduced around selected events; the syntax of
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Figure 3.19: Automated instrumentation tool: Method and function in-
strumentation selection window. The user selects which per-
formance critical event to instrument.

Figure 3.20: Automated instrumentation tool: API con�guration win-
dow, where calls can be modi�ed to accommodate minor
changes in invocation syntax.
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Figure 3.21: Automated instrumentation tool: Experiment de�nition
window, where EDF �les and instrumentation state infor-
mation is saved and retrieved.

these calls can be modi�ed from the con�guration dialog, shown in Figure-3.20.

3.3.1 Experiment De�nition Files

Conducting performance experiments is an iterative process. An iteration is

de�ned by three steps:

� Instrumentation. Adding, deleting, or moving probes within the program

such that events on the critical path are instrumented.

� Systematic execution. Permuting run-time parameters across multiple ex-

ecutions of the program.
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� Analysis. Processing instrumentation data to localize bottlenecks, form hy-

potheses, and initiate optimizations to the code or run-time environment.

Experiment De�nition Files (.edf) provide formal structure by centralizing

information for conducting performance experiments. The automated instrumen-

tation tool provides a mechanism where EDF �les can be loaded and saved (see

Figure-3.21). The information contained in an experiment de�nition �le includes:

� Experiment Name. A short name describing the current experiment.

� Analysis Mode. Currently, two modes are supported: COALESCE, which

merges performance data across multiple databases to gauge regularity and

COMPARE which enables selective querying of individual probes across mul-

tiple databases for comparative analysis.

� Application. The name of the executable program.

� Analyst. The name of the person conducting the experiment.

� Database list. A list of databases and accompanying descriptions.

� Database communications parameters. The HOSTNAME, PORT NUM-

BER, USERNAME, and PASSWORD which are required for connecting to

an instrumentation database on a remote server.

� Description. A free-form text description of the current experiment.

In addition to the user supplied information above, EDF �les contain state

information automatically generated by the tool describing where instrumentation

was introduced. Speci�cally, it contains a snapshot of which functions, loops, and

calls are selected for instrumentation. This allows the user to resume adding or

removing probes between experiments.

3.3.2 Parser Issues

Adding instrumentation to a syntactically correct program is not a straight-

forward process. One problem is how to ensure that a probe is stopped before the

function or program terminates. For example:
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instrumented_function(int param1, int param2) {

PROBE_START;

stmt;

stmt;

if (test) {

return;

} else if (test2) {

exit();

}

stmt;

PROBE_STOP;

}

In the above code segment, if test is true, the function returns control to the

caller without closing the current probe. Also, if test is false and test2 is true,

the program terminates without closing any open probes. This situation is handled

in two ways. First, the function is parsed and any probes opened in the function

are closed prior to any return. It is possible, however, for a program to terminate

before all probes can be closed. This issue is handled from within the version 2.0

API by closing all active probes before termination.

Another minor issue involves adding instrumentation where multiple state-

ments would semantically alter the program. For example:

if (test)

foo(a);

else

bar(b);

In this code segment, adding probes around the calls to foo would alter se-

mantics.

if (test)

PROBE_START;

foo(a);
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PROBE_STOP;

else

PROBE_START;

bar(b);

PROBE_STOP;

To avoid this problem, all probes of the type CALL are added such that the

start and stop are considered one logical statement:

if (test)

{ PROBE_START, foo(a), PROBE_STOP};

else

{ PROBE_START, bar(a), PROBE_STOP};

3.3.3 Preprocessor Issues

The internal parser encounters diÆculties when preprocessor directives are

encountered. Currently, all code contained in #ifdef and #if blocks are parsed,

therefore all segments blocked o� by the preprocessor must yield syntactically valid

code. The only exception to this is code contained in #if 0 blocks; which we ignore.

Instead of commenting out large segments of code, it is sometimes bracketed with

#if 0 and #endif; parsing such regions results in syntax errors for some of the

codes that we consider.

Other issues stem from the parser's inability to expand macro de�nitions.

Instrumentable code that is the result of expanding a macro de�nition is not visible

to the internal parser. If a segment of source code depends on macro expansion to

be syntactically correct, the parser returns errors. These are all limitations with the

parser that can be addressed in future releases.



CHAPTER 4

Program Database

The term \database" in this context refers to a Database Management System

(DBMS). Elmasri and Navathe de�ne a DBMS as \a collection of programs that

enables users to create and maintain a database . . . that facilitates the process of

de�ning, constructing, and manipulating databases for various applications." [17].

4.1 Derived Attributes and Comparative Analysis

Given the information in Table 4.1, simple queries can be issued to an instru-

mentation database to ascertain which function has the longest running time.

Q1 = SELECT procedure

FROM runs(Spark98, Nodes=1,

Arch='Solaris 25', mesh='sf5.1.pack')

WHERE run time = MAX(procedure.run time)

This query returns the database tuples containing probe data corresponding

to the control 
ow hierarchy (CFH) rooted at the local smvp node, the function

with the longest running time. This is the �rst step in a top-down analysis.

Q2 = SELECT Event

FROM Q1

WHERE run time = MAX(event.run time)

Function Running Time
local smvp() 50.37s

assemble matrix() 23.21s
zero vector() 00.69s

Table 4.1: Running times of selected Spark98 functions measured using
gprof.

56
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The next step is to �nd the bottleneck within this function. Q2 returns the

node in local smvp's CFH with the largest running time.

This trivial example does not show the full analytic capabilities of our ap-

proach. However it does show how a relational view is formed using the run()

portion of the FROM part in Q1. It also shows how metrics that we do not explic-

itly collect can be derived, or inferred, from instrumented data. In this example,

the search for the function with the longest run time is restricted to sequential

runs of the Spark98 kernel [56] for a speci�c architecture and mesh. These queries

demonstrate how SQL syntax [48] can be extended to provide an easier interface to

database contents. Analysis queries are dependent on the schema that de�nes how

data is stored in the database.

4.2 Schema Design

The data stored in the instrumentation database fall into one of three cate-

gories:

1. Static Data associates program execution with static information such as:

architecture, input vector, compiler, etc. This information provides the basis

for experiment management and is speci�ed in the experiment de�nition �les.

2. Probe Data contains identity and statistical information about each probe,

such as NAME, PROBE ID, MIN, MAX, AVG, SDEV, TIME, COUNT, CPU,

NOISE, etc. Each probe's data is of �xed size.

3. CFH Data de�nes how probes for a given run are related to each other. This

hierarchy resembles the control 
ow graph of the program, but di�ers in that

the only nodes represented correspond to CALL, PROC, LOOP, and COMM

events. The size of this data is bound by the structure of the program.

A relational database is ideal for storing tabular information [17], such as the

Static Data or the Probe Table as shown in Figure-4.1. However, relational databases

are not convenient for storing graph based information, such as the CFH, in such

a way that it can be eÆciently queried. Object-oriented databases are particularly
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CFH

CFH_ID
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Figure 4.1: Static Data is associated with numerous Control Flow Hi-
erarchies that represent multiple executions of the program.
A CFH is associated with the Probe Table. The CFH pro-
vides parent and child information for each probe. The box
around the �rst two entries in the Probe Table signify that
the CFH ID and the PROBE ID together act as the primary
key for indexing probes. This means that no entries in the
database will have the same values for both attributes.

well suited to storing and querying graph data, but are not as eÆcient for querying

statistical data [66]. PostgreSQL [2], a freely available and stable object-relation

database, is used to capture control 
ow hierarchies, traditional statistical data,

and static information. As a result, queries can be cast in terms of how probes are

interconnected and across multiple control 
ow hierarchies. Leveraging database

technology in this way provides a powerful framework for managing performance

experiments independent of the underlying architecture and run-time environment.

4.3 Schema Extensions for Object-Oriented Support

The formal database schema was modi�ed slightly to support data collec-

tion from object-oriented codes. Extensions to the probe API allowed for multiple

instances of control 
ow hierarchies within one program execution. The version

2.0 API assigns a unique identi�er to each CFH instance on a given processor.

The database uses this identi�er in conjunction with the processor ID to create a
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composite key that uniquely identi�es every CFH instance within the scope of the

program. A CFH relation was added to the schema that contains a composite key

along with a description attribute. The description attribute for both the CFH and

probe tables map performance data to speci�c instances of an object and to actual

program text, respectively.

