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2.1 The transition in the single-variable system. (a) The resilience function of a
general bistable system. For the bifurcation parameter β ∈ (βc1 , βc2), there are
two stable states (xL, xH) and one unstable state (xu). The initial stable state
(xL) evolves to the unstable state (xu) by the aid of noise and is then naturally
attracted to the other stable state (xH) by its deterministic dynamics. (b) and
(c) display the evolution of the rescaled state ρ in the presence of noise. (b) As β2

is closer to the critical value βc2 than β1, the unstable state ρu2 is lower, making
the barrier in the landscape easier to cross in the presence of the same strength
of fluctuations. The lifetime τ2 is thus smaller than τ1. (c) The parameter β is
the same, leading to the same landscape. In the presence of stronger noise σ2, it
is easier to drive the system to get over the barrier, causing τ2 to be smaller than
τ1. (d) shows the simulation results of the average lifetime ⟨τ⟩ under different
values of β and different noise strength. The dashed line is fitted based on
Eq. (2.4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Single-cluster and multi-cluster modes in the mutualistic system. (a) One snap-
shot for the state ρi of each node under the noise of the standard deviation
σ = 0.1. Initially, all of the nodes are at the low state xL. At some time later,
the transition to the high state xH occurs to one node, which is treated as a sin-
gle cluster. Such transition then spreads out to its neighbors. (b) The evolution
of the global state ρ for 100 realizations of the single-cluster mode (a). (c) The
probability distribution of waiting time Pnot for the fixed system size and the
various noise strengths σ = 0.08, 0.09, 0.1. The single dots are simulation data,
and different types of lines are obtained by linear fit according to Eq. (2.8). (d)
The evolution of the average global state ρ using the same data as in (c). (e)
One snapshot shows the state ρi of each node for the case when all nodes starts
from xL initially, and σ is also 0.1. Different from (a), the transition to xH occurs
at several separate nodes, and they expand independently, forming the multiple
cluster. (f) The evolution of the global state ρ for 100 realizations, which are
more centered around a certain value instead of being random in (b). (g) The
distribution Pnot for N = 10000 and σ = 0.08, 0.09, 0.1, which approaches the
step function as σ increases. (h) The evolution of the global state ρ averaged
over 100 realizations using the same data as in (g). The single dots are simu-
lation data, and different types of lines are obtained by linear fit according to
Eq. (2.9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

v



2.3 The influence of system size N and noise strength σ on transition modes and
average lifetime. Initially, all of the nodes are at the low state xL, and the
time to switch to the high state xH is measured. (a) The average nucleation
time ⟨tn⟩ changes with noise strength for different system sizes. (b) The linear
relationship between ⟨τ⟩ and N−1. (c) Two regimes with different slopes of ln⟨τ⟩
as a function of σ−2 corresponding to two cluster modes. (c) and (d) summarize
the effects of system size N and noise strength σ on the average lifetime ⟨τ⟩.
The increase of noise strength lowers the average lifetime. For the single cluster
mode, the larger system requires less time to complete transitions. . . . . . . . 21

2.4 Crossover between two cluster modes for the sample mutualistic system. Ini-
tially, all of the nodes are at the low stable state xL, and they are driven to the
high stable state xH in the presence of noise. (a) According to Eq. (2.10), two
cluster modes are distinguished. The dashed curve is drawn according to the
equation N1/2 = e

c
3σ2 , where c is a fitted parameter. The gradual change of the

background color (red-white-blue) is to qualitatively illustrate the continuous
nature of the crossover from the single-cluster mode to the multi-cluster mode.
The dashed curve corresponds to the center of the crossover region (provided
by the above formula), separating the two cluster-growth modes. (b) and (c)
describe the single-cluster mode (in red), while (d) and (e) display the multi-
cluster mode (in blue). (b) The distribution Pnot for the fixed noise strength
σ = 0.1 and different system sizes N = 9, 16, 25, 36, 49, 64, 81, 100. (c) Pnot for
the fixed weak noise σ = 0.06 and N = 100, 900, 2500, 10000. In both (b) and
(c), the single dots are simulation data, and different types of lines are obtained
by linear fit according to Eq. (2.8). (d) Pnot for the fixed noise strength σ = 0.1
and different system sizes N = 900, 2500, 10000. (e) The evolution of the global
state ρ using the same data as in (d). . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Scaling between two cluster modes in the mutualistic system. For (a) – (c),
the system starts from the low state xL, and the time to reach the state xH is
characterized by τ . (a) The relationship of ⟨τ⟩ and e−

c
σ2 differs between two

cluster modes. (b) The finite-size scaling is drawn by assuming the slope of
multi-cluster mode in (a) is −1

3
. For (c) and (d), N = 10000 and σ = 0.08.

(c) The nucleation rate increases before the average state of nodes which have
not transitioned stabilizes. (d) The system starts to evolve from xL and the
prepared state, respectively. The evolution of the global state ρ for the latter
case agrees better with Eq. (2.9) than the former case. For (e) – (h), the system
starts from the prepared metastable state, and the time to reach the state xH

is recorded as τ . (e) The average lifetime ⟨τ⟩ for two cluster modes. (f) The
finite-size scaling is consistent with the theoretical prediction in Eq. (2.12). (g)
The nucleation rate needs less time to stabilize compared with (c). (h) The
evolution of the global state ρ for the multi-cluster mode when N = 10000
and σ = 0.08, 0.085, 0.09, 0.095, 0.1. In both (d) and (h), the single dots are
simulation data, and different types of lines are obtained by linear fit according
to Eq. (2.9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vi



2.6 Harvesting system. The parameters are set as r = 1, K = 10, the diffusion rate
R = 0.02, and the bifurcation parameter β = 1.8. Initially, all of the nodes
are at the low stable state xL, and they are driven to the high stable state
xH in the presence of noise. (a) Two clusters are separated according to the
curve N1/2 = e

c
3σ2 , where c is a fitted parameter. For (b) – (d), the system size

N = 100. (b) One snapshot shows the evolution of each node ρi in the presence
of noise with σ = 0.045. The initial states for all of the nodes are xL. Later,
the transition to xH occurs to one node, which is treated as a single cluster,
and it spreads out to its neighbors. (c) The evolution of the global state ρ for
100 realizations, which corresponds to the single-cluster mode in (a). (d) The
distribution of waiting time Pnot for the N = 100 and σ = 0.04, 0.043, 0.045. (e)
Pnot for σ = 0.035 and N = 100, 900, 2500, 10000. In both (d) and (e), the single
dots are simulation data, and different types of lines are obtained by linear fit
according to Eq. (2.8). For (f) – (h), N = 10000. (f) The snapshot illustrates the
evolution of the system starting from xL, where σ is also 0.045. The transitions
to xH occur at several separate nodes, forming the multiple cluster. (g) 100
realizations of the global state ρ. (h) The evolution of ρ averaged over 100
realizations for σ = 0.04, 0.043, 0.045. The single dots are simulation data, and
different types of lines are obtained by linear fit according to Eq. (2.9). (i) The
evolution of the global state ρ averaged over 100 realizations for σ = 0.045 and
N = 900, 2500, 10000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Average lifetime ⟨τ⟩ and the scaling results for three diffusion models. The
diffusion rate R = 0.02. (a) – (d) harvesting model, r = 1, K = 10; (e) –
(h) eutrophication model, a = 0.5, r = 1; (i) – (l) vegetation model, r = 1,
rv = 0.5, hv = 0.2. (a), (e), and (i) are the resilience diagrams with alternative
stale states if β (a) ∈ (1.79, 2.60), (e) ∈ (0.86, 6.35), and (i) ∈ (2.59, 3.64). In
simulation, the bifurcation parameter β takes values of 1.80, 6.00, 2.60 for (a),
(e), and (i), respectively. For (b), (f), and (j), the system starts from xL. (c),
(g), and (k) show two clusters and cross-over scaling for the system starting from
xL. (d), (h), and (l) show the scaling for the system starting from the prepared
metastable state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
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3.1 The illustration of the network partition and system dynamics defined by the
generalized dimension reduction approach. The system follows mutualistic dy-
namics. We consider three types of network structures, (1) ER in red (⟨k⟩ = 32),
(2) SF in blue (the power-law exponent γ = 2.1, the minimal degree kmin = 1),
(3) SBM-ER in green (link probabilities for each community are p1 = 0.9,
p2 = 0.5, p3 = 0.05, while between communities, it is q = 0.001). Each net-
work consists of N = 100 nodes. We show the equilibrium states under different
dimension-reduction strategies. (a) The topology of the original network, where
the node color transparency and size are proportional to the node degree. (b)
The degree distribution of the original network. (c) The stable state changes
with the edge weight w for all individual nodes. (d) The topology of the one-
dimensional system. (e) The stable state changes with the edge weight w for
the single node. (f), (h), (j) show the topology of the m-dimensional system
(m = 3, 5, 10 respectively), and (g), (i), (k) are the corresponding global stable
states versus edge weights w. The grey curves are the global state obtained from
the numerical solution of the original network. . . . . . . . . . . . . . . . . . . 37

3.2 A SF network with N = 1000 nodes following mutualistic dynamics. The entire
system starts from the low states, xi(t = 0) = 0.1. (a) The bipartite network
Mij describes the connection between pollinators and plants. (b) From Mij,
two mutualistic projection networks (Aij and Bij) are constructed. (c) – (e)
The network topology and the stable states for m = N(the original system),
m = 4, and m = 1 with the edge weight w = 0.2. For different edge weights
(f) w = 0.15, (g) w = 0.2, (h) w = 0.25, the stable states of each cluster are
exhibited against the number of clusters m. (i) The global state y(gl) changes
with the edge weight w for different values ofm. (j) The ratio of the qualitatively
correct prediction, which counts the fraction of nodes at either high-stable states
or low-stable states predicted by both the original network and the dimension-
reduced system. The state threshold separating the two stable states is set as
Ry = 1. (k) The heatmap of the global state y(gl) as a function of w and m.
(l) The relative error of the stable state for different values of m compared to
the ground truth. (m) The optimal m changes with w for different values of
thresholds Re, and mopt is defined as the minimal value of m that produces the
error smaller than the threshold Re. (n) The heatmap of relative errors of global
states compared with the ground truth. . . . . . . . . . . . . . . . . . . . . . . 39

3.3 The phase diagram of the global state for SF networks following the mutualistic
dynamics. The stable states are obtained from L = 900 networks (the exponent
γ ranges from 2.1 to 5, and the minimal degree kmin is 3, 4, or 5), and all of
them start from the low states, xi(t = 0) = 0.1. (a) shows the phase diagram
for different values of m. The parameter β is calculated by the one-dimensional
reduction theory. In each subplot (b) – (d), the phase diagram of the global
state against the parameter β for the same system dimensionality (the same m)
and each curve represents one individual network. . . . . . . . . . . . . . . . . 40
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3.4 The relative error of the global state for different dynamics. Evolution data is
collected from L = 900 networks (the exponent γ ranges from 2.1 to 5, and the
minimal degree kmin is 3, 4, or 5). (a) – (d) display the phase diagram of the
stable states against the effective interaction strength β, which is calculated by a
single-dimension reduction system. For (a) mutualistic dynamics starting from

the low state xi(t = 0) = 0.1, the tipping point of phase transition β
(m=1)
c = 7,

(b) Wilson-Cowan (CW) neuronal dynamics starting from the low state xi(t =

0) = 0.0, β
(m=1)
c = 56, (c) gene regulatory dynamics starting from the high state

xi(t = 0) = 100, β
(m=1)
c = 2, and (d) CW neuronal dynamics starting from

the high state xi(t = 0) = 100, β
(m=1)
c = 8. (e) -(h) The error of the global

state is calculated for m-dimensional systems in the comparison of the original
networks. (i) – (l) are heatmaps of the error as a function of dimensionality m

and the distance to the tipping point β
(m)
c . . . . . . . . . . . . . . . . . . . . . 41