4.4 Database Interface

PostgreSQL provides multiple interfaces to the instrumentation database; the

simplest of these interfaces is the SQL shell (pgsql) which allows the user to submit

queries interactively, view tables, and de�ne functions. Appendix A shows some of

these queries and functions that enable the user to \converse" with the database to

extract obscure performance related information. Interfaces exist that allow queries

to be submitted from numerous programming and scripting languages. Queries can

be submitted to a local database server or over a network to a remote server.

4.5 Visualization

Once populated, the program database can be used to generate a wide variety

of performance visualizations. Languages such as C, C++, Java, PERL, TCL, and

others support graphical toolkits that include Motif, Tk, Qt, AWT/SWING, etc.

SQL queries can be embedded within the code and executed using language speci�c

database extensions (DBE). All front-end IDB visualization tools are functionally

similar. The user graphically constructs a query which is then sent to the database

server, where the results are graphically displayed.

The visualization tools presented in this section were the result of an inde-

pendent study project completed by Simon Karpen [38]. Both tools were imple-

mented using the PERL programming language, the Tk GUI toolkit and the DBE

(Database extension) PERL modules with the PostgreSQL database interface (DBI).

Languages and toolkits that were considered include:

� Java with SWING toolkit. This was considered for a number of reasons,

including: (i): Code portability between Windows, UNIX, and Macintosh sys-
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tems, (ii): Common look and feel across platforms, and (iii): Database in-

terface using JDBC. In addition, Java bytecode does not require code to be

recompiled when run on di�erent platforms. The disadvantages include com-

patibility with some platforms and mostly poor performance.

� C++ with Qt toolkit. Advantages include good performance and a high

quality graphical user interface (GUI). C++ and Qt were not used because the

interface to the PostgreSQL database adds unneeded complexity. Moreover,

the tool would have to be recompiled on multiple platforms. Another disad-

vantage is limited portability with the Windows platform due to Qt licensing

constraints.

� PERL with Tk toolkit. This was chosen for several reasons, prominently

because PERL is widely available, is easily installed on many platforms, and

that it can be run on multiple platforms without recompiling. The PERL DBI

provides a simple abstracted interface to the PostgreSQL database. However,

there are some disadvantages to using PERL and Tk in that PERL/Tk is not

as fast as C++/Qt, and the look and feel of the Tk interface is not as clean as

the Qt interface. Furthermore, PERL code is considerably less readable than

Java or C++.

The tools presented here illustrate how powerful visualization tools can be

constructed using standard database interfaces.

4.5.1 Orbital Thermal Imaging Spectrometer

The following examples are derived from instrumentation collected from mul-

tiple executions of the Orbital Thermal Imaging Spectrometer (OTIS). OTIS is one

of several applications used as part of the NASA Remote Exploration and Exper-

imentation project [26]. OTIS is a parallel MPI code that computes atmospheric

corrections and radiance calculations for orbital thermal emissivity data. Instru-

mentation was introduced using the automated instrumentation tool for function

calls and loops in the main program.
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4.5.2 Vistool

Vistool, short for Visualization Tool, connects to a populated instrumentation

database (see Figure-4.2) and allows the user to construct a query by selecting

attributes from a series of drop-down menu boxes (see Figure-4.3). These include:

� Y-axis that speci�es which attribute should be plotted. Vistool currently

supports Total time, CPU time, Range (max - min), and Standard Deviation.

� Graph Type that de�nes how data points should be represented on the graph.

Scatter plots, histograms, and line graphs are currently supported.

� CPU that selects probe data for a speci�c processor.

� Y Function that de�nes if data are graphed on a linear or logarithmic scale.

The user can display multiple probe graphs at once. For example, in Figure-

4.3, two graphs are superimposed; the bar graph shows the CPU time for probes

executing on processor 4 and the line graph shows the total time for probes executing

on the same CPU.

Figure 4.2: Vistool Connection Window. The user speci�es the database
name along with the host, port, and authentication informa-
tion for the database server.
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Figure 4.3: Vistool Main Window. The user selects graphing options
from the toolbars at the bottom of the window. The legend
on the right corresponds to active probes. Graph data is
presented on the center canvas area.

Figure 4.4: Vistool CFH View. Displays probe CFH connectivity.
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Vistool supports multiple views. The �rst is the traditional graphing canvas,

where scatter plots, histograms, and line charts can be displayed individually or

in combination. The second is a tree view representing the selected probes in the

control 
ow hierarchy, as shown in Figure-4.4. Lastly, Vistool provides a tabular

view where the entire contents of a probe can be displayed. When the user clicks

on a probe in the legend, the following query is sent to the database:

Q = SELECT *

FROM probes, lookup

WHERE probes.lid=lookup.lid AND name='PROBE NAME'

where PROBE NAME is the name of probe clicked on by the user.

4.5.3 EDFtool

The EDFtool, short for Experiment De�nition File tool, parses experiment

de�nition �les and graphically displays query results from multiple program execu-

tions. The EDFtool supports two di�erent experimental modes: COALESCE and

COMPARE.

4.5.3.1 Coalesce Mode

The COALESCE experiment mode merges probe data from multiple execu-

tions of the same program. This is useful when trying to gauge regularity for an

application in part or whole. Moreover, merging probes across multiple identical

control 
ow hierarchies reduces noise by collecting multiple data points. This is

especially useful when running benchmarks on multi-user systems or in dusty deck

[34] environments.

EDFtool generates a concise visual representation of these datasets using box

plots, or quartile charts, as shown in Figure-4.5 [51]. A box plot simultaneously

describes multiple facets of a dataset including center, spread, departure from sym-

metry, and aberrant data points (outliers).

Figure-4.6 shows six executions of OTIS on 4 processors which were run at

di�erent times on a multi-user Beowulf [40] cluster. EDFtool read the experiment

de�nition �le in Figure-B.1. The user can con�ne visualization of the dataset to a
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Figure 4.5: A box plot shows three quartiles in a rectangular box. The
line inside the rectangle is drawn at the second quartile (50th
percentile). The lines extending from the box, whiskers, show
the smallest and largest data points within 1.5 quartile ranges.
The points beyond the whiskers denote outlier data points.

Figure 4.6: EDFtool coalesce mode. Quartile graph showing six 4 pro-
cessor runs of an orbital thermal emissivity code (OTIS).

speci�c processor or to all processors. Clicking on a probe in the legend opens a

tabular view corresponding to that probe.

4.5.3.2 Compare Mode

The COMPARE experiment mode supports analysis across multiple control


ow hierarchies where compile time and run time parameters di�er. In this mode,

the user selects the probe to be graphed from a drop-down list. The value for the

selected probe is plotted for each experiment listed in the EDF.

OTIS can be modi�ed using a con�guration �le that is read in at run time.
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Figure 4.7: EDFtool compare mode. Each line depicts the CPU time for
each of the 4 processors.

Figure-4.7 shows the results from the experiment de�nition �le speci�ed in Figure-

B.2. Two con�guration parameters were permuted:

� Master/Slave versus Equal Distribution

� Lookup tables on and o�

The graph shows CPU time for each of the four OTIS runs. The CPU time

for processor 0 is signi�cantly lower for both master/slave runs. Processor 0, or the

master process, is responsible for collating results, hence does less work. In both

cases, the introduction of lookup tables improves performance.

This example illustrates how COMPARE mode can be used to measure how

changes e�ect overall performance. The tool allows the user to select speci�c probes,

processor, or graph type. Graph types include scatter plots, line charts, and his-

tograms. As with Vistool, multiple graphs can be superimposed.
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4.6 Emergent Methodology

The introduction of IDB and accompanying tools presents the user with a

framework and an evolving methodology for conducting performance experiments.

This methodology involves introducing probes at a high level and iteratively adding

and removing probes such that performance events along the critical path are in-

strumented. The resulting code is de�ned as the reference instrumentation which is

then used to populate the instrumentation database for the purposes of:

� General assessment.

� Determining quality of load balancing / parallelism.

� Assessing performance e�ects of migration to other architectures.

� Comparing optimizations applied to multiple versions of the code.

� Gauging performance regularity across multiple runs.

The methodology de�nes an experimental approach to localizing bottlenecks

and introducing optimizations by providing support for the W 3 search model and

providing multiple experiment modes, respectively. We demonstrate this in the

following chapters where introduction of IDB to a diverse set of parallel scienti�c

codes yields commonalities in how bottlenecks are identi�ed and e�ectiveness of

optimizations are measured.



CHAPTER 5

Particle in Cell Simulation Code

In this example, we demonstrate how IDB instrumentation can be applied to a

parallel object oriented application. Probes are introduced using the version 2.0 API;

we show how the underlying object structure is a�ected and how basic performance

experimentation is possible using this approach. Our goals are to show that the IDB

approach is scalable and to demonstrate how it is used to analyze object oriented

codes.