3.5 The tipping point approximation of the dimension-reduction framework. The
results are obtained from L = 900 SF networks. (a1) – (f2) compare the tipping
points between dimension-reduced systems and the original networks. (a3) – (f4)
are the comparisons of the tipping points between multi-dimensional systems and
one-dimensional systems in hwt−⟨k⟩wt space. Two error thresholds, Ry and Rs,
measure the difference of the global state and the survival ratio, respectively. . 43

3.6 The difference of the critical point changes with the number of clusters for SF
networks with different dynamics. For each system, the results are obtained from
L = 900 SF networks. (a) – (d) show the distance of tipping points between the
original systems and the dimension-reduction systems, and (e) – (h) show the
relative errors. Different symbols represent different threshold types and values. 44

3.7 A SF network of N = 1000 nodes and its corresponding dimension-reduced
systems under different time delays. This SF network is constructed by the
configurational model with the exponent parameter γ = 2.5, and the minimal
degree kmin = 3. The edge weight w = 0.1. (a) – (d) The evolution of the global
state difference |∆y(gl)| for different values of time delay τ = 0.19, 0.22, 0.25, 0.28
and the system dimension m = 1, 4, 16, N . ∆y(gl) is the difference between the
system global state at time t and the stable state without time delay. Other

figures show the phase space dy(gl)

dt
versus ∆y(gl)respectively. . . . . . . . . . . 46

3.8 The critical time delay τc determined by dynamical evolution for SF networks
using the dimension-reduction approach. All networks are created by configu-
ration model and they consist of N = 1000 nodes. For each parameter choice,
there are 10 realizations. The edge weights are the same, w = 0.6. (a) – (d) The
average degree ⟨k⟩ ∼ 6, and (e) – (h) ⟨k⟩ ∼ 10. . . . . . . . . . . . . . . . . . 47
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3.9 The critical time delay τc determined by dynamical evolution for ER networks
using the dimension-reduction approach. All networks are created by configura-
tion model and they consist of N = 1000 nodes. The edge weights are the same,
w = 0.6. The average degrees are set (a) ⟨k⟩ = 4, (b) ⟨k⟩ = 6, (c) ⟨k⟩ = 10, and
(d) ⟨k⟩ = 32. For each setup, there are 10 realizations. . . . . . . . . . . . . . 47

3.10 Solutions to Eq. (3.14) for different initial parameters (τ0, ν0). The system con-
sists of N = 1000 nodes. Results are for different edge weights w and system
dimensionality m. For (a) – (d) w = 0.2, (e) – (h) w = 0.4, (i) – (l) w = 0.6,
and (m) – (p) w = 0.8. For (a), (e), (i) and (m) m = 2, (b), (f), (j) and (n)
m = 4, (c), (g), (k) and (o) m = 64, and (c), (g), (k) and (o) m = 64, . . . . . 49

3.11 The comparison of the critical time delay obtained from the system evolution
and the characteristic equation. There are N = 1000 nodes in the system. . . 49

4.1 Phase transition and the tipping point for m = 2. (a) The stable density of
agents with opinion A nA as a function of their committed fraction PA for
different values of PB. (b) The critical point P

(c)
A changes with PB. The blue

dots represent the discontinuous transition of nA versus PA, while the red ones
represent the continuous change. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Phase transition and tipping point for m = 3. (a) The stable density of agents
with opinion A nA as a function of their committed fraction PA for different val-
ues of PC . (b) The critical point P

(c)
A changes with PC . The blue dots represent

the discontinuous transition of nA versus PA, while the red ones represent the
continuous change. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Scenario S1. The fraction nA holding the opinion A changes with PA for different
values of PÃ. (a) m = 4, (b) m = 5, (c) m = 6, (d) m = 7, (e) m = 8, (f) m = 9. 60

4.4 Scenario S1 for m = 4, 5, 6, 7, 8, 9. The critical point p
(c)
A changes with (a) p0 and
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(c)
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4.5 Scenario S0. (a)–(c) The critical point P
(c)
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the group Ã with an initial decrease followed by a linear increase. (d)–(f) only

include the data of the decrease regime, which shows that P
(c)
A changes with the

standard deviation (SD) of Pi. (a) and (d) m = 4, (b) and (e) m = 5, (c) and
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(c)
A changes with p0 in three scenarios S0, S1, and S2. For
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(c)
A is along the decreasing branch with

max{Pi} in Fig. 4.5 is included. (a) m = 4, (b) m = 5, (c) m = 6. . . . . . . . 62

4.7 The steady state nA changes with PA in three scenarios S0, S1, and S2. (a)–(c)
m = 4, (d)–(f) m = 5, (g)–(i) m = 6. (a), (d), and (g), p0 = 0.02; (b), (e), and
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4.8 Divide and rule. The critical point P
(c)
A in the scenario S1 is obtained by the

recursive approach in (a), and the integration of the differential equations in

(b). The critical point, P
(c)
A , has a non-monotonic relationship with the number

of single opinions, m. Dividing the committed agents into a moderate number
of competing minorities can aid in the domination of uncommitted agents by
opinion A in the system. The parameter is set as PÃ = 0.1, 0.12, 0.14, 0.16. . . 64

4.9 The evolution of the uncommitted fraction for the opinions A, B and C1 (same
as C2, C3, C4, thus denoted as C) obtained by the recursive approach and
the differential equations. The number of opinions m = 6, PA = 0.1, and
PC1 = PC2 = PC3 = PC4 = 0.025. Initially, all the uncommitted agents support
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4.10 The fraction of agents supporting the opinion A changes with the interaction
time on ER networks with N = 1000 agents. The number of single opinions
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ABSTRACT

The recognition of tipping points, where complex systems undergo abrupt shifts to distinct

states, underscores the importance of understanding critical transitions in networked sys-

tems. These transitions may pose risks, as they can lead to unintended collapses, resulting

in damage and losses across environmental, economic, and public health domains if timely

corrective measures are not implemented. Conversely, critical transitions also present op-

portunities for positive change. While the surprises inherent in sudden shifts will persist,

continuous efforts in this field aim to enhance our ability to foresee and respond to these

pivotal moments in dynamic and interconnected systems.

Our first investigation of these focuses on critical transitions in lattice-based ecological

systems. Given that many systems may shift to undesired states due to internal failures

or external perturbations, with critical transitions towards degraded ecosystem states being

prominent examples, resilience restoration becomes crucial. Resilience restoration focuses on

the ability of networked systems and the required time to recover to their desired states un-

der stochastic environmental conditions. Our research has shown that nucleation theory can

be employed to advance the understanding of resilience restoration in spatially-embedded

ecological systems, overcoming some common difficulties, such as high dimensionality, nonlin-

earity, and stochastic effects. We find that systems may exhibit single-cluster or multi-cluster

phases based on their sizes and noise strengths. Furthermore, we also discover a scaling law

governing restoration time for arbitrary system sizes and noise strengths in two-dimensional

lattice systems. Importantly, this approach could extend beyond ecosystems, finding appli-

cations in various dynamical systems spanning biology to infrastructural systems.

Subsequently, our attention shifts towards the challenge of reducing the complexity and

dimensionality of networks with diverse topologies. The formidable barriers posed by high

dimensionality and nonlinear dynamics often impede theoretical analyses of system evolu-

tion and critical transitions in interconnected networks, a crucial aspect in comprehending

the stability, resilience, and control of complex networked systems. Recent attempts at di-

mension reduction have sought to simplify the system by mapping it to a one-dimensional

representation, allowing for the capture of macroscopic dynamics by a single effective rep-

resentative. However, these approaches encounter significant limitations when applied to

heterogeneous networks with multiple community structures. Our study addresses this gap

xiv



by introducing a generalized dimension reduction approach. This novel method enables the

mapping of the original system to an m-dimensional system, comprising m interacting com-

ponents. Noteworthy is the successful validation of this approach across various dynamical

models, showcasing its ability to accurately predict the original system state and identify

tipping points, if any. Numerical results further illustrate the efficacy of this approach in

approximating system evolution and pinpointing critical points in the context of complex

networks featuring time delays.

Finally, we turn our attention to critical transitions in social opinion dynamics, em-

ploying the Naming Game model as our framework, which is widely recognized as a classic

model for examining the emergence and evolution of language within a population. Specif-

ically, we extend the model to accommodate multiple committed opinions and analyze its

dynamics on a complete graph and also random networks. Applying mean-field theory under

homogeneous mixing conditions allows us to analyze the opinion evolution on a complete

graph systematically. However, as the number of distinct opinions increases, the exponential

growth in the number of variables describing the system presents a challenge. We concen-

trate our focus on a unique scenario wherein the largest group of committed agents competes

with smaller committed groups, each substantially smaller than the largest one. Simulta-

neously, the majority of uncommitted agents initially hold another single unique opinion.

This scenario is chosen for its recurrent appearance in various societies and for its inherent

complexity, which can be mitigated by consolidating agents from all small committed groups

into one single committed group. Our findings reveal a phase transition when the largest

committed fraction dominates the system. The threshold for the size of the dominant group,

triggering this transition, depends on the size of the committed group within the unified

category. Furthermore, a general formula for multi-opinion evolution is derived through a

recursive approach. To complement our analytical work, we utilize agent-based simulations

to unveil the opinion evolution in random graphs. These results offer valuable insights into

the conditions fostering the emergence of dominant opinions within a population, shedding

light on the influencing factors that shape this transition.
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CHAPTER 1

INTRODUCTION

In this introductory chapter, we provide an overview of fundamental concepts essential for

the research presented in chapters 2-4. We start with a general exploration of networks, high-

lighting their mathematical properties and providing examples of regular lattice and random

networks. Following this, we overview the concept of resilience and critical transitions/shifts

in dynamical networks, offering some insights into a system’s capacity for recovery and

adaptability. Finally, we introduce the dynamics of opinion influence using the Naming

Game model, which serves as an example of critical shifts in social systems.

1.1 Networks

A network (or graph in the mathematical literature) is a collection of nodes (or vertices)

joined by edges (links/connections) [1]. In our exploration, we only focus on simple networks,

excluding two types of edges, self-edges that connect nodes to themselves, and multiedges

where more than one edge joining the same pair of nodes. The fundamental mathematical

representation of a simple network is encapsulated in the adjacency matrix denoted as A. It

is defined as an N ×N matrix for a network with N nodes, where each element Aij is set to

1 if there exists an edge between nodes i and j, and 0 otherwise [2]. Also, we only consider

undirected networks, meaning that Aij = Aji holds all time, and therefore, the adjacency

matrix of such networks remains symmetric.

Another fundamental and widely used concept in network theory is degree. The degree

ki of node i is defined as the number of edges connected to it, and it can be written in the

form of adjacency matrix A,

ki =
N∑
j=1

Aij. (1.1)

The average degree ⟨k⟩ of an undirected network is then expressed as

⟨k⟩ = 1

N

N∑
i=1

ki. (1.2)

This average degree provides insights into the network’s density, indicating the sparse or

dense connections. Building on the concept of node degree, we can easily derive the degree

1
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distribution P (k), which is defined as the fraction of nodes in a network with degree k, or a

randomly picked node in a network has a degree of k in the probabilistic context [1],

P (k) =
Nk

N
. (1.3)

Degree distribution serves as a crucial signature of network structure. While not complete,

it provides rich information about the network’s architecture. Next, we will cover several

types of networks integral to our study, each characterized by a distinct degree distribution.