5.1 Background

Particle in cell, or PIC, codes [4] [71] are used to simulate spatial non-linear

kinetic systems. The PIC code discussed here simulates plasma 
ow by modeling

the plasma as millions of particles in a self-consistent electro-magnetic �eld. Each

time-step of the computation consists of two phases:

� Particle push. Particle positions are updated and their charge / current

density are computed. This is done with the following steps:

{ Gather: Interpolate �elds from grid points to particles.

{ Local Step: Compute the new position of each particle; this entails local

computation involving no interprocessor communications.

{ Scatter: Deposit charge/current from particles to grid points.

� Field solve. Electromagnetic �eld is recomputed based on new charge/current

in grid points.

The size of the simulations, number of particles, domain size, etc. are con-

strained by available memory and processors. The domain is decomposed spatially

in one, two, or three dimensions.

67
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5.2 Instrumentation

This 3D PIC code [54] is implemented in C++ and runs on 2k processors on an

IBM SP2. Simulations were run using 4K, 32K, and 8M particles on 4, 8, 16, and 32

nodes. Minimal instrumentation was initially added to characterize scalability of the

application with respect to problem size and number of processors. Later, probes

were added incrementally along the critical path to localize potential bottlenecks.

To this end, all performance critical events (CALL, PROC, LOOP, and COMM)

were instrumented in the main() function and main event loop. Figure-5.1a shows

the resulting control 
ow hierarchy (CFH) for this reference instrumentation. The

root of the tree, node 0, corresponds to the main program; node 900 represents the

main event loop of the program (as shown in Figure-5.1b).

(a). CFH for 3D PIC code. (b). Probe legend.

Figure 5.1: Instrumentation applied to main program and main event
loop.

Instrumentation was realized using the automated instrumentation tool which

instantiates a CFH object globally. All probe START and STOP operations call

public methods on the CFH object to add or update statistical data to the CFH.

Figure-5.6 shows how the CFH object and associated instrumentation �t into the

overall UML diagram for the program. IDB instrumentation introduced the follow-

ing objects:
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� Control Flow Hierarchy (CFH)

� IDB Probe

� IDB Stack

� IDB List

API calls introduced in the code invoke methods on the CFH object. The CFH

object in turn instantiates probes as needed and invokes start and stop methods on

them. The IDB Stack is used by the CFH object to maintain active, or open,

probes. When a probe operation is started, its ID is pushed onto the stack; on a

probe stop, its ID is popped from the stack. The IDB list is used by the probe

objects to store connection information used by the instrumentation database to

construct parent/child relationships between probes. The CFH object is not directly

connected to any application objects in the UML diagram because it is instantiated

and accessed globally. This PIC simulation code exhibits data parallelism thereby

requiring only one instance of a CFH.

5.3 Analysis

The program was run repeatedly for di�erent problem sizes and number of

processors to show scalability. Table-5.1 shows that the code is scalable with 99%

eÆciency. In addition to showing scalability of the code, we observed that the size

of the instrumentation database was the same (56 Kb) for each run. In addition

to showing scalability, IDB probes are used to identify where optimization e�orts

should be focused. The following SQL query yields the contents of Table-5.2, which

is represented graphically by Figure-5.2.

Q = SELECT DISTINCT probes.lid, name, count, cpu acc,

(avg*count) AS total time

FROM probes, lookup

WHERE probes.lid = lookup.lid AND proc = 0;
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Particles Processors Time

4k 4 10.90
4k 8 6.91
4k 16 N/A
32k 4 180.22
32k 8 88.17
32k 16 48.07
8M 8 2902.14
8M 16 1288.23
8M 32 661.65

Table 5.1: Execution times, averaged across three runs, of 3D PIC code
on an IBM SP2. 4K elements distributed on 16 processors
is not shown because the problem size is too small to run on
more than 8 nodes.

ID Name Count CPU Time Total Time

0 MAIN PROGRAM 1 694.13 694.233024
100 DistFunction backdf 1 0 2.5e-05
200 DistFunction beamdf 1 0 2.1e-05
300 Open Energy3D.diag 1 0 0.030342
400 �elds.SolvePrepare 1 0 0.000647
500 cdensity.set( 
oat( 0.0 ) ) 1 0.01 0.000324
600 electrons.UniformDistribution 2 0.92 0.921092
700 plasma.ChargeDeposition 426 30.13 30.093492
800 Add Background Ion Density 426 0.06 0.048138
900 for ( int i = 0; i < N STEPS; i++ ) 425 693.07 693.167775
1000 �elds.Solve( cdensity, e�eld, vpm ) 425 15.79 15.82785
1100 plasma.pe( e�eld, energy ) 425 0 0.011475
1200 cdensity.set( 
oat( 0.0 ) ) 425 0.1 0.07395
1300 electrons.ke( 0.0 ) 425 0 0.008925
1400 plasma.Advance(electrons,e�eld,DT) 425 642.17 642.06025
1500 plasma.ke( electrons, energy ) 425 0.01 0.0102
1600 plasma.UpdateDistrib(electrons,vpm) 425 4.59 4.73535
1700 energy.tote() 425 0 0.00935
2000 for (register int i=0;i<spec.npp;i++) 15664998 244.8 360.294954

Table 5.2: Probe table for CPU 0 of 3D PIC code.
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Figure 5.2: Total time and CPU time for 3D PIC code.

They show total time and CPU time measured on an 8 processor run. Probe

900, the main loop, consumes 99.4% of the program's execution time. Further, the

plasma advance() function consumes 92.6% of the loop's execution time.

Within plasma advance(), probe 2000 is introduced to instrument its main

loop, shown in Figure-5.3; we see that it consumes over one third of the program's

total execution time. Closer inspection of the data in Table-5.2 shows that the loop

iterates approximately 107 times, with a signi�cant di�erence between the total time

and the CPU time. This is where optimization e�orts are to be focused.
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Figure 5.3: Control Flow Hierarchy for 3D PIC code with additional
probe added.

dxp = 0.5 * (pow( (0.5+dx), 2));

(a). Original code.

dxp = 0.5 * (0.5 + dx) * (0.5 + dx);

(b). Modi�ed code.

Figure 5.4: Optimization introduced to plasma advance() function.



73

Figure 5.5: Comparison of 3D PIC execution with pow() function calls
removed. The line shows total execution time of the program,
the dark band shows total execution time of plasma advance()

function, and the lighter bar shows the execution time of its
inner loop.
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Examination of the source code shows that within the body of this loop, the

pow() function is used to square simple mathematical expressions, as shown in

Figure-5.4a. This operation was originally introduced because it simpli�es using

more advanced interpolation schemes and was signi�cantly less costly in the earlier

FORTRAN implementation of this code. This occurs 10 times within the loop.

The small modi�cation in Figure-5.4b eliminates approximately 108 calls to pow(),

squaring the expression in-line.

This modi�cation resulted in an 18.1% speedup in the plasma advance() func-

tion, or a 6.1% speedup in total execution time. Figure-5.5 shows this graphically,

using the experiment de�nition �le in Figure-B.3. Amdahl's law states that the

fastest speedup that can be obtained by optimizing plasma advance() is 33%. It

follows that overall speedup is 1

3
of the function speedup.

We have demonstrated that the introduction of a globally accessible CFH

object in the object model of this PIC simulation is an e�ective means to collect

scalable instrumentation from multiple objects and routines. We have also shown

IDB to be scalable with respect to the size of the problem.
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Figure 5.6: UML Diagram of the instrumented PIC code. The IDB ob-
jects are contained in the box in the upper left corner.



CHAPTER 6

Quantum Device Simulation Tool

This example further demonstrates the use of the instrumentation database ap-

proach. Speci�cally, we explore aspects of the emergent methodology associated

with the IDB instrumentation and visualization tools. We also demonstrate how

the framework for experiment management, provided by IDB, is used to improve

code performance. Our goal is to apply this methodology to compare multiple op-

timized versions of the same application.

6.1 Background

Nanoelectronic Modeler, or NEMO, is a comprehensive quantum device simu-

lator being developed at the High Performance Computing Systems and Applications

group at NASA's Jet Propulsion Laboratory under the direction of Dr. Gerhard

Klimmeck [6] [41]. NEMO simulates numerous quantum devices including: RTD,

HBT, HEMT, MOS, Esaki diodes, and Super-lattices. The simulator provides an

extensive graphical front-end through which the user controls many aspects of the

simulation, and can view results graphically. Some features include:

� Graphical control of all device, material, and simulation parameters.

� Default physical values for materials provided.

� 2D, 3D, and contour plots of calculation results.

� \On the 
y" band pro�le calculations.

� Plot Slicer to display slices of 3D data sets.

� Library of sample device simulations.

� Graphical band structure tool to visualize energy band and electron density

vs. Fermi energy.

76
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� Graphical material properties tool.

NEMO's extensive graphical interface provides the modeler with visual input

and presents the user with multiple views of simulation results.

6.2 Instrumentation

IDB probes were introduced to NEMO's computationally intensive modeler

and run repeatedly on a 12-node Beowulf cluster [40].

(a). Intermediate Control Flow Hierarchy (b). Reference Control Flow Hierarchy

Figure 6.1: CFH showing instrumentation added to NEMO in an iterative
fashion. Probes are added such that the CFH is grown until
likely bottlenecks can be exposed.

Instrumentation was introduced iteratively; Figures- 6.1a and 6.1b show two

iterations of probe addition. The following query yields the data in Table-6.1 which

maps these probes to speci�c regions of the source code.

Q = SELECT DISTINCT probes.lid, name

FROM probes, lookup;

The need to instrument further becomes obvious when we consider the graph

in Figure-6.2, which shows that the probes along the critical path consume the

majority of execution time. In fact, the function lanc driver c par() consumes 90%

of the total run time for the modeler. Additional instrumentation is introduced

in this function, represented by the CFH in Figure-6.1b, and yields the graph in
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Figure 6.2: Intermediate pro�le of execution times.

Figure-6.3. This new instrumented version of NEMO is the reference version used

during optimization.

6.3 Analysis

To demonstrate the experiment management capabilities of IDB, the function

h3d offdiag() is the focus of optimization e�orts. Initially, we observe that it

consumes approximately 1

3
of the main loop time.

Closer inspection of the h3d offdiag() function shows that it is invoked

8,325,611 times. Moreover, a 20% di�erence between CPU and total execution

time for this function make it a likely candidate for further optimization. Three

modi�cations were made to the instrumented function:

� Static version. All local data was re-declared as static.

� Enumerated type macro version. All enumerated types were re-de�ned

as macros.
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Figure 6.3: Execution times of reference version.

� In-line version. The function h3d offdiag() was re-de�ned as an in-line

function.

Figure-6.4 shows the visualization speci�ed in the experiment de�nition �le

(EDF) in Figure-B.5. The optimizations resulted in a 25% speedup in h3d offdiag()

and an 8.1% total speedup.

This example illustrates how IDB can be used iteratively to (i): converge on a

reference version of instrumented code, and (ii): design and compare performance

experiments and results derived from multiple versions of the code. Figures- 6.5 and

6.6 show examples of typical IDB sessions.
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Probe Description ID
hline Program 0
argv process(args, argc, argv)[run3d.c:38] 4
d=make qd struct()[run3d.c:45] 6
Set QD Global(d)[run3d.c:47] 7
input�le=copy str(CmdOptions.input)[run3d.c:50] 8
i read(input�le, d, &Abort result)[run3d.c:55] 9
i save shell(d, d-input�le, 1, &Abort result)[run3d.c:57] 10
mat param init(d)[run3d.c:62] 11
ham init spds(Shape, d)[run3d.c:155] 27
ham init �nal spds(d)[run3d.c:176] 31
lanc driver c par(d)[run3d.c:213] 37
lanc driver c par( qd struct d ) [eig3d par.c:730) 900
do-while loop in non master ID waiting for no convergence 902
Sort converged eigenvals and dump to �le 903
sym lanc it c par() 904
for (i=0;i<it;i++) 905
for (j=0;i<n old;j++) 906
Beta 975
int sym lanc it c par() 979
for ( i=0; i < dnproc; i++ ) 980
for (target i=0; target i<d-nproc; target i++) 985
for (target i=0; target i<d-nproc; target i++) 988
PI Allreduce(&sum local,&sum, 1, MPI DOUBLE, 990
MPI SUM, MPI COMM WORLD);
colpar 1001
send-rcv 1003
local mem 1005
local mem2 1007
h3d diag(d-h, d-basisa, d-spin, d-param, d-nb)[eigsys3d.c:959] 1111
int h mult spds col par(cvectr y, cvectr yc, ivectr ycmap, qd struct d, real s, 1898
h3d o�diag(d-h, nnv, d-basisc, d-basisa, d-spin, d-parmat[d-atom[l][m]][d 2222
cmatmul spds() 3333

Table 6.1: Probes that comprise the reference instrumentation of NEMO.
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Figure 6.4: The lighter bar indicates the CPU time of the h3d offdiag()

function. The line above represents Total time. The darker
bar and its associated line represent the h3d diag() function.
This is to determine if modi�cations to h3d offdiag() change
execution time of h3d diag().



82

Figure 6.5: Typical user session. Vistool displays performance data for a
single NEMO run on 12 processors. Interactive query results
are displayed in background window. The highlighted row in
the relation indicates the probe where optimzation e�orts are
focused.
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Figure 6.6: Typical user session. EDFtool displays performance data for
4 experiments involving NEMO on 12 processors. Interactive
query results are displayed in background windows.



CHAPTER 7

Parallel Adaptive Finite Element Analysis Codes

In this example we further demonstrate the evolving methodology associated with

use of the instrumentation database. The codes we consider in this chapter are

the largest and most complex applications we have analyzed. The instrumentation

introduced and visualizations generated are not used for optimization, instead we

examine facets of comparative analysis by permuting run-time and compile-time

parameters and observing their e�ect on performance. We show how IDB is used

to identify unexpected performance characteristics.

7.1 Problem Description

The �nite element method (FEM) [37] is used for solving partial di�erential

equations (PDEs). For numerical reasons, adaptivity is introduced which focuses

computation to \interesting" regions of the problem domain. This results in im-

proved time and spatial eÆciency; it entails re�ning portions of the discretized

domain, or mesh, during computation [10]. The types of re�nement include space-

time (h-re�nement), method order (p-re�nement), and mesh movement to follow

evolving phenomena (r-re�nement) for time dependent, or transient problems. All

of these serve to concentrate or dilute computation within the discretized domain

of transient and steady-state solutions.

Parallelism must be introduced to handle computational and memory require-

ments of large three-dimensional problems. This adds signi�cant complexity in that

the user must maintain load balance between processors, handle interprocessor com-

munications, and maintain large data structures across multiple nodes. These issues

are exacerbated because distribution, or partitioning, of the discretized domain must

be updated as adaptive re�nements are applied.

84
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7.1.1 SCOREC Tools

The Scienti�c Computation Research Center (SCOREC) at Rensselaer Poly-

technic Institute has developed tools in support of building parallel adaptive �nite

element codes to solve elliptic, parabolic, and hyperbolic PDE problems [27]:

� Mesh Database

The SCOREC Mesh Database (MDB) [57] [22] stores and manipulates object-

oriented and hierarchical �nite element mesh entity data. A mesh entity

consists of three-dimensional regions, faces, edges, and vertices. The MDB

provides support for creating, modifying, removing, and querying these mesh

entities. The Parallel Mesh Database (PMDB) is built on top of the MDB

and provides support for distributed mesh data.

� Mesh Migration

Minimizing interprocessor communication and distributing work equally re-

quires a mechanism for migrating mesh elements to other processors. Mesh

regions are assigned to a unique processor while interprocessor boundary ele-

ments are duplicated on nodes that contain shared regions. Figure-7.1 shows

an example of two-dimensional mesh element migration.

� Mesh Enrichment

The mesh enrichment library [62] performs re�nement or coarsening operations

based on error indicator information and set threshold values. If error falls

below a minimum threshold, coarsening (which involves coalescing neighboring

mesh entities to form a larger entity) is applied. If error estimations are

too high, re�nement (which involves subdividing an entity to create multiple

new entities) is applied. This enrichment process ensures a consistent level of

solution quality throughout the discretized domain; it occurs at the cost of

introducing load imbalance among processors.

� Load Balance

The purpose of load balancing, or partitioning, is to distribute work equally

among processors. While it ensures that no processors are idle, it does not
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Figure 7.1: Illustration of migration process. This example shows two-
dimensional mesh elements being migrated between four pro-
cessors (adapted from [68] and [22]).

ensure that the overall computation is done eÆciently. Partition quality is

also a function of the number of element faces on interprocessor boundaries;

which in
uences interprocess communication. Two metrics measure partition

quality:

{ Maximum Local Surface Index (MLSI). Measure of the maximum

(among processors) percentage of element faces on the boundary of a

processor.