1.1.1 Regular lattice

Let us begin our exploration with the simplest network, the regular lattice, character-

ized by its highly ordered and symmetric structure. Such network is embedded in a Euclidean

space Rn and exhibits a remarkable level of symmetry. Notably, each node in the lattice

possesses an identical degree, resulting in a trivial degree distribution [3]. Furthermore, when

the lattice extends infinitely in space, it attains translational invariance, ensuring that all

nodes play an equal role in the network structure and its dynamics. In one of the following

studies, we will investigate the dynamics and resilience within a specific instantiation of such

a network, the 2D regular lattice.

1.1.2 Erdős-Rényi networks

We then introduce an element of randomness to node connections, leading us to the

famous Erdős-Rényi (ER) random networks, named in honor of mathematicians Paul Erdős

and Alfréd Rényi, who first systematically studied this model [4]. By fixing the number

of nodes N and selecting M distinct pairs of nodes uniformly at random from all possible

pairs to form M edges, we create a random graph denoted as G(N,M). Alternatively, a

slightly different approach involves fixing the probability of edges between N nodes instead

of the number of pairs. For each possible pair of nodes, there is an independent probability

p to form an edge, resulting in a random network ensemble, denoted as G(N, p). One can

easily show that the average degree for these two variations are ⟨k⟩ = M
2N

for G(N,M) and

⟨k⟩ = (N−1)p, respectively. Here, we use the G(N, p) model to show the degree distribution,
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which follows a binomial distribution, given by,

p(k) =

(
N − 1

k

)
pk(1− p)N−1−k. (1.4)

In the scenario of a sparse large network (in the limit of N → ∞, p → 0), it can be

demonstrated that the degree distribution approximately follows a Poisson distribution [1],

expressed as

P (k) ≈ e−⟨k⟩ ⟨k⟩k

k!
. (1.5)

1.1.3 Scale-free networks

For numerous real-world systems, ranging from cellular structures to societal networks

and the Internet, connections between components are not completely random, rendering

Erdős-Rényi (ER) networks less suitable for modeling these complex systems. Over the last

two decades, empirical evidence reveal that many real networks exhibit a power-law degree

distribution [5], [6], a remarkable deviation from the conventional Poisson distribution (1.5),

P (k) ∼ k−γ. (1.6)

In these networks, the majority of nodes possess only a few connections, while a small number

of highly connected hubs serve to link these numerous smaller nodes. Commonly referred to

as scale-free networks, networks with the exponent γ < 3 exhibit infinite degree fluctuations,

lacking a meaningful internal scale and characteristically being “scale-free” [2].

There are also other types of networks uncovered in real-world systems [7], including

small-world network model, initially proposed by Duncan Watts and Steven Strogatz [8].

This model integrates characteristics from both regular lattices and random graphs. For

instance, in a social network, most individuals have close friends nearby, forming local clusters

seen in regular lattices. Simultaneously, they also maintain a few connections with people in

distant locations, fostering global connectivity, a feature reminiscent of the long-range edges

observed in random graphs.
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1.2 Dynamics and resilience

Despite the profound diversity in the scale and purpose of networks observed in nature

and technology [1], [2], [9], their topology exhibits several highly reproducible and often uni-

versal characteristics: many real networks display the small-world property [8], are scale-free

[5], [6], and develop distinct community structures [10], [11]. When it comes to the dynamical

processes occurring on these networks, studies on synchronization, spreading processes, and

spectral phenomena have provided important insights into the interplay between network

topology and dynamics. Additionally, recent efforts have explored universal patterns in the

dynamics of various complex systems [12]. In this context, we will introduce a commonly

used framework for exploring the resilience and simplification of complex systems in the later

chapters.

1.2.1 Network dynamics

For a networked system consisting of N nodes, one can use the following mathematical

framework to describe the node activity xi(t),

dxi

dt
= F (xi) +

N∑
j=1

AijG(xi, xj). (1.7)

The first term F (xi) on the right-hand side of Eq. (1.7) describes the self-dynamics, encom-

passing processes like influx, degradation or reproduction. Also, each node is influenced by

its neighbouring node j, capturing by the second term G(xi, xj), representing pairwise in-

teractions. The adjacency matrix A is determined by the connectivity between components

and the network topology. With the appropriate choice of functions F (xi) and G(xi, xj),

this framework can be mapped into many different dynamical models, including ecological

systems, epidemic spreading, biological dynamics, and social influencing.

Additionally, utilizing this framework, one can investigate network dynamics in vari-

ous conditions, including dynamics in the presence of perturbations, time delays, external

controls, to gain insights into network resilience. For instance, in an ecological network, the

introduction of a new species or the removal of a predator can be considered a perturbation.

Studying how the network responds to such changes falls under this category. It also serves

a backbone for network simplification, allowing one to explore the network reduction while

maintaining the predictability on the original system dynamics.
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1.2.2 Resilience and critical transitions

This thesis focuses specifically on the research theme of network resilience and the as-

sociated critical transitions by employing the general framework of network dynamics. Many

systems on our planet shift abruptly and irreversibly from the desired state to an undesired

state due to external perturbations or internal failures. Some examples of critical transi-

tions are mass extinctions within ecosystems, cascading failures in infrastructure systems,

and changes in human and animal social networks. Often, these transitions are associated

with a “tipping point”, where the system crosses a threshold and then it undergoes a critical

transition [13].

Therefore, it is important to investigate the system resilience, as it defines a system’s

ability to withstand the presence of errors, adapt to disturbances, and maintain its function-

ality or recover quickly when faced with external perturbations [14], [15]. For instance, in

ecological networks, network resilience is crucial for maintaining biodiversity and ecosystem

stability. Critical transitions may occur when key species go extinct or face drastic changes

in population dynamics, leading to cascading effects on other species and potentially causing

the ecosystem to shift to an alternative undesired state. Understanding network resilience

and critical transitions is essential for designing robust and adaptive systems across various

domains, from ecology to technological networks.

1.2.3 Dimension reduction

In the realm of real-world systems, spanning from ecological webs to neuronal networks

and infrastructure systems, the sheer complexity arises from a multitude of interconnected

components [1], [2]. To gain a comprehensive understanding of system resilience, stability,

and the emergence of spreading phenomena, it becomes imperative to quantitatively grasp

the system’s evolution. However, as the number of components escalates and system intricacy

amplifies, such endeavors encounter increasing challenges. Analytical tools may be elusive,

and computational demands may become prohibitively vast.

A promising avenue to tackle these challenges involves the application of dimension

reduction. This strategy aims to transform the dynamics of an original system comprising

N nodes, as defined in Eq. (1.7), into a simplified version characterized by a substantially

reduced number of effective components, denoted as m (where m ≪ N). The primary

objective is to preserve key properties of the original dynamics, including global behavior
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and critical transitions.

By distilling the essence of system behavior into a more manageable form, dimension

reduction provides a pathway to overcome the computational hurdles and analytical com-

plexities associated with large-scale systems. Recent studies have sought to develop the

dimension reduction framework for homogeneous networks by employing methods such as

mean-field theory or the eigenvalue-based approach [16], [17]. However, ongoing research

is essential to develop a more general framework applicable to diverse network structures,

especially heterogeneous networks.

1.2.4 Social dynamics and social influencing

Network science has also found valuable applications in comprehending social dynam-

ics, including opinion formation, and language evolution. These complex phenomena are

often modeled in terms of a small set of variables whose dynamics is determined by so-

cial interactions between a set of connected individuals/agents taking place on a networked

system. Such general framework enables the exploration of social behavior, the spread of

cultural norms, and the emergence of consensus [18]. The emerging tipping points and non-

linear properties, which underpin the most interesting characteristics of social systems, are

investigated through an array of tools ranging from the agent-based model to mean-field

theory [19].

Recent studies have increasingly involved the presence of zealots in opinion dynamics

for understanding their impact on the resilience of consensus and their crucial role in critical

transitions [20], [21], [22]. Often referred to as committed agents, those individuals never

change their opinions while actively seeking adoption of their own opinion by others. The

phenomenon of zealotry resonates across diverse disciplines, exemplified by religious zealots

who maintain their faith and actively influence others to adopt their beliefs, resulting in the

formation of distinct religious communities with shared values and practices. In the realm

of online social networks, influencers dedicated to promoting specific ideologies, products, or

lifestyles also embody zealots. Their commitment significantly shapes the opinions and be-

haviors of their followers, contributing to the emergence of consensus within their respective

communities.

In this thesis, our focus will be specifically on the Naming Game (NG) with the presence

of committed agents for understanding language formation, opinion dynamics and consen-
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sus emergence. Initially designed to simulate the formation of a vocabulary from different

observations, the NG model has demonstrated how a population of agents can collectively

converge to a single unique word for labeling different objects or observations in their envi-

ronment [23]. In the NG model, agents have only peer-to-peer pairwise interactions without

central control, but nevertheless manage to reach a global consensus. Recent applications

extend the NG model to explore the dynamics of social influence and the evolution of com-

peting opinions [21], [24]. The exploration of such opinion dynamics model provides not only

theoretical insights but also practical applications for understanding and navigating complex

social systems.



CHAPTER 2

UNIVERSALITY OF NOISE-INDUCED RESILIENCE

RESTORATION IN SPATIALLY EXTENDED ECOLOGICAL

SYSTEMS

2.1 Introduction

Resilience, a system’s ability to retain its basic functionality when errors and failures

occur, is a defining property of many complex systems [14], [15], [16]. Theoretical models

of resilience loss and transitions between alternative states are used to study unanticipated

and drastic changes. In real-world systems, many critical transitions are observed, including

catastrophic shifts in ecological systems [25], [26], blackouts in power grids [27], financial

crises [28], climate changes [29], human depression [30]. These abrupt shifts may arise in the

presence of alternative stable states. They can be modeled as critical transitions causing the

resilience loss of the desired state, after which the systems switch from functional to a dys-

functional state [31], [32], [33]. Ecologists are particularly concerned about sudden critical

switches between alternative stable states [25], [26]. As the system approaches the tipping

point, its behavior becomes barely predictable when the gradual change of some environmen-

tal factors leads to the drastic change of the system state. Once a system loses its resilience

and becomes dysfunctional, restoring the environmental conditions only to those existing be-

fore the collapse is often insufficient. Instead, environmental conditions should be recovered

to the critical point where the undesired state is destabilized and then resilience restoration

would occur. In this work, we study the resilience restoration in spatially-extended ecosys-

tems, which focuses on a system’s ability and required time to recover to its desired state

after the transition to the undesired state. Even though various restoration methods targeted

at specific systems have been proposed, stochastic perturbations receive little attention [34],

[35], [36]. On the other hand, stability of stochastic dynamical systems containing only one

variable has been extensively explored. Also, it has been known for a long time that noise

can greatly affect the stability and resilience of the system with bistable states. In particular,

it has been shown that noise can induce transitions between alternative stable states and the

Portions of this chapter previously appeared as: C. Ma, G. Korniss, B. K. Szymanski, and J. Gao,
“Universality of noise-induced resilience restoration in spatially-extended ecological systems,” Commun.
Phys., vol. 4, pp. 1–12, Dec. 2021.
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required time to transition has been established by computing the mean first passage time

(MFPT) [15], [37], [38], [39]. Those studies indicate that the single-variable systems can

switch between alternative stable states in the presence of noise. One may expect that noise

can also induce transitions in multi-variable systems. However, one should keep in mind

that such noise-induced transition occurs only when the system is close to the bifurcation

point where the basin of attraction of the current stable state is close to vanishing. If the

system is far from this bifurcation point, noise may drive the system back and forth between

alternative stable states, or even not be able to trigger any transition. Since environmen-

tal stochasticity is an inherent property of real-world ecosystems, we investigate resilience

restoration after introducing stochastic perturbations into multi-variable systems, providing

a theoretical understanding of critical transitions in spatially-extended systems subject to

environmental stochasticity.