{ Global Surface Index (GSI). Measure of the percentage of all faces

on processor boundaries.

In addition to communication load, partition quality is measured in terms of

compactness which signi�cantly e�ects eÆciency of the solver. We consider

three dynamic load balancing algorithms: Iterative Tree Balancing (ITB),

Parallel Sort Inertial Recursive Bisection (PSIRB), and Octree Partitioning

(OCTPART) [22], [21].



87

Iterative Tree Balancing relies on lightly loaded processors requesting load

from their most heavily loaded neighbors. These requests result in a forest

of trees, as Figure-7.2 shows. Load is balanced by iteratively migrating lay-

ers of boundary elements. Since ITB is \di�usive", it works well for small

imbalances but su�ers when mesh elements are poorly distributed [57], [63].

ITB can run for multiple iterations to achieve global load distribution within a

speci�ed tolerance or �xed number of iterations. Since ITB migrates boundary

elements, it does not signi�cantly a�ect partition compactness.
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Figure 7.2: (a). Original unbalanced load. (b). Load requests. (c). For-
est of trees generated by load requests.

Parallel Sort Inertial Recursive Bisection is a parallel implementation

of Inertial Recursive Bisection (IRB) [45], a static partitioning procedure used

for initial distribution of the mesh. Elements are sorted based on their location

within the domain, which is bisected in a direction orthogonal to the principal

axis of inertia. Parallel sorting of the coordinates within the inertial frame

enables IRB to be parallelized for dynamic repartitioning [21]. Figure-7.3

shows an example of PSIRB partitioning. This algorithm quickly produces

a strict and compact balance of elements but does not do as well as other

schemes with respect to the MLSI and GSI metrics.

Octree Partitioning. OCTPART uses the traversal of an Octree structure

underlying the mesh to achieve a partitioning. Traversals vary across di�erent
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Figure 7.3: Initial mesh distributed to 8 processors using ITB (left) and
OCTPART (right) for perforated muzzle brake solution.

OCTPART implementations. In the implementation we consider, a depth �rst

traversal of underlying octrees is used. After Octree generation, cost metrics

are computed for all subtrees. Cost metrics are often the number of elements

in each octant, but other weighting schemes based on the polynomial degree of

elements can be used. The optimal load for each processor is computed based

on total number of processors and the total cost of all subtrees. Subtrees are

placed on a partition if the cost of that subtree plus the load on the current

partition is less than the optimal load. If it is not, one of two things occurs:

[21]

1. Depth �rst traversal decomposes the subtree further until a smaller sub-

tree is added that �ts in the current partition.

2. The current partition is closed and the subtree is inserted into the next

partition.

The generated tree structure is stored on multiple processors. In the imple-

mentation we considered for our analysis, these subtrees are updated between

iterations. Figure-7.3 shows an example of Octree partitioning.

� Predictive Load Balancing

Error indicators and re�nement thresholds can be used to assign weights to

speci�c mesh elements that are likely to be migrated after the enrichment
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Figure 7.4: Schematic of Loco solver and SCOREC tools.

stage. Instead of introducing imbalance during enrichment, a weighted load

balancing phase is introduced prior to mesh re�nement. This can signi�cantly

improve overall performance [22] [21]. IDB analysis of predictive load balanc-

ing is beyond the scope of what we consider in this chapter.

Most of these components are used together with Loco [23], a parallel adaptive

solver which implements a discontinuous Galerkin solution method [5] [12] [13] of

the compressible Euler equations.

Figure-7.4 shows the structure of the solver and SCOREC tools that we used.

Initially, the mesh is loaded into memory and partitioned across all processors. An

iteration begins with the solver acting upon the mesh. Once a solution for the

current time step is computed, error estimations are evaluated; if they fall within a

speci�ed tolerance, the solver continues on to the next step, else the mesh is re�ned

or coarsened and load balancing migrates elements before the solver resumes.

7.2 Instrumentation

We consider two hyperbolic transient problems which can be solved with Loco:

(i) a Rayleigh-Taylor 
ow instability, and (ii) the 
ow in a perforated shock tube.
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The same solver, mesh enrichment, migration, and load balancing libraries are used.

Instrumentation is automatically introduced at speci�c points in the respective con-

trol 
ow graphs that are common to both problems. In this way, the code is instru-

mented only once.

Description ID

while (meshnum<MESHITER && ( STEPTYPE==0 jj time<=TSTOP)) 1300
MD init(), load model(), pmdb ge tabl new(), MM new() 100
Program 0
balance rebal() 1700
balance rebal() 2000
balance setup init params() 200
�le load initial() 300
if (!solver step or reject()) 1350
solver err() 1100
solver init boundary() 1800
solver re�ne() 1500

Table 7.1: Probe Table. This table is the result of executing the following
query "SELECT DISTINCT * FROM lookup;

Probes were introduced incrementally. Figure-7.5 shows how the CFH grows

as instrumentation is added. Probes not on the critical path, and those associated

with �le check-pointing, were removed. Table-7.1 shows probes that make up the

reference instrumentation of the Loco solver. Probes 1700 and 2000 instrument the

same function: 1700 instruments the call to balance rebal() while 2000 instruments

the function internally; this routine initiates one of the three load balancing schemes

we considered. Probe 1350 instruments the call to the solver and 1500 instruments

mesh re�nement.

7.3 Rayleigh-Taylor Flow

Simulation of astrophysical phenomena, speci�cally nuclear 
ashes in bodies

such as neutron stars and white dwarfs, is a computationally and mathematically

complex problem. A crucial element to these simulations is correctly modeling the


ame front as it travels through the body of the star. As the front travels from

less dense to more dense regions, it is subject to Rayleigh-Taylor instabilities, which
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Figure 7.5: Instrumentation progression. These control 
ow hierarchies
indicate the progression in which probes were introduced to
the solver. Probes were initially introduced to all events in
the main() program. In subsequent runs, probes not on the
critical path were removed and new probes were added.
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drastically e�ect the size and duration of the resulting nuclear 
ash. The quality of

such simulations depends on accurate modeling of these instabilities [68].

Figure 7.6: Rayleigh- Taylor interactions and mesh visualizations.

The Rayleigh-Taylor 
ow we considered is bound by a box (RTBOX), with a

height 8 times larger than the length and width. (see Figure-7.6). The simulation

models interactions of a more dense 
uid on top of a less dense 
uid. IDB is used

to measure how the di�erent load balancing procedures a�ect solver, enrichment,

and overall performance. We also use IDB to show that the the physics of the

underlying system being modeled is signi�cant. A mathematical description of the

Rayleigh-Taylor 
ow problem can be found in [68].

7.3.1 Performance Experiments

There are scores of run-time parameters that a�ect RTBOX performance.

These include load balancer selection, simulation time, number of processors, opti-

mization, etc. Table-7.2 lists the performance experiments that were run.

The RTBOX was run on 8 processors using ITB, PSIRB, and OCTPART.

Each run partitions the mesh and simulates 0.0001 time units of the solution. The

same experiments were repeated on 16 processors which simulate 0.200 simulation

time units. We also demonstrate that IDB can be used to measure the signi�cance
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Experiment Nodes Load Simulation Optimized
Name Balancer Time (TSTOP) YES

rt itb o 8 8 ITB 0.0001 YES
rt psirb o 8 8 PSIRB 0.0001 YES
rt oct o 8 8 OCTPART 0.0001 YES

rt itb o 16 16 ITB 0.2000 YES
rt psirb o 16 16 PSIRB 0.2000 YES
rt oct o 16 16 OCTPART 0.2000 YES

rtbox2 (no opt) 8 OCTPART 0.0001 NO
rtbox1 (opt) 8 OCTPART 0.0001 YES

rt 56-1 56 OCTPART 0.1000 YES
rt 56-2 56 OCTPART 0.1000 YES
rt 56-3 56 OCTPART 0.1000 YES
rt 56-4 56 OCTPART 0.1000 YES
rt 56-5 56 OCTPART 0.1000 YES

Table 7.2: Rayleigh-Taylor performance experiments.

of permuting compiler parameters such as optimization.

Figure-7.7 shows that on 8 processors the PSIRB version outperforms both

the ITB and OCTPART versions overall. Although less time is spent in the solver

using OCTPART than PSIRB or ITB (as Figure-7.8a shows), Octree partitioning

is more costly than the others (see Figure-7.8b). The time lost by OCTPART in

load balancing would be recovered in the solver for larger values of TSTOP. When

the same experiments are conducted using 16 processors for larger simulation time,

we observe that the total execution time of the OCTPART version is surpassed by

PSIRB, as Figure-7.9 illustrates. This result appears to be counter-intuitive based

on previous analysis of Octree partitioning versus other load balancing schemes [45],

[21].

This behavior is partly the result of OCTPART's spatial decomposition of

the problem domain; it de�nes the Octree Universe, a cube that is inscribed by the

problem domain. In this example, the problem domain occupies a very small part of

this Universe, as Figure-7.10 illustrates. Octree partitioning typically outperforms

other balancing schemes when the problem domain occupies a large area of the

total Octree Universe. The IDB approach was useful for collecting and presenting

performance data used to identify this unexpected performance result.
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Figure 7.7: Run time of RTBOX with ITB, PSIRB and OCTPART on 8
nodes.

(a). Solver time on 8 nodes (b). Load balance time on 8 nodes

Figure 7.8: Rayleigh- Taylor interactions and mesh visualizations.
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Figure 7.9: Run time of RTBOX with ITB, PSIRB, and OCTPART on
16 nodes.

(0.25 x 0.25 x 2.0)

OCTPART Universe
(2.0 x 2.0 x 2.0)

RTBOX Domain

Figure 7.10: RTBOX problem domain superimposed with OCTPART
universe.
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The 8 processor RTBOX runs used a very short simulation time (where TSTOP

= 0.0001) in the interest of keeping execution time low, approximately one hour.

The 16 processor examples were run with a signi�cantly longer solution time (where

TSTOP = 0.200), roughly 30 hours of execution. The resulting instrumentation data

showed that as simulation time passes, more time is spent re�ning and coarsening

the mesh as opposed to executing solver computations as shown in Table-7.3. Again,

this result appears to be contrary to what is expected. However, closer inspection

of Loco's log �les show that mesh re�nement becomes more frequent as simulation

time progresses; the mesh is re�ned as the front propagation through the domain is

modeled. This shows that the physics of the Rayleigh-Taylor problem does impact

performance.

Description Count CPU Time Total Time

Main Loop 39 14229.64 15680.109432
Solver 39 2386.83 2386.808268
Re�nement 39 9638.49 10617.09714
Load Balancing 39 2548.73 2549.316627
Initialization 1 0.05 2.944329

Table 7.3: Probe Data for 16 node RTBOX run with TSTOP = 0.200

IDB was also used to compare optimized and unoptimized versions of RTBOX

using OCTPART for TSTOP = 0.0001. Figure-7.11 shows that the optimized code

is signi�cantly faster. Closer inspection of the code shows that the optimized version

is not laden with as much error checking code as the unoptimized version.

Lastly, we ran RTBOX using Octree partitioning with TSTOP = 0.100 on 56

processors. This performance experiment was repeated �ve times for the purpose

of demonstrating the scalability of IDB and gauging the regularity of RTBOX.

Figure-7.12 shows the quartile graph of the coalesced data. We can conclude that

performance is consistent across multiple executions.

7.4 Perforated Muzzle Brake

The next problem we consider is a three-dimensional unsteady compressible


ow in a cylinder with a cylindrical vent [45], [68], [21]. The motivation for this
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Figure 7.11: Total execution time of optimized and unoptimized OCT-
PART version of RTBOX.

Figure 7.12: Visualization of COALESCE mode experiment for 56 node
run of RTBOX using Octree partitioning for TSTOP =
0.100.
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problem is derived from study of perforated muzzle brakes (PMB) for large calibre

guns. The domain can be cut in half through the center of the vent by symmetry.

The simulation starts with a Mach 1.23 
ow through the cylinder, and begins as if

a diaphragm between the two cylinders was removed. Figure-7.3 shows the problem

domain [22], [20].

7.4.1 Performance Experiments

We demonstrate how the same Loco reference instrumentation can be used to

measure performance of PMB with respect to ITB, PSIRB, and OCTPART on 8

and 16 processors. To this end, we conducted the performance experiments listed

in Table-7.4.

Experiment Nodes Load Simulation
Name Balancer Time (TSTOP)

pmb itb o 8 8 ITB 0.0100
pmb psirb o 8 8 PSIRB 0.0100
pmb oct o 8 8 OCTPART 0.0100

pmb itb o 16 16 ITB 0.0100
pmb psirb o 16 16 PSIRB 0.0100
pmb oct o 16 16 OCTPART 0.0100

Table 7.4: Perforated Muzzle Brake performance experiments.

Initial performance experiments involved using a relatively small mesh on 8

processors. Three runs using ITB, PSIRB, and OCTPART are shown in Figure-

7.13a.

On 8 processors, the OCTPART version had the best overall run-time. Total

execution time of the three versions were ITB = 16866.57s, PSIRB = 15083.84s,

and OCTPART = 13529.72s. The same problem on 16 processors shows Octree

partitioning was surpassed by PSIRB and ITB (see Figure-7.14b). When we look

closely at instrumentation data collected from the OCTPART, PSIRB, and ITB

runs (shown in Figure-7.14), solver and load balance are faster with PSIRB. Re-

�nement, however, is signi�cantly faster using Octree partitioning. The two factors

contributing to this are:

� A pre-re�ned mesh was initially loaded.
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(a). PMB on 8 nodes using (b). PMB on 16 nodes using
ITB, PSIRB, and OCTPART PSIRB and OCTPART

Figure 7.13: PMB run on 8 and 16 nodes using ITB, PSIRB, and OCT-
PART. The bars show solver execution time. The bottom
line shows load balancing time, and the top line shows time
spent performing mesh enrichment operations.

(a). Solver time on 16 nodes (b). Total time on 16 nodes

Figure 7.14: PMB run on 16 nodes using ITB, PSIRB, and OCTPART.
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� Mesh size is small relative to the number of processors.

The di�usive nature of ITB works well for meshes that are mostly balanced.

Also, the compact balancing that PSIRB can quickly provide works well for the

relatively small number of mesh elements in this example.

7.5 Discussion

Future applications of IDB include comparing the OCTPART implementation

that we considered in these examples to the implementation used in the Zoltan [15]

[16] library, which provides a common interface for selection of load balancing al-

gorithms, that is being developed at Sandia National Labs. The Zoltan implemen-

tation of Octree partitioning di�ers in that subtrees are regenerated, as opposed to

updated, between iterations. Also, Zoltan supports di�erent subtree traversals using

gray code or Hilbert orderings [27] in addition to the depth-�rst traversal used by

the OCTPART implementation that we considered. Updating the subtrees, instead

of regenerating them, introduces small errors that cause the MLSI and GSI to slowly

degrade; thus a�ecting overall performance, as shown by IDB.

These examples show that the IDB approach to experiment management is

powerful enough to permute a wide range of run-time and compile-time parameters

such as number of processors, input size, simulation time, as well as whole program

modules, speci�cally load balancing algorithms, problem types, and implementa-

tions. In this chapter, we considered a subset of the di�erent problem types that

exist. IDB can be used to fully explore this large problem space.

Load Predictive Equation

Balance x Balancing x Type

ITB ON Elliptic

PSIRB OFF Parabolic

OCTPART Hyperbolic

The SCOREC tools include support for di�erent partitioning schemes and

implementations, predictive load balancing, and problem types. IDB provides the

systematic ability to explore how these attributes a�ect one another.



CHAPTER 8

Discussion and Conclusions

8.1 General

We have shown that the instrumentation database approach provides a useful

means of collecting, archiving, and querying performance data collected from parallel

and object oriented scienti�c applications. Moreover, we provide a formal framework

for experiment management through the use of relational database and experiment

de�nition �les. This framework provides the basic tools with which it is possible to

develop more sophisticated instrumentation, visualization, and analysis tools in a

scalable way.

8.2 Emergent Methodologies

Performance tuning and optimization is an iterative process. In the past, the

structure of these iterations was loosely de�ned by the user. The introduction of

the database and tools for comparative analysis provide the user with the means to

approach optimization in a more systematic manner. Commonalities exist in how

IDB was used to instrument and analyze the various scienti�c codes we presented.

As familiarity with the IDB approach increases, these emergent methodologies will

hopefully continue to evolve and de�ne a new framework for performance analysis.