Despite advances in understanding the macroscopic characteristics of resilience restora-

tion, previous research has mostly focused on single-variable or low-dimensional systems,

which do not account for the exceptionally large number of variables that in reality are

needed to control the state of a complex system. Indeed, many real-world systems consist

of numerous components connected via a complex set of weighted, often directed, interac-

tions [2]. The complicated interactions may lead to phenomena not arising in single-variable

systems. For example, in the ecosystems, the recovery (or extinction) of a species in one lo-

cation can impact the states of this species in the neighboring locations, leading to a recovery

(or extinction) over the entire system [40]. Accordingly, a full understanding of the system

evolution, stability, and resilience cannot be gained without considering interactions among

a sufficiently large number of components. However, hindered by the high-dimensionality of

interaction topology and the nonlinear evolution dynamics, few analyses of critical transitions

and resilience restoration had been done directly on high-dimensional systems consisting of

a great number of participants until the effective reduction theory was recently developed

by Gao et.al. [16]. This theory enables us to effectively reduce a multi-dimensional com-

plex system to a one-dimensional system by capturing the average activities of the original

system. Furthermore, Liang et.al. [41] designed a universal indicator for critical transitions

in complex networks and concluded that noise compensates for the structural defects of

complex networks, indicating that noise may alter the critical threshold. Jiang et.al. [42]

studied mutualistic networks through dimensional reduction and claimed that the tipping
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point can be predicted accurately even in the presence of noise. Tu et.al. [43] developed

an analytical framework for collapsing complex N -dimensional networked systems into an

M + 1-dimensional manifold as a function of M effective control parameters with M ≪ N .

Nonetheless, our study shows that noise eliminates the deterministic critical threshold, and

the recovery of the entire system from the dysfunctional state is possible in the presence of

perturbations as long as noise is strong enough to trigger the transition for just one com-

ponent. This scenario is very likely to occur when the system is close to the deterministic

threshold where the undesired state loses stability. The farther away the system is from this

point, the more difficult it is for noise to induce the transition.

The time required to recover a system is a quantity of great interest but determined by

many factors, including system sizes, noise strengths, and dynamical functions. Nucleation

theory provides an elegant bridge between the noise-induced transition and the spread of

such transition over the entire system. The classical approach to homogeneous nucleation

theory was originally developed to describe phase transformation in materials [44], [45], [46],

[47], in particular in ferromagnetic [48], [49] and ferroelectric systems [50], [51]. Recently,

it was applied to invasion phenomena in spatial ecological systems [52], [53], [54], [55].

Korniss et.al. [53] and O’Malley et.al. [54] studied ecological invasion in spatially-extended

systems with competition. They discriminate between two fundamental modes of nucleating

invasive clusters (single-cluster vs. multi-cluster) and their time-evolution and stochastic

features. A more recent study by Michaels et.al. [56] combined nucleation theory with local-

scale positive feedback and offered a novel way to understand transitions and resilience in

ecological systems. The theory of nucleation and growth describes how clusters are generated

and spread out [48]. Our study reveals the crucial effects of noise strength and system size on

transition features. Generally, the stronger noise triggers the transition faster, and the larger

system takes less time to recover compared with the smaller system under the same intensity

of noise. For large systems or under strong noise, there are multiple clusters nucleated

simultaneously in the beginning, and these clusters spread out to their neighbors and to the

whole system. Our numerical simulations reveal that the transition time is narrowly centered

at an average value, signaling a deterministic feature. For small systems or under weak noise,

one cluster is generated first, which expands until the entire system finishes transitions. The

transition times vary stochastically for different realizations of noise, and they universally

follow an exponential distribution.
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2.2 Mathematical framework

The current analytical framework for noise-induced transitions is specifically targeted

at the low-dimensional system consisting of only a few interacting components (or only one

variable) [33], [37], [57], [58], [59]. It would be highly challenging to directly analyze the

system consisting of many interacting components (for example, the square lattice). Before

the investigation of multi-variable systems, it is helpful to understand the role of noise in

single-variable systems and the possibility of transitions between alternative stable states.

2.2.1 Single-variable system

For a single-dimensional system, the dynamics may follow the general form as,

dx

dt
= f(x, β) + η(t). (2.1)

In Eq. (2.1), f(x, β) governs the deterministic dynamics as the tunable parameter β captures

the changing conditions, and η(t) is delta-correlated noise with zero mean and variance

⟨η(t)η(t′)⟩ = σ2δ(t− t′), where σ is the standard deviation of the noise, which is referred to

as noise strength. If the system has a fixed point, x0, it satisfies f(x0, β) = 0. This fixed

point is stable if ∂f(x,β)
∂x

∣∣∣
x0

< 0, defined by the linear stability condition. These two equations

enable us to derive the resilience function x(β), which represents all the possible steady states

of the system as a function of β, as shown in Fig. 2.1a. This resilience function demonstrates

that when the control parameter, β, is greater than βc2 , the system only has one stable

fixed point, denoted as xH, indicating a resilient state. The system will always recover to

the fixed point, xH, for any state perturbations. When the parameter is less than βc1 , the

system also has a single fixed point, xL, indicating a collapse of the system. The system

is not restorable, unless we change the parameter β. In this work, we particularly focus

on the parameter space where β is between βc1 and βc2 and close to one of the bifurcation

points, such that the system has one unstable fixed point (the dashed line) and two stable

fixed points, each with very different sizes of basin of attraction. In the absence of noise, to

trigger the shift from xL to xH, the environmental conditions would need to be restored all the

way to βc2 , to allow for a transition back to xH. However, noise of the appropriate intensity

can trigger the transition without restoring the condition to βc2 . For example, for a system

with β1 and the system is in the low state, this system can recover to the high state if the
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noise has a chance to push the system across the unstable fixed point. Furthermore, for two

systems (the system 1 and the system 2) with parameters, β1 and β2 (β2 > β1), respectively,

it is easier to restore the system 2, because the undesired state of the system 2 is closer to the

unstable fixed point. Here, we introduce a normalized variable ρ(t) in Eq. (2.2) to describe

the state behavior during the restoration process. Thus, the normalized stable fixed points

are ρL = 0, ρH = 1 and the normalized unstable fixed point is ρu (ρu ∈ [0, 1]),

ρ(t) =
x(t)− xL

xH − xL

. (2.2)

a b

c d

Figure 2.1: The transition in the single-variable system. (a) The resilience
function of a general bistable system. For the bifurcation parameter
β ∈ (βc1 , βc2), there are two stable states (xL, xH) and one unstable
state (xu). The initial stable state (xL) evolves to the unstable state
(xu) by the aid of noise and is then naturally attracted to the other
stable state (xH) by its deterministic dynamics. (b) and (c) display
the evolution of the rescaled state ρ in the presence of noise. (b) As
β2 is closer to the critical value βc2 than β1, the unstable state ρu2 is
lower, making the barrier in the landscape easier to cross in the
presence of the same strength of fluctuations. The lifetime τ2 is
thus smaller than τ1. (c) The parameter β is the same, leading to
the same landscape. In the presence of stronger noise σ2, it is easier
to drive the system to get over the barrier, causing τ2 to be smaller
than τ1. (d) shows the simulation results of the average lifetime ⟨τ⟩
under different values of β and different noise strength. The dashed
line is fitted based on Eq. (2.4).
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In the following analysis, we focus on the case when the desired state ρH has a much

larger basin of attraction than the undesired state ρL, suitable to examine the “one-way

recovery” from ρL to ρH. Because of symmetry, the insights gained from this investigation

should be readily applicable to the transition from ρH to ρL when ρL has a larger basin of

attraction. In this case, the basin of attraction of the state ρL is much smaller than that of

ρH, such that the value of the unstable state ρu is very close to ρL, increasing the chance

for perturbations to push the system from the state ρL over the unstable fixed point ρu

until the system gets attracted to the state ρH. Notably, the backward transition is highly

improbable by the same level of perturbations because of the much stronger attraction of

the state ρH. To quantify the time needed for the transition from ρL to ρH, the half lifetime,

τ (mathematically, τ = {t|ρ(t) = 0.5}), can be safely used as an indicator of the degree of

inertia associated with the transition from the undesired state to the desired one. One can

choose any value as the cutoff as long as it is sufficiently larger than the unstable state ρu

[53], [60]. The lifetime τ is determined by the noise strength σ and the relative stability of

alternative stable states controlled by β. Intuitively, larger noise strength indicates stronger

fluctuations, which increases the chances of transition, making τ smaller (Fig. 2.1c). On the

other hand, as β increases, the basin of attraction of the stable state ρH gets larger, making

the transition from ρL to ρH easier so that τ typically decreases (Fig. 2.1b). To better

illustrate the transition process, the underlying landscape picture [61] is introduced, and the

effective potential energy is provided by Eq. (2.3) with zero potential energy at x = 0. In

the landscape representation, stable states are traditionally treated as valleys, and unstable

states are pictured as hills [25], [62], [63]. The transition between stable states can be viewed

as the transition from one shallow valley to a deeper valley by crossing the barrier.

Veff(x) = −
∫ x

0

[f(x′)] dx′. (2.3)

The transition time from one stable state to the other is a random variable because

of the stochastic fluctuations, but the average value, ⟨τ⟩, presents interesting properties.

Following the derivations of the Kramers formula for the escape rate over a potential barrier

by particles of Brownian motion [64], [65], the average transition time ⟨τ⟩ can be calculated
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through the analysis of the mean first passage time (MFPT), which is given by Eq. (2.4),

⟨τ⟩ = 2π√
V ′′(xL)|V ′′(xu)|

e2[V (xu)−V (xL)]/σ
2

. (2.4)

From the quantitative predictions, one can notice that ⟨τ⟩ increases exponentially with

the potential energy difference ∆V = V (xu) − V (xL) between the low stable state and the

unstable state (also interpreted as the barrier height) and decreases with noise intensity σ2,

which is numerically verified in Fig. 2.1d. The analysis of single-variable systems provides

theoretical support for our intuitive assumption that the low barrier height and strong noise

facilitate transitions, leading to resilience restoration, see [58], [64] for derivation). With

the knowledge of the average lifetime ⟨τ⟩ for single-variable systems available, we are ready

to investigate transitions in multi-variable (spatially-extended) systems. Nucleation theory

is utilized to analyze the generation and spread of the transition in multi-variable systems

under external fluctuations.

2.2.2 Spatially-extended system

Generally, the evolution of a system that consists of N coupled components under

external perturbations is described by Eq. (3.1). This study focuses on the spatially-extended

ecosystem, where one type of species is considered, and its density varies in two-dimensional

space and is discretized according to the square lattice topology with periodic boundaries.