These include:

� Reference Instrumentation. Introduction of probes at the �rst level of the

control 
ow hierarchy (CFH). The resulting performance database is queried

to view which branch or branches are on the critical path, or consume the

most time.

� Growing the tree. Introduction of probes on subsequent levels of the CFH.

This process is repeated until the performance events that comprise the critical

path are instrumented. Cues that a probe can be further optimized include:

101
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{ Instrumented loops or functions that iterate or are invoked many times.

{ Probes showing a signi�cant di�erence between CPU and total time. This

may indicate synchronization or blocking delays.

{ Probes that include large segments of code, namely long functions or

loop bodies. In many cases, such segments usually contain a performance

critical event that may reside on the critical path.

� Pruning the tree. Removal of probes that are not on the critical path. The

resulting control 
ow hierarchy de�nes the reference instrumentation version.

This is a minimally instrumented version of the program with probes along

the critical path of the CFH.

� Experimentation. Optimization of instrumented code or permutation of

run-time and compile-time parameters.

Analysis methodologies will continue to evolve as the IDB framework and user

base grows. This approach resulted in an identi�cation tool designed to aid the user

in localizing bottlenecks or probing the e�ects of modi�cations to the code or its

environment. IDB collects data and presents it in an intelligent manner. It is still

incumbent on the user to derive meaningful conclusions and optimization strategies.

8.3 Research Contributions

This Instrumentation Database approach addresses several issues in the area

of performance analysis; among these are scalability, cost of invocation, ease of use,

accuracy, object-oriented support, multi-language compatibility, platform indepen-

dent comparative analysis, and experiment management. IDB uniquely addresses

these issues by leveraging database technology in conjunction with a novel approach

to instrumentation.

Scalable instrumentation. We demonstrated that a minimal set of perfor-

mance events (PROC, CALL, LOOP, and COMM) coupled with the control 
ow

graph and aggregate statistics (MIN, MAX, AVG, COUNT, and SDEV) are suf-

�cient for deriving performance attributes. The amount of instrumentation data
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collected is bound by the path, or paths, traversed through the control 
ow graph.

Database size is not a�ected by run time, input size, or number of nodes.

Multi-language and object-oriented support. We developed a POSIX

compliant instrumentation API that ensures availability across multiple platforms.

++-izing enables C codes to use the C++ API. Similarly, compiler and linker sup-

port enable FORTRAN 90 codes to call IDB probes. The Java Native Interface

(JNI) provides a mechanism for future instrumentation of Java applications. Also,

extensions to the control 
ow hierarchy involving multiple instances of a CFH within

a node enable object-oriented codes to collect performance data within each object

contributing to the critical path.

Mapping program structure onto relation database schema. Archival

of statistical probe data, control 
ow hierarchy connectivity, and static data into

a traditional relational database guarantees a standard interface to performance

data. Data collected across multiple versions of the same program, across multiple

architectures, compiler options, or run-time options can be compared or archived

for future analysis. Moreover, the instrumentation database enables analysis on

architectures or systems other than those where performance data was collected.

Standard Query Language (SQL) provides a powerful interface where data-mining

and querying can be cast against multiple program executions. This interface, along

with language speci�c extensions for embedded SQL, provides the foundation for

developing sophisticated visualization and graphical query tools.

Automated instrumentation. To ensure a low cost of invocation, the pro-

cess of introducing probes at the source code level is automated. Target applications

are lexically analyzed and instrumentation is added based on information provided

by the analyst in a graphical format. The design of this tool was guided exclusively

by user feedback.

Visualization front-end. Embedded SQL and graphical toolkits simplify

development of sophisticated visualization tools. For example, IDB provides Vis-

tool for presenting data collected within a single execution graphically. Similarly,

EDFtool presents data in a graphical means; however, data spans multiple execu-

tions of the same or modi�ed versions of an application. Queries are constructed
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graphically through a user interface and the results returned from the database are

presented graphically or numerically in tabular form.

Experimental view of performance analysis. IDB is unique in that it

forces the analyst to adhere to basic experimental techniques for optimizing and an-

alyzing code. Program executions are de�ned as performance experiments. Experi-

ment De�nition Files (EDFs) created during instrumentation are referenced during

visualization. All aspects of the IDB framework (instrumentation tool, database,

and visualization front-end) are integrated around these de�nition �les. Experiment

modes include comparison across multiple versions or coalescing data collected from

multiple runs of the same code. Coalescing is useful for dusty deck [34] and gauging

regularity; that is to say that it is useful on multi-user systems where performance

can be a�ected by external factors or by asynchronous events during execution that

can alter performance across multiple runs.

The IDB approach represents a signi�cant change in performance analysis of

large parallel and object-oriented systems. This approach is readily extensible to

codes outside of the scienti�c computing domain.

8.4 Future Work

IDB will be used to analyze additional applications to further show that it is

a viable and powerful approach to analysis of large codes. The scope of IDB can be

extended to provide formal support for large single processor and distributed codes.

The approach is applicable to mainstream applications outside of the numerically

intensive scienti�c computing domain. Part of making IDB available to this user

base involves enhancing existing tools and providing mechanisms for dealing with

single processor and distributed codes.

8.4.1 PAPI Integration

IDB probes are currently implemented around the MPI Wtime() and clock()

calls. The disadvantage of this is that it limits IDB to parallel codes based on the

Message Passing Interface (MPI). Furthermore, probes are uncoupled from the un-

derlying hardware to the extent that there is no easy way to monitor performance
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critical issues such as cache utilization, 
oating point operations, etc. We plan to

integrate the IDB approach with the Performance Application Programmer Inter-

face (PAPI) currently being developed by Dr. Jack Dangara at the University of

Tennessee at Knoxville. PAPI provides a platform independent interface to vital

hardware performance statistics through a hardware speci�c substrate, or interface.

This integration will involve modi�cation of the current probe implementation;

the database schema will also be extended to capture additional aggregate informa-

tion, such as cache utilization or sustained M
ops. The probes will provide more

robust information about how the underlying architecture is being utilized while

preserving platform independence.

8.4.2 Experiment Automation

The IDB approach provides the user with all the tools required to instrument

and analyze performance for the purpose of localizing bottlenecks in an application.

We will explore ways to use these tools and develop new ones such that bottle-

neck localization can be fully automated. The process of growing the control 
ow

hierarchy and pruning excess probes can be automated.

An instrumentor will parse the code in the same way the automated instru-

mentation tool does, and then it will introduce probes automatically. The system

will then execute the application and populate the instrumentation database as

per invocation syntax provided by the user. The system will be able to query the

database for probes that consume some percentage of the critical path. The system

can do this iteratively, adding new probes and removing old ones. Key issues in-

clude de�ning a probe's contribution to the critical path, automatically executing

and populating the database, and embedding knowledge of the tolerances to set to

stop the process. The result will be a reference version of the code containing the

minimal number of probes along the critical path.
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APPENDIX A

Program Database De�nitions

A.1 Database Schema

Field Type Length

cfh varchar() 80
name varchar() 80

Table A.1: CFH Table. This table was added to support multiple control

ow hierarchy instances. Relations are joined with this table
to lookup the name of a speci�c control 
ow hierarchy ID.
This is analagous to Ttable-A.4.

Field Type Length

cfh varchar() 80
lid int8 8
id int4 4
min 
oat8 8
max 
oat8 8
avg 
oat8 8
sdev numeric 30.6
count int8 8
noise 
oat8 8
type int8 8
proc int8 8
cpu acc 
oat8 8
cpu min 
oat8 8
cpu max 
oat8 8

Table A.2: PROBE Table. This table contains the statistical data for
all active probes. The cfh attribute indicates to which CFH
instance a probe belongs. This was added to support the
case of multiple CFH instances. A composite key (lid, proc)
uniquely identify all probes.
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Field Type Length

cfh varchar() 80
proc int8 8
parent int4 4
child int4 4

Table A.3: CONNECTIONS Table. This table describes the connectivity
of the control 
ow hierarchy. This table is meant to be queried
to ascertain ancestry relationships betwen multiple probes.

Field Type Length

name varchar() 80
lid int8 not null 8

Table A.4: LOOKUP Table. This table maps probe IDs to their descrip-
tions in the same way as Table-A.1

A.2 Sample Queries

This query returns statistical information for a probe on processor 0. Note

that the total time spent is a derived attribute resulting from the product of the

average time and the number of probe activations.