The deterministic dynamics of each node follows the same self-dynamics F (xi) and the same

interaction dynamics G(xi, xj), and parameters of these functions are also set uniformly for

all components. The element of the adjacency matrix A is either 0 or a positive value R,

which decides the coupling strength between interacting elements. Additionally, to model

the external fluctuations acting on the node i, delta-correlated Gaussian noise ηi(t) with zero

mean and variance ⟨ηi(t)ηj(t′)⟩ = σ2δijδ(t− t′) is introduced, which is the same as the noise

applied to the single-variable systems. This general framework can be used to describe a

wide range of coupling systems under external perturbations,

dxi

dt
= F (xi) +

N∑
j=1

AijG(xi, xj) + ηi(t). (2.5)

Utilizing the dimensional reduction theory [16], the deterministic evolution of multi-
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variable systems can be reduced to Eq. (2.6), containing only one variable, xeff ,

dxeff

dt
= F (xeff) + βeffG(xeff , xeff). (2.6)

In the lattice, the fixed states and their stability for each component are proved to be

the same as in the reduced one-dimensional system [66]. Hence, according to the analysis of

single-variable systems, for the specific values of effective interaction strength (β ∈ (βc1 , βc2)),

each component in this system has two stable states and one unstable state. In the presence

of noise, the transition from the low state xL to the high state xH is possible for every

component. Once the first transition occurs to the node i, its neighbors will also recover

through the interaction with it. To show the overall evolution properties of the entire system,

the global state ρ(t) is defined in Eq. (2.7) by taking the average of the individual state value,

ρ(t) = ⟨ρi(t)⟩N =
1

N

N∑
i=1

ρi(t). (2.7)

The spread of such transition can be well described by the theory of homogeneous

nucleation and growth in finite systems [48], [53], [54], and this theory can also predict the

spatial-clustering pattern formed during the spreading process. The transition from ρL to

ρH occurs to some node at first, nucleating a cluster, and this cluster continues to expand

until it fills the entire space, or the cluster’s edge reaches the edge(s) of other clusters

that have nucleated in the system. Homogeneous nucleation makes two assumptions [53]:

nucleation occurs in a Poisson process with a constant rate I both temporally and spatially;

once a cluster nucleates, it grows homogeneously with a constant radial velocity v. Since the

interaction environments for all components are identical, and the perturbations they receive

come from the same distribution, each node has the same chance to nucleate a cluster, which

satisfies the assumptions of homogeneous nucleation.

As predicted by homogeneous nucleation theory, the restoration process exhibits differ-

ent patterns for small systems and large systems when the nucleation rate I is fixed. Small

systems exhibit the single-cluster pattern because the number of candidates is so limited that

the first cluster nucleates and spreads out to the rest of the system before the second possible

cluster emerges. Since the nucleation for a specific individual follows a Poisson process, the

global state ρ is expected to evolve distinctly for different noise realizations. Also, the time
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to nucleate the first cluster, tn, and the lifetime, τ , are inherently random. We introduce

the waiting time to quantify the time to the system recovery. Because the underlying pro-

cess is modeled as the random Poisson process, the complementary cumulative probability

distribution of waiting time Pnot is derived as an exponential function, which represents the

probability that the global state ρ has not exceeded 0.5 by time t. (Note that our chosen

conventional cut-off value 0.5 does not affect the findings.) The distribution of waiting time

Pnot is expressed as,

Pnot(t) =

1, t ≤ tg

e−(t−tg)/⟨tn⟩, t > tg

, (2.8)

where ⟨tn⟩ is the average time elapsing until the first cluster nucleates (i.e., the first transition

occurs); tg represents the time required for the global state ρ to reach 0.5 after the first cluster

emerges, and this time depends on the linear size of the system, tg ∼ N1/2/v, where v is

the constant radial velocity. Also, ⟨tn⟩ ∼ (IN)−1, where I is the nucleation rate per unit

area. The average transition time from the initial undesired state to the desired state or the

average lifetime of the initial state is expressed as ⟨τ⟩ = ⟨tn⟩ + tg. For small system sizes

or in the weak-noise limit, the dominant term in the lifetime is the nucleation time, hence

⟨τ⟩ ∼ (IN)−1.

In contrast, for large systems, more than one independent cluster nucleates and expands

separately, leading to the multi-cluster mode. Spatial self-averaging reduces randomness of

the global state ρ, making each individual τ closer to the average value and pushing Pnot

closer to a step function. In the large system-size limit, the lifetime distribution is narrowly

centered about the average. Based on Avrami’s Law, for sufficiently large systems [44], [45],

[46], [50], [51], the evolution of ρ can be expressed in a deterministic form as ρ = 1−e−
πv2I

3
t3 .

By setting ρ = 0.5 (without loss of generality), the average lifetime for the multi-cluster

mode can be obtained as, ⟨τ⟩ = (3 ln 2
πv2I

)1/3. Then the evolution of ρ can be described by,

ρ = 1− e−( t
⟨τ⟩ )

3 ln 2. (2.9)

According to Avrami’s Law and homogeneous nucleation in finite systems [48], [53],
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[54], the average lifetime of two transition modes is summarized as,

⟨τ⟩ ∼


1
IN

, N
1
2 ≪ R0 (single-cluster mode)

I−
1
3 , N

1
2 ≫ R0 (multi-cluster mode)

, (2.10)

where R0 ∼ (v
I
)1/3 ∼ I−1/3 is the typical distance between separate clusters (and N1/2 is

the linear size of the two-dimensional lattice). Transition patterns for different system sizes

and nucleation rates are classified into two distinct cluster nucleation modes, separated by

a crossover region centered around the curve, N1/2 ∼ R0. Small systems or low nucleation

rates induce the single-cluster mode, while large systems or high nucleation rates exhibit the

multi-cluster mode.

By constructing a scaling function [67] with the following asymptotic behavior,

S(u) ∼

u2, u ≫ 1 (single-cluster mode)

const., u ≪ 1 (multi-cluster mode)
, (2.11)

where u = R0/N
1/2 ∼ v1/3/(I1/3N1/2) ∼ I−1/3N−1/2, one can capture the average lifetime of

any system size and nucleation rate (including the crossover between the single-cluster and

multi-cluster regimes),

⟨τ⟩ = I−
1
3S(R0/N

1
2 ) = I−

1
3S(I−

1
3N− 1

2 ) . (2.12)

Motivated by the study on the average transition time ⟨τ⟩ for single-variable systems

[Eq. (2.4)], the relationship between local nucleation rate and noise strength in spatially-

extended systems is expected to scale as

I ∼ e−
c
σ2 , (2.13)

where c is a constant specific to the given dynamics and can be empirically fitted in the weak-

noise case. In turn, the average lifetime ⟨τ⟩ for different system sizes and noise strength can

be described by a universal scaling function: employing Eqs.(2.12) and (2.13), when plotting

⟨τ⟩e−
c

3σ2 vs. e
c

3σ2 /N
1
2 , all curves should collapse on the same curve S(u).
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2.3 Resilience restoration of mutualistic systems

To verify the predictions by nucleation theory of the noise-induced transition patterns

in systems with alternative stable states, we first study resilience restoration of the mutual-

istic system.

2.3.1 Dynamical model

We use Eq. (2.14) and Eq. (2.15) as the deterministic dynamics to track the abundance

of one species distributed among a square lattice in the mutualistic system [68], [69]. The

self-dynamics F (xi) describes that the growth of the species in each location follows the

logistic law with the Allee effect [70], and the dynamics G(xi, xj) accounts for the mutualistic

interaction between the species in two neighboring locations i and j through the interaction

strength Aij defined in Eq. (2.5).

F (xi) = Bi + xi

(
1− xi

Ki

)(
xi

Ci

− 1

)
(2.14)

G(xi, xj) =
xixj

Di + Eixi +Hjxj

. (2.15)

The parameters are node-uniform and set as Bi = B = 0.1, Ci = C = 1, Di = D = 5,

Ei = E = 0.9, Hj = H = 0.1, Ki = K = 5, and the interaction strength R = 1 (leading to

the effective interaction strength βeff = 4). At some moment, if the species in all locations

are trapped in the low stable state xL, they will stay at this state forever if there is no action

or perturbation. It is, for sure, not desired from the ecological viewpoint. If one would

like to keep the system always in the high stable state xH, a straightforward approach is

to increase the interaction strength to ensure that βeff is larger than the critical bifurcation

value βc2. In this case, the system will be attracted to the high state no matter where it

starts. Alternatively, noise has shown the ability to induce the transition between two stable

states from the study of one-variable systems. We are particularly interested in how noise

assists the resilience restoration (i.e., transferring the system from the undesirable state xL

to the desired state xH).
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2.3.2 Patterns of resilience restoration

Let us consider the case when all nodes in the system start from the low state xL,

indicating a collapsed state. Observed from simulations, the proper noise can excite some

node to xH, and such transition spreads out to its neighbors via interaction until the rest of

the system completes transitions. According to homogeneous nucleation theory, for different

system sizes and nucleation rates, two possible transition patterns are present. We success-

fully show the snapshots of two cluster modes by numerical simulations, the single-cluster

and multi-cluster mode.

Notably, these two modes possess radically distinct properties. For the single-cluster

mode (Fig. 2.2a), there is only one node that switches from xL to xH in the beginning, and

the remaining nodes shift to xH through the interactions with the neighbors which have

already transitioned; while for the multi-cluster mode (Fig. 2.2e), there is more than one

node in the separate location that transfers to xH simultaneously. It is expected since for

the large system, there are enough candidates to receive fluctuations, increasing the chance

to induce independent transitions.

As predicted by nucleation theory, the evolution of ρ(t) for the single-cluster mode

and multi-cluster mode differs a lot, and numerical results confirm the difference. Fig. 2.2b

and Fig. 2.2f display 100 realizations for system sizes N = 100 and N = 10000 under the

same intensity of noise. For the single-cluster mode (Fig. 2.2b), the evolution varies for

individual realizations, so the transition times are different, indicating the uncertain evo-

lution feature. In contrast, for the multi-cluster mode (Fig. 2.2f), the evolution of ρ(t) is

similar for different realizations, implying that the evolution is deterministic in the infinite

system-size limit. Following this, the waiting time distribution Pnot for two cluster modes

is also verified (Fig. 2.2c). For the single-cluster mode, Pnot is initially constant and then

decreases exponentially with respect to t verifying Eq. (2.8). The slope of the distribution

gets more negative as noise becomes stronger suggesting a larger nucleation rate. For the

multi-cluster mode, Pnot gets closer to a step function (Fig. 2.2g) as noise strength increases.

This is because the larger nucleation rate induces more separate clusters for a given system

size and thus leads to the more deterministic evolution by self-averaging. From the theo-

retical analysis, the global state ρ for the multi-cluster mode evolves predictably according

to Eq. (2.9). Whereas, for the finite-size system, the evolution of the multi-cluster mode

(Fig. 2.2h) is not perfectly deterministic, but still much less random than the single-cluster
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mode (Fig. 2.2d).

a b c d

e f g h

Figure 2.2: Single-cluster and multi-cluster modes in the mutualistic system.
(a) One snapshot for the state ρi of each node under the noise of
the standard deviation σ = 0.1. Initially, all of the nodes are at the
low state xL. At some time later, the transition to the high state xH

occurs to one node, which is treated as a single cluster. Such
transition then spreads out to its neighbors. (b) The evolution of
the global state ρ for 100 realizations of the single-cluster mode (a).
(c) The probability distribution of waiting time Pnot for the fixed
system size and the various noise strengths σ = 0.08, 0.09, 0.1. The
single dots are simulation data, and different types of lines are
obtained by linear fit according to Eq. (2.8). (d) The evolution of
the average global state ρ using the same data as in (c). (e) One
snapshot shows the state ρi of each node for the case when all
nodes starts from xL initially, and σ is also 0.1. Different from (a),
the transition to xH occurs at several separate nodes, and they
expand independently, forming the multiple cluster. (f) The
evolution of the global state ρ for 100 realizations, which are more
centered around a certain value instead of being random in (b). (g)
The distribution Pnot for N = 10000 and σ = 0.08, 0.09, 0.1, which
approaches the step function as σ increases. (h) The evolution of
the global state ρ averaged over 100 realizations using the same
data as in (g). The single dots are simulation data, and different
types of lines are obtained by linear fit according to Eq. (2.9).

2.3.3 The role of system size and noise strength

The cluster mode not only depends on the system size but also relies on the nucleation

rate, which is decided by noise strength. Typically, large systems under strong noise belong

to the multi-cluster mode, while small systems under weak noise exhibit the single-cluster
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mode. However, low nucleation rates resulting from weak noise can induce the single-cluster

mode even for a very large system (Fig. 2.3a, 2.3b). Also, the average nucleation time

⟨tn⟩ = (NI)−1 for the single-cluster mode is validated. The average lifetime ⟨τ⟩ behaves

differently for the two cluster modes and exhibits two regimes (Fig. 2.3c), and its value

increases exponentially as σ−2 increases for both cluster modes as predicted by Eq. (2.10).

For the given dynamics, ⟨τ⟩ entirely depends on the system size N and noise strength σ

(Fig. 2.3c, 2.3d), and there is a decrease as N or σ increases. One can also notice that the

slope of ln⟨τ⟩ as a function of σ−2 for the single-cluster mode is larger than the slope for the

multi-cluster mode.

ba

c d

Figure 2.3: The influence of system size N and noise strength σ on transition
modes and average lifetime. Initially, all of the nodes are at the low
state xL, and the time to switch to the high state xH is measured.
(a) The average nucleation time ⟨tn⟩ changes with noise strength for
different system sizes. (b) The linear relationship between ⟨τ⟩ and
N−1. (c) Two regimes with different slopes of ln⟨τ⟩ as a function of
σ−2 corresponding to two cluster modes. (c) and (d) summarize the
effects of system size N and noise strength σ on the average lifetime
⟨τ⟩. The increase of noise strength lowers the average lifetime. For
the single cluster mode, the larger system requires less time to
complete transitions.

2.3.4 Phase diagram and finite-size scaling

In accord with the scaling theory, Eqs. (2.10)-(2.12), the two distinct cluster-growth

modes are separated by a crossover region centered around N1/2 ∼ R0 (Fig. 2.4a). One
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should note that this crossover (centered around the dashed curve in Fig. 2.4a) is not a sharp

transition separating the two cluster-growth modes. The gradual change of the background

color (red-white-blue) is to qualitatively illustrate the continuous nature of the crossover

from the single-cluster mode to the multi-cluster mode.

a

b

c

d

e

single cluster

multi cluster

Figure 2.4: Crossover between two cluster modes for the sample mutualistic
system. Initially, all of the nodes are at the low stable state xL, and
they are driven to the high stable state xH in the presence of noise.
(a) According to Eq. (2.10), two cluster modes are distinguished.
The dashed curve is drawn according to the equation N1/2 = e

c
3σ2 ,

where c is a fitted parameter. The gradual change of the
background color (red-white-blue) is to qualitatively illustrate the
continuous nature of the crossover from the single-cluster mode to
the multi-cluster mode. The dashed curve corresponds to the
center of the crossover region (provided by the above formula),
separating the two cluster-growth modes. (b) and (c) describe the
single-cluster mode (in red), while (d) and (e) display the
multi-cluster mode (in blue). (b) The distribution Pnot for the fixed
noise strength σ = 0.1 and different system sizes
N = 9, 16, 25, 36, 49, 64, 81, 100. (c) Pnot for the fixed weak noise σ = 0.06
and N = 100, 900, 2500, 10000. In both (b) and (c), the single dots are
simulation data, and different types of lines are obtained by linear
fit according to Eq. (2.8). (d) Pnot for the fixed noise strength
σ = 0.1 and different system sizes N = 900, 2500, 10000. (e) The
evolution of the global state ρ using the same data as in (d).

The small system (Fig. 2.4b) or weak noise induces (Fig. 2.4c) the single-cluster mode,
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while the large system or relatively strong noise (Fig. 2.4d, 2.4e) produces the multi-cluster

mode. According to the proposed scaling function Eq. (2.12), employing and plotting prop-

erly scaled variables, ⟨τ⟩e−
c

3σ2 vs. e
c

3σ2 /N
1
2 , we expect that all numerical data would collapse

onto the scaling function S(u), capturing general nucleation behavior [67].

2.3.5 The universal scaling law
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Figure 2.5: Scaling between two cluster modes in the mutualistic system. For
(a) – (c), the system starts from the low state xL, and the time to
reach the state xH is characterized by τ . (a) The relationship of ⟨τ⟩
and e−

c
σ2 differs between two cluster modes. (b) The finite-size

scaling is drawn by assuming the slope of multi-cluster mode in (a)
is −1

3
. For (c) and (d), N = 10000 and σ = 0.08. (c) The nucleation

rate increases before the average state of nodes which have not
transitioned stabilizes. (d) The system starts to evolve from xL and
the prepared state, respectively. The evolution of the global state ρ
for the latter case agrees better with Eq. (2.9) than the former
case. For (e) – (h), the system starts from the prepared metastable
state, and the time to reach the state xH is recorded as τ . (e) The
average lifetime ⟨τ⟩ for two cluster modes. (f) The finite-size
scaling is consistent with the theoretical prediction in Eq. (2.12).
(g) The nucleation rate needs less time to stabilize compared with
(c). (h) The evolution of the global state ρ for the multi-cluster
mode when N = 10000 and σ = 0.08, 0.085, 0.09, 0.095, 0.1. In both (d)
and (h), the single dots are simulation data, and different types of
lines are obtained by linear fit according to Eq. (2.9).
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Nevertheless, observed in Fig. 2.5a, for the multi-cluster mode, ⟨τ⟩ is not precisely

proportional to I−1/3. Therefore, the two transition modes cannot be scaled in a satisfactory

fashion as the scaled data for the multi-cluster regime is not constant (Fig. 2.5b), which

contradicts the assumption of Eq. (2.11). The deviation from Avrami’s Law suggests that the

assumption(s) of homogeneous nucleation might be violated. For a large system subjected to

relatively strong noise, which guarantees the multi-cluster mode, the nucleation rate changes

in the beginning (Fig. 2.5c), defying the assumption of constant nucleation rate. The initial

rise of the spatially distributed low state for the nodes which have not been driven to the high

state indicates that the initial state is not a metastable state. In the presence of noise, the

metastable state is a state distribution where all nodes are around the low state ρL, but some

nodes are closer to the unstable state ρu and some are even below the state ρL. The system

in the presence of noise needs time to reach a new metastable state which is different from

the low stable state. To keep the nucleation rate constant, one should use the metastable

configuration as the initial condition. However, as seen in Fig. 2.5c, some cluster have already

emerged before the system reaches the metastable configuration indicated by the increase of

the average low state and the nucleation rate, so that the preprocessing of the initial state

is needed to forbid any transition before the metastable configuration is constructed. One

can artificially prepare the system close to the metastable state by reverting the node back

to ρL if any other sites nucleate during preprocessing.

To gain further insight into the source of this discrepancy, we carried out simulations

with the initial configurations being very close to the metastable state. In such a case, the

nucleation rate I stabilizes much faster (Fig. 2.5g) compared with the system without pre-

processing. Afterward, the nucleation rate is roughly constant, so homogeneous nucleation

theory can be reliably applied. This leads to a better agreement between the simulation

and the theory, as the evolution of ρ is closer to what Eq. (2.9) postulates (Fig. 2.5d, 2.5h),

and the data from the two cluster modes follows the scaling function (Fig. 2.5e, 2.5f). It is

expected that the average lifetime ⟨τ⟩ agrees better with Eq. (2.10) if the metastable state

can be perfectly prepared.

2.4 Restoration of diffusion dynamics

To further validate the proposed theory, we adapt three well-studied ecological models

exhibiting alternative stable states [71], [72] with diffusive interaction and then apply the
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above theory to investigate the transition features.

2.4.1 Examples of some dynamics

The self-dynamics for three diffusion models are defined below.

The harvesting model in Eq. (2.16) describes the growing resource biomass with fixed

grazing rate [31]. The first term on the right hand side of Eq. (2.16) describes logistic growth,

where r is the maximum growth rate, and K is the carrying capacity. The second term is the

“Holling’s type 3” consumption function [73]. The system transitions from an underexploited

state to overexploited state as the harvesting rate β exceeds a certain critical value.

F (xi) = rxi(1−
xi

K
)− β

x2
i

x2
i + 1

(2.16)

The eutrophication model in Eq. (2.17) describes the dynamics of nutrient concentra-

tion in the eutrophic lake [74]. The variable xi represents the density of phosphorus mass

(nutrient) in the location i of the lake. The first term a on the right hand side of Eq. (2.17)

is the nutrient loading rate, the second term describes nutrient loss processes with the rate

r, and the last term accounts for recycling processes following a sigmoid function. As the

maximum recycling rate β increases to the critical point, the lake transfers from oligotrophic

to eutrophic.

F (xi) = a− rxi + β
x8
i

x8
i + 1

(2.17)

The vegetation-turbidity model in Eq. (2.18) describes the vegetation dynamics con-

sidering turbidity [75]. The variable xi represents the density of aquatic vegetation in the

location i of the lake. The first term on the right hand side of Eq. (2.18) characterizes the

growth of vegetation with the maximum growth rate rv. The function E in Eq. (2.19) is an

inverse Monod function and used to describe the vegetation effect on turbidity. Accordingly,

the second term is a Hill function describing the sigmoidal decline of vegetation with tur-

bidity. As the water becomes turbid, indicated by the background turbidity β, macrophytes

suddenly decrease.

F (xi) = rvxi − rvx
2
i

r4 + E4
i

r4
(2.18)

Ei =
hvβ

hv + xi

(2.19)
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All three models can exhibit alternative stable states with the properly chosen bifur-

cation parameter β as illustrated in Fig. 2.7a, 2.7e, 2.7i. The transition from the low stable

state to the high stable state is possible in the presence of noise for such single-variable

systems.

2.4.2 The spatially-extended diffusion dynamics

Likewise, the underlying topology is also a square lattice with periodic boundaries. The

interaction dynamics is defined in Eq. (2.20), which represents the diffusive process between

adjacent neighbors, and the interaction strength R determines the uniform diffusion rate.

The species density at each location varies according to the internal dynamics as defined in

Eqs. (2.16) – (2.19) , and it is also influenced by dispersion to or immigration from neighbors

and stochastic environmental fluctuations.

G(xi, xj) = xj − xi. (2.20)

Once the system gets stuck in a malfunctioning state, resilience restoration is required.

In the presence of noise, each component is likely to be driven from the undesired state to

the functional stable state, and then the entire system undergoes substantial changes due to

the transition of one or a few nodes. Nucleation theory can be employed as well to study the

overall transition features. The results we collected from three diffusion models are similar

to those obtained from the mutualistic system and thus verify the predictions by nucleation

theory. We consider the case when the undesired state has a much smaller basin of attraction

than the desired state so that noise can drive the system from the initial undesired state to

the functional state, resulting in resilience restoration.

2.4.3 The phase diagram of harvesting system

Take the harvesting model as an example to illustrate the successful application of

nucleation theory to resilience restoration. Two cluster-growth modes are observed and

separated by a crossover around N1/2 ∼ R0 (Fig. 2.6a). Similar to the mutualistic system,

the large system or strong noise produces multi-cluster mode; conversely, the small system

or weak noise induces single-cluster mode. For the small system, there is only one cluster

formed during the transition (Fig. 2.6b), and the individual lifetime τ in Fig. 2.6c varies a

lot for different realizations, indicating a stochastic feature. Also, the distribution of waiting



27

times Pnot follows an exponential function after a certain period tg (Fig. 2.6d, 2.6e.

a

Figure 2.6: Harvesting system. The parameters are set as r = 1, K = 10, the
diffusion rate R = 0.02, and the bifurcation parameter β = 1.8.
Initially, all of the nodes are at the low stable state xL, and they are
driven to the high stable state xH in the presence of noise. (a) Two
clusters are separated according to the curve N1/2 = e

c
3σ2 , where c is

a fitted parameter. For (b) – (d), the system size N = 100. (b) One
snapshot shows the evolution of each node ρi in the presence of
noise with σ = 0.045. The initial states for all of the nodes are xL.
Later, the transition to xH occurs to one node, which is treated as a
single cluster, and it spreads out to its neighbors. (c) The evolution
of the global state ρ for 100 realizations, which corresponds to the
single-cluster mode in (a). (d) The distribution of waiting time Pnot

for the N = 100 and σ = 0.04, 0.043, 0.045. (e) Pnot for σ = 0.035 and
N = 100, 900, 2500, 10000. In both (d) and (e), the single dots are
simulation data, and different types of lines are obtained by linear
fit according to Eq. (2.8). For (f) – (h), N = 10000. (f) The
snapshot illustrates the evolution of the system starting from xL,
where σ is also 0.045. The transitions to xH occur at several
separate nodes, forming the multiple cluster. (g) 100 realizations of
the global state ρ. (h) The evolution of ρ averaged over 100
realizations for σ = 0.04, 0.043, 0.045. The single dots are simulation
data, and different types of lines are obtained by linear fit
according to Eq. (2.9). (i) The evolution of the global state ρ
averaged over 100 realizations for σ = 0.045 and N = 900, 2500, 10000.
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If the system is exposed to weak noise which means a low nucleation rate, it is very

likely to enter the single-cluster regime even the size is sufficiently large (Fig. 2.6e). For the

large system (like N = 10000) with proper intensity of noise, more than one node in the

separate location is recovered simultaneously (Fig. 2.6f), presenting a multi-cluster pattern.