Q1 = SELECT probes.lid, name, count, cpu acc,

(avg*count) AS total time

FROM probes, lookup

WHERE probes.lid = lookup.lid AND proc=0;

Q1 returns the following relation when run against the program database de-

rived from runing the OTIS thermal emissivity code.

lid|name |count|cpu_acc|total_time

---+---------------+-----+-------+----------

0|Program | 1| 1.96| 5.071973

200|SetUp(void) | 1| 0| 0.001788

700|Master(void) | 1| 1.9| 5.010868

900|RowMaster(void)| 1| 1.9| 5.010798

(4 rows)
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This next query returns the total time spent in the foo() function across all

processors.

Q2 = SELECT name, avg*count AS total

FROM probes, lookup

WWHERE probes.lid=lookup.lid AND lookup.name='foo()'

Q3 returns the processor on which foo() took the longest time to execute.

Q3 = SELECT proc

FROM probes, lookup

WHERE probes.avg=max('foo()') AND probes.lid=lookup.lid

A.3 SQL Function De�nitions

CREATE FUNCTION sdev(int4) returns numeric

AS 'SELECT sqrt( abs( avg((avg*avg))-(avg(avg) * avg(avg))))

FROM probes

WHERE id = $1;'

LANGUAGE 'sql';

Standard Deviation De�nition

CREATE FUNCTION minprobe(int4) returns 
oat8

AS 'SELECT min(avg)

FROM probes

WHERE id = $1;'

LANGUAGE 'sql';

Returns the minimum time the given probe spent executing.

CREATE FUNCTION maxprobe(int4) returns 
oat8

AS 'SELECT max(avg)

FROM probes

WHERE id = $1;'

LANGUAGE 'sql';

Returns the maximum time the given probe spent executing.
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CREATE FUNCTION maxnoise(int4) returns 
oat8

AS 'SELECT max(noise)

FROM probes

WHERE id = $1;'

LANGUAGE 'sql';

Returns the maximum noise for all probes on all processors.



APPENDIX B

Experiment De�nition Files

#

# otis_coalesce.edf

#

[PREAMBLE]

Experiment 4 Node OTIS run on RPI CS Cluster using small.cfg

Mode COALESCE

Analyst Jeffrey Nesheiwat

[DESCR]

Determine regularity of OTIS by running 6 times consecutively

on ba2.cs.rpi.edu

Commandline: mpirun -np 4 otis -f small.cfg

[AUTOINST]

[ Binary Data Omitted ]

[ --automated instrumentation tool-- ]

[ --saved state information-- ]

[DBLIST]

run1 otis_run1 using small.cfg on ba2

run2 otis_run2 using small.cfg on ba2

run3 otis_run3 using small.cfg on ba2

run4 otis_run4 using small.cfg on ba2

run5 otis_run5 using small.cfg on ba2

run6 otis_run6 using small.cfg on ba2

Figure B.1: Experiment de�nition �le describing a suite of six runs of
OTIS using 4 processors.
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#

# otis_compare.edf

#

[PREAMBLE]

Experiment 4 Node OTIS runs on RPI CS Cluster using master.cfg,

masterlu.cfg, equal.cfg and equallu.cfg

Mode COALESCE

Analyst Jeffrey Nesheiwat

[DESCR]

Compare performance of four processor OTIS run on ba2.cs.rpi.edu.

master: Decomposes input acros (n-1) processors. The remaining

processor is used to colate results. masterlu: Same as master

with lookup tables enabled. equal: Decomposes input across all

processors such that workload is equally distributed. Results

colated upon completion. equallu: Same as equal with lookup

tables enabled.

Commandline: mpirun -np 4 otis -f myconfig.cfg

[AUTOINST]

[ Binary Data Omitted ]

[ --automated instrumentation tool-- ]

[ --saved state information-- ]

[DBLIST]

master master/slave decomposition

masterlu master/slave decomposition with lookups

equal equal distribution

equallu equal distribution with lookups

Figure B.2: Experiment de�nition �le describing comparison of 4 OTIS
runs on 4 processors.
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#

# pic3d_pow.edf

#

[PREAMBLE]

Experiment Compare 8 node run on SP2 with POW removal

Mode COMPARE

Analyst Jeffrey Nesheiwat

[DESCR]

Removed 10 cals to pow() from plasma_advance() for loop by

doing multiplication manually. The loop iterates 10e7

times, thus 10e8 calls are avoided. How does this change

effect performance of the function, and of the program?

[AUTOINST]

[ Binary Data Omitted ]

[ --automated instrumentation tool-- ]

[ --saved state information-- ]

[DBLIST]

plasma4 Original

plasma5 Removed POW

Figure B.3: Experiment de�nition �le describing two 3D PIC runs to test
how removal of pow() function calls e�ect performance.
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#

# rtbox-short-8.edf

#

[PREAMBLE]

Experiment 8 Nodes on SP2 with ITB, PSIRB & OCTPART

Analyst Jeffrey Nesheiwat

Mode COMPARE

[DESCR]

This compares 3 runs consisting of 8 processors

using ITB, PSIRB, and OCTPART load balancing.

[AUTOINST]

[ Binary Data Omitted ]

[ --automated instrumentation tool-- ]

[ --saved state information-- ]

[DBLIST]

rt_itb_o_8 8node ITB

rt_psirb_o_8 8node PSIRB

rt_oct_o_8 8node OCTPART

Figure B.4: Experiment de�nition �le describing 3 RTBOX runs to test
ITB, PSIRB and OCTPART load balancing schemes e�ect
performance.
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#

# nemo.edf

#

[PREAMBLE]

Experiment NEMO: 12 nodes on nimrod.jpl.nasa.gov

Analyst Jeffrey Nesheiwat

Mode COMPARE

[DESCR]

This experiment compares a reference version of NEMO with

3 optimized version. Optimizations include:

o Declare local data as static

o #define enumerated types

o In-lining

[AUTOINST]

[ Binary Data Omitted ]

[ --automated instrumentation tool-- ]

[ --saved state information-- ]

[DBLIST]

nemo9 Reference implementation

nemoa Static version

nemob Enumerated type as macro version

nemoc In-line version

Figure B.5: Experiment de�nition �le describing reference NEMO run
and three optimized versions.



APPENDIX C

Class De�nitions

class CFH {

// Public methods define end user's API

public:

char *obj_name; // Name associated with CFH

CFH();

void init(char*,int,int); // Name CFH and processID

void start(int,int); // Start probe given type and ID

void name(int, char*); // Name probe based on ID

void stop(int); // Stop probe with ID

void dump(int); // Output all or specific probe

static void dumpall(); // Dump all active CFH's.

private:

static int num_CFH; // Number of CFHs on node

int CFH_id; // Unique CFH ID (on node)

int proc; // Processor ID

int nproc; // Total processors

double w1,w2; // Noise collection

IDB_Probe_ptr *array; // Array of probe pointers

int num_probes; // Number of probes

IDB_Stack active; // Active probe stack

int add(int); // Create a new probe

void link(int, int); // Connect parent/child probes

int map(int); // Map logical ID to real ID

static CFH **cfh_list;

static int num_cfhlist;

};

Figure C.1: cfh.h
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class Probe {

public:

List parents, children; // parent and children lists

int id; // logical id -- user defined

Probe();

void start(int,int,int);

void stop();

void setname(char *);

void addnoise(double);

void dump(int,char*);

private:

int xid; // internal probe id

int type; // probe type (LOOP, CALL, etc.)

double t1, t2; // measured time

double w1, w2; // measured noise

double c1, c2, c; // measured CPU time

double cpu_acc; // accumulated CPU time

char *name; // description of probe

// statistical data

long count;

double avg_sq;

double time, instr_acc, avg, min, max, sdev;

double cpu_min, cpu_max;

};

typedef Probe * Probe_ptr; // define pointer to probe type

Figure C.2: probe.h
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class IDB_List {

public:

IDB_List();

void addunique(int);

void print();

int exists(int);

int getfirst();

int getnext();

int size();

private:

int *list;

int num;

int current;

};

Figure C.3: idb list.h

class IDB_Stack {

public:

IDB_Stack();

void push (int);

int pop();

int size();

void print();

int tos();

private:

int num;

int *stack;

};

Figure C.4: idb stack.h



124

#define MAX 128

#define TRUE 1

#define FALSE 0

#define BUNDLE 64

#define INIT 0

#define START 1

#define STOP 2

#define DUMP 3

#define DUMPALL 4

#define PROC 1

#define LOOP 2

#define CALL 3

#define COMM 4

/* DUMP MODES */

#define TXT 0

#define SQL 1

#define SQLFILE "populate.sql"

Figure C.5: idb defs.h