Spatial-averaging reduces randomness so that the individual lifetime τ is more centered

about a certain value (Fig. 2.6g). The evolution is much more deterministic than the system

in a single-cluster mode. The global state ρ evolves approximately as Eq. (2.9) predicts

(Fig. 2.6h). If the applied noise is strong enough, the moderate-sized system can still exhibit

the multi-cluster mode (Fig. 2.6i).
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Figure 2.7: Average lifetime ⟨τ⟩ and the scaling results for three diffusion
models. The diffusion rate R = 0.02. (a) – (d) harvesting model,
r = 1, K = 10; (e) – (h) eutrophication model, a = 0.5, r = 1; (i) – (l)
vegetation model, r = 1, rv = 0.5, hv = 0.2. (a), (e), and (i) are the
resilience diagrams with alternative stale states if β (a) ∈ (1.79, 2.60),
(e) ∈ (0.86, 6.35), and (i) ∈ (2.59, 3.64). In simulation, the bifurcation
parameter β takes values of 1.80, 6.00, 2.60 for (a), (e), and (i),
respectively. For (b), (f), and (j), the system starts from xL. (c),
(g), and (k) show two clusters and cross-over scaling for the system
starting from xL. (d), (h), and (l) show the scaling for the system
starting from the prepared metastable state.
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2.4.4 The universal scaling in diffusion dynamics

As seen in Fig. 2.7, the system size and noise strength decide the recovery time and

the cluster mode. Similarly, the average lifetime ⟨τ⟩ of three diffusion models displays two

distinct regimes. One is the single-cluster and the other is the multi-cluster regime (Fig. 2.7a,

2.7d, 2.7g). The slope of ln⟨τ⟩ versus σ−2 reveals which mode is active. If the system starts

from the undesired stable state, the scaling between two cluster modes deviates a little from

the theoretical prediction (Fig. 2.7b, 2.7e, 2.7h). If the system starts from the prepared

state, resembling the metastable configuration, the scaling agrees well with the designed

scaling function (Fig. 2.7b, 2.7e, 2.7h). Overall, the conclusions of the single-cluster and

multi-cluster transition are validated in three diffusion models.

2.5 Discussion

We have utilized nucleation theory to analyze the noise-induced resilience restoration in

ecosystems where the desired state has a much larger basin of attraction than the undesired

state has. This is a general theory, and we successfully apply it to four ecological models,

revealing the transition features. During the restoration process, homogeneous nucleation

theory distinguishes two different cluster modes: the single-cluster and multi-cluster tran-

sition modes. We also derive the formulas for the recovery time under different conditions

and propose a scaling function that collapses all the data onto one universal line.

The two cluster modes possess quite distinct features. The individual lifetime is random

for the single-cluster phase, and the waiting time before the transition follows an exponential

distribution. In contrast, for the multi-cluster mode, the lifetime is less random and centered

about its average value so that the evolution of the global state ρ is more deterministic.

Which cluster mode the system follows is decided by its size and noise strength, and the

crossover region is theoretically derived and can separate two phases. Generally, the large

system subjected to strong noise presents the multi-cluster mode, and the small system

with weak noise displays the single-cluster regime. One quantity of interest for resilience

restoration is the recovery time, which also depends on the system size and the noise strength.

The rise of noise strength increases the nucleation rate, diminishing ⟨τ⟩. There is no finite-

size effect when noise is strong enough; that is, ⟨τ⟩ is the same for different system sizes.

The decrease of noise strength reveals the size effect, where larger systems take less time to

complete transitions than smaller systems on average.
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Due to the distinct evolution features, the relationship between ⟨τ⟩ and σ varies for

two cluster modes. What can be clearly seen in Fig. 2.3 and Fig. 2.7a, 2.7d, 2.7g, is that

⟨τ⟩ exhibits two distinctive regimes, corresponding to two cluster modes. The scaling be-

tween two cluster modes is proposed according to Avrami’s Law. The deviation observed

in numerical simulation can be corrected by preparing the initial state close to metastable

configurations to satisfy two homogeneous nucleation assumptions. Employing the nucle-

ation theory, we successfully extend the noise-induced transition in single-variable systems

to spatially-extended multi-variable systems. Our framework is useful to predict critical

transitions and guide the resilience restoration in the general dynamical systems presenting

alternative stable states.

One may wonder how the mean-field theory works in noisy environments as the noise-

induced transition in single-variable systems has been well explored. The mean-field ap-

proach makes a satisfactory prediction of the system state when the system is close to the

stable states. Unfortunately, it cannot capture the transition features observed in spatially-

extended systems, including the average lifetime, the dependence on the system size, and

the spatial-clustering patterns. Therefore, it is still an open question whether the mean-field

theory can be used to study transitions in noisy environments. One may need to develop a

new dimension reduction approach for this problem.

Also, there are further questions to be addressed. For example, we analyze the tran-

sition in the lattice model. In reality, the interaction relationship in ecosystems exhibits

various structures. In addition, the interaction strength between components in the real-

world complex systems varies, which may add to the difficulty of analysis. Furthermore, we

focus on the one-way transition, which requires that the system be close to the theoretical

bifurcation point where the basin of attraction of the undesired state vanishes. For the

case when two alternative stable states have basins of attraction of similar sizes, stochas-

tic switching (namely back-and-forth switching) between states may arise, which is beyond

the scope of this study. In summary, network topology (in addition to spatial structure),

coupling strength, and stochastic switching are of great interest to be investigated in future

studies.



CHAPTER 3

GENERALIZED DIMENSION REDUCTION APPROACH FOR

HETEROGENEOUS NETWORKED SYSTEMS WITH

TIME-DELAY

3.1 Introduction

The networked dynamical systems have been broadly used to study a variety of real-

world systems, including ecological webs, social networks, neuronal systems, and infrastruc-

ture networks, and many of them consist of numerous components connected via complicated

interactions [1], [2], [76], [77]. Advances in the understanding of system synchronization [78],

dynamical spreading [79], and catastrophic shifts [25], [29] have offered important clues on the

relationship between complex network topology and dynamical evolution [12]. To quantita-

tively investigate those collective phenomena, we often need to obtain the system’s long-term

evolution and equilibrium states, if any. However, as the number of components and the

system complexity increase, such tasks become increasingly computationally expensive.

One common strategy to address this issue is to use the dimension-reduction approach

to reduce the number of components in the system, allowing the construction of a simplified

version to approximate the original system. Here, we use the term “dimension” to refer to the

system size (as commonly used in control theory), i.e., the number of nodes in a networked

system. The challenge is to find ways to preserve key properties of the original system and

make it computationally manageable. In recent years, several dimension-reduction theories

and techniques have emerged. Pecora et.al. [80] and Schaub et.al. [81] inspected network

symmetry and proposed the irreducible representation to group nodes into different clusters

based on their topology, which provides an exact solution to the original system, enabling the

study of cluster synchronization and desynchronization. The limitation is that this frame-

work is only applicable to networks that are extremely sparse or dense, which have nontrivial

subgroups by symmetry clustering. Gao et.al. [13], [16] proposed a degree-weighted mean-

field approach that effectively maps any N -dimensional network to its one-dimensional one.

This approach was used to predict the universal resilience pattern under various types of per-

Portions of this chapter previously appeared as: C. Ma, G. Korniss, B. K. Szymanski, and J. Gao,
“Generalized dimension reduction approach for heterogeneous networked systems with time-delay,” Aug.
2023. arXiv:2308.11666.
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turbations. Later, Laurence et.al. [17] introduced an eigenvalue-based reduction framework

from the perspective of spectral analysis, opening up new perspectives on the relationship

between the network topology and the approximation accuracy. Pereira et.al. [82], [83]

applied mean-field theory to build effective networks from observations and was able to

identify the interaction structure, reproduce the behavior of the original network, and pre-

dict the critical transitions. Tu et.al. [43] developed an analytical framework for systems

with node-specific dynamics, which collapses complex N -dimensional networked system into

an S+1-dimensional manifold as a function of S effective control parameters, where S ≪ N .

Jiang et.al. [42] and Zhang et.al. [84] proposed dimensional reduction approaches to predict

the tipping points in bipartite mutualistic dynamics. Naseri et.al. [85] focused on preserv-

ing synchronization in dimension-reduced systems by using the eigenvalue decomposition

method and Gram-Schmidt orthogonalization.

Those dimension-reduction approaches simplify the analysis of system states for large-

scale networks, but most of them rely on the assumption that node degrees are homogeneous

(i.e., with low-degree variance), as has been shown in [16], [17]. Unfortunately, such a require-

ment does not hold in many real-world systems, especially those whose underlying networks

have scale-free (SF) degree distributions or networks with multiple communities. For these

networks, the one-dimensional reduction approach cannot capture the wide range of node

activities, especially when the system approaches the critical thresholds of phase transition.

The ubiquity of scale-free property in the real world [5], [6] requires the generalization of the

dimension-reduction framework to heterogeneous networks and networks with multiple com-

munities. Recently, Vegué et.al. [86] developed a dimension-reduction approach for modular

networks based on the spectral graph theory. The nodes are first classified into n commu-

nities according to modular structures, and the community state is then represented by one

observable through spectral analysis of a series of matrices and appropriate approximations.

Delayed interactions are very common in many dynamical systems in science, and engi-

neering [87], [88], [89] ranging from climate modeling [90] and population dynamics [91], [92]

to transportation systems [93] and supply chains [94]. In contrast to single-variable systems

[95], [91], [96], stability analysis, consensus formation, or control in multi-component systems

with time delays and possible nonlinearities present significant computational challenges as

the system size increases [87], [97], [98]. Since time delays experienced by individuals have

profound effects on other participants in complex interconnected systems, the insights gained
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from low-dimensional systems may not be directly applicable to systems with many com-

ponents. This has been shown by the effects of times delays on consensus formation [87],

[97], [98] and noisy network synchronization problems [99], [100], [101], [102]. Therefore, one

needs to investigate the complex interaction topology to understand the system’s evolution

and stability.

We proposed a generalized dimension-reduction approach for heterogeneous complex

networks and networks with multiple communities. This approach consists of two steps.

First, the original network of N nodes is clustered into m clusters of nodes with similar

degrees based on the assumption that node states are highly correlated with node degrees.

The weighted average state of each cluster is obtained by the mean-field theory, causing

the dimension-reduced system to follow the identical evolution mechanism. As a result, it

can be described by only m representatives, where m ≪ N . The system evolution can

be well approximated with just a few representatives for systems with various dynamics

and a wide range of degree distributions. We find that the number of required clusters

peaks when the system approaches the tipping point. More importantly, for the first time,

we demonstrate that our generalized dimension reduction approach theoretically enables us

to analyze the system with time delays. Therefore, it reduces computational complexity

while preserving the essential information of time-delayed system structures, enabling us to

convert systems of any size to a low-dimensional version before we apply the corresponding

theoretical frameworks.

3.2 Results

3.2.1 Generalized dimension reduction approach

Let us consider a networked system consisting of N nodes where the evolution of node

activities, x = (x1, x2, ..., xN)
T , can be generally described by Eq. (3.1),

dxi

dt
= F (xi) + w

N∑
j=1

AijG(xi, xj). (3.1)

The term “dimension” used here is to refer to “the number of nodes” in the original system

or “the number of clusters” in the simplified system. The time-dependent state of node i

is represented by a scalar variable xi(t) ∈ R. Each node follows the same self-dynamics
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F (xi) and is also influenced by its neighboring node j according to the pairwise interaction

G(xi, xj). The element of the adjacency matrix A is either 0 or 1, indicating the connectivity

between components and the network topology. The edge weight w represents the uniform

interaction strength of the entire system.

To analyze the system evolution for a given dynamics and network topology, one can nu-

merically solve the coupled ordinary differential equations for all nodes according to Eq. (3.1).

However, this approach is often computationally expensive or even infeasible for exception-

ally large-scale networks. It is reasonable to assume that nodes of similar topological features

have similar evolution patterns. Therefore, one may use only a small number of representa-

tives to describe the system state. This is the main principle behind the dimension-reduction

approach to tame the computational cost. This strategy has been proven effective by the one-

dimension reduction framework. For homogeneous networks where all nodes share similar

connectivity properties, one observable can represent the average state of the entire system

by the appropriate choice of reduction approaches. However, for networks with heteroge-

neous connectivity, we cannot expect that one representative is sufficient to describe the

entire system state, as the node states are much more diverse than homogeneous networks.

In this study, we generalize the one-dimension reduction framework by introducing more

than one observable, making it applicable to heterogeneous networks.

Because of the high correlation between node states and node degrees [12], [40], we

partition the network into multiple clusters based on node degrees such that nodes of similar

degrees are in the same cluster and their average state is represented by one observable.

Therefore, one only needs to numerically solve the dimension-reduced networks with a few

number of components. First, we obtain the node features from node degrees distribution.

For SF networks where node degrees follow a power-law distribution, we take the logarithm

of the node degree ki and define the normalized variable vi =
log(ki)

log(kmax)
as the node feature,

whereas for homogeneous ER networks, we normalize the node degree vi =
ki

kmax
as the node

feature. Based on the feature vi, the K-means clustering algorithm is applied to partition

the network into m clusters such that nodes in the same cluster have similar node features,

including node degrees. The next step is to construct m macroscopic variables and the

corresponding parameters for each cluster state. The operator L(a)(x) (a = 1, 2, ...,m) is

introduced in Eq. (3.2) to calculate the average state of the cluster a, y(a) = L(a)(x), and the

average interaction strength βab = L(a)(k(b)) from the cluster gb to the cluster ga. Here, k
(b)
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is a vector of incoming connections from the cluster gb.

L(a)(x) =
u(a)TKx

u(a)TA1
=

∑N
i=1,i∈ga kixi∑N
i=1,i∈ga ki

. (3.2)

In Eq. (3.2), K is a diagonal matrix with the element Kii = ki representing the degree

of node i, 1 = (1, 1, ..., 1)T is the unit vector, and u(a) = (u
(a)
1 , u

(a)
2 , ..., u

(a)
N )T is a binary vector

indicating that the node i belongs to the cluster ga if u
(a)
i = 1, otherwise u

(a)
i = 0. Thus,

the operator L(a) takes the degree-weighted average of the quantity xi over all nodes in the

cluster ga. By applying the operator L(a) to Eq. (3.1) and assuming L(a)(f(x)) ≈ f(L(a)(x)),

dy(a)

dt
= F (y(a)) + w

m∑
b=1

βabG(y(a), y(b)). (3.3)

one can derive the dimension-reduction framework defined by Eq. (3.3), where y(a) represents

the average state of the cluster ga. Compared with Eq. (3.1), the dynamics of the simpli-

fied system preserves the form of the original dynamics, and only the interaction topology

changes. This framework maps the dynamics of the N -dimensional complex system into an

effective m-dimensional equation, and such mapping can significantly reduce the computa-

tional cost and enable the use of theoretical tools developed for low-dimensional systems.

We use the cluster state y(a) to approximate the state of each node in this cluster,

(xi = y(a), i ∈ ga), and thus all node states x are accessible by the dimension-reduced

system. To understand the overall evolution at the system level, we define the operator L(gl)

in Eq. (3.4) that converts the N -node states to a global state y(gl) = L(gl)(x), which enables

us to compare dynamics of the simplified system to the original one.

L(gl)(x) =
1TAx

1TA1
=

⟨koutx⟩
⟨k⟩

(3.4)

To illustrate the efficiency of this dimension-reduction framework, we first apply it to

the mutualistic dynamics embedded in different network structures and compare the node

states of them-dimensional system with the original network and the one-dimensional system

studied in Ref. [16] as well.
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3.2.2 The stable state approximation

We use Eq. (3.5) and Eq. (3.6) to model the deterministic dynamics of the mutualistic

system, which tracks the abundance of its species [68]. The self-dynamics F (xi) defines the

growth of each species as following the logistic law with the Allee effect, while the dynamics

defined by G(xi, xj) accounts for the mutualistic interaction between pairs of species, i and

j, with the interaction strength Aij defined in Eq. (3.1).

F (xi) = Bi + xi

(
1− xi

Ki

)(
xi

Ci

− 1

)
(3.5)

G(xi, xj) =
xixj

Di + Eixi +Hjxj

(3.6)

The parameters are node-uniform and set as Bi = B = 0.1, Ci = C = 1, Di = D = 5,

Ei = E = 0.9, Hj = H = 0.1, Ki = K = 5. As reported by Ref. [16], such dynamics exhibit

alternative stable states, the high-stable state, and the low-stable states, which depend on

the initial states and coupling strength.

We study three types of network topology, SF, ER, and SBM-ER (ER network with

communities constructed by the stochastic block model [103]) and the phase diagram of

the stable states for dimension-reduced systems with different values of m in Fig. 3.1. The

equilibrium states of each node in Fig. 3.1 c are more diverse for the heterogeneous network

and the modular network than the homogeneous ER network, and this partly verifies the

correlation between the node states and node degrees. As expected, the one-dimensional

reduction system cannot accurately represent the average state of the heterogeneous network,

especially when the system is close to the tipping point of phase transition. The tipping point

is the critical value of a system parameter, in this case, the edge weight w, at which the

system undergoes a substantial change in its state (A more rigorous definition of the tipping

point is provided in Section II C). As illustrated in Fig. 3.1 e, g, i, k, the system exhibits

the transition from low-stable state to high-stable states. In contrast, the one-dimensional

reduction system produces reasonable approximations for the homogeneous ER network.

Most importantly, it can also capture the critical transition and threshold. In Fig. 3.1 f – k,

m-dimensional reduction systems are constructed by the degree-based network partition and

degree-weighted mean-field approach. The simplified network topology and phase transition

of the global state versus the interaction strength are compared with different values of m
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Figure 3.1: The illustration of the network partition and system dynamics
defined by the generalized dimension reduction approach. The
system follows mutualistic dynamics. We consider three types of
network structures, (1) ER in red (⟨k⟩ = 32), (2) SF in blue (the
power-law exponent γ = 2.1, the minimal degree kmin = 1), (3)
SBM-ER in green (link probabilities for each community are
p1 = 0.9, p2 = 0.5, p3 = 0.05, while between communities, it is
q = 0.001). Each network consists of N = 100 nodes. We show the
equilibrium states under different dimension-reduction strategies.
(a) The topology of the original network, where the node color
transparency and size are proportional to the node degree. (b) The
degree distribution of the original network. (c) The stable state
changes with the edge weight w for all individual nodes. (d) The
topology of the one-dimensional system. (e) The stable state
changes with the edge weight w for the single node. (f), (h), (j)
show the topology of the m-dimensional system (m = 3, 5, 10
respectively), and (g), (i), (k) are the corresponding global stable
states versus edge weights w. The grey curves are the global state
obtained from the numerical solution of the original network.
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and complexity. For an SF network with N = 100 nodes, the state evolution of the five-

dimensional reduction system is very close to the ground truth. For the SBM-ER network

with three communities, the three-dimensional system captures two substantial changes in

the system state out of three, and the global state is accurately predicted when the system is

not close to the critical thresholds. One can notice that there is no significant improvement

with more clusters divided, which indicates that the community structure, apart from degree

attributes, may impact the performance of the dimension-reduced system.

Next, we examine the dimension-reduction framework for a larger SF network in

depth and evaluate the approximation accuracy of the state evolution for different coupling

strengths and different values of m. In Fig. 3.2 c – e, the uniform interaction strength is set

as w = 0.2 for the original network, and all nodes stabilize at the active (high-stable) state.

However, the one-dimensional reduction system predicts that the entire system evolves to the

undesired (low-stable) state, which is a misrepresentation of the original system, in contrast

with the successful prediction of the four-dimensional reduction system. As the interaction

strength w increases in Fig. 3.2 f – h, one can use the system with smaller m to qualitatively

capture the original system state (whether the system is in the high-stable state or in the

low-stable state). This is because the system moves away from the tipping point of phase

transition. It can be verified by Fig. 3.2 i – k, which displays the phase transition of the

global state and the qualitative precision against the interaction strength. As the coupling

strength approaches the tipping point of the original system, larger m is required to quali-

tatively capture the system state. To quantitatively evaluate the approximation accuracy of

this formalism, we compare the global state of the dimension-reduced system with the orig-

inal network and introduce the relative error of the global state in Eq. 3.7. In addition, one

can set an error threshold Re to determine the optimal m, which is defined as the smallest

number of clusters required to produce the relative error less than Re with the assumption

that the prediction accuracy increases with m. In Fig. 3.2 l – m, the relative error of the

global state increases as the interaction strength approaches the tipping point for a fixed

m, and the optimal mopt increases in a similar fashion. Fig. 3.2 shows the performance of

the dimension-reduction theory for one SF network, from which one can observe that the

approximation accuracy strongly depends on the network coupling strength (the position in

the phase diagram).
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Figure 3.2: A SF network with N = 1000 nodes following mutualistic dynamics.
The entire system starts from the low states, xi(t = 0) = 0.1. (a) The
bipartite network Mij describes the connection between pollinators
and plants. (b) From Mij, two mutualistic projection networks (Aij

and Bij) are constructed. (c) – (e) The network topology and the
stable states for m = N(the original system), m = 4, and m = 1 with
the edge weight w = 0.2. For different edge weights (f) w = 0.15, (g)
w = 0.2, (h) w = 0.25, the stable states of each cluster are exhibited
against the number of clusters m. (i) The global state y(gl) changes
with the edge weight w for different values of m. (j) The ratio of
the qualitatively correct prediction, which counts the fraction of
nodes at either high-stable states or low-stable states predicted by
both the original network and the dimension-reduced system. The
state threshold separating the two stable states is set as Ry = 1. (k)
The heatmap of the global state y(gl) as a function of w and m. (l)
The relative error of the stable state for different values of m
compared to the ground truth. (m) The optimal m changes with w
for different values of thresholds Re, and mopt is defined as the
minimal value of m that produces the error smaller than the
threshold Re. (n) The heatmap of relative errors of global states
compared with the ground truth.
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Err(y(gl)) =
|y(gl,N) − y(gl,m)|
|y(gl,N)|+ |y(gl,m)|

(3.7)

For SF networks with different heterogeneities, one can observe the phase diagram of

the original network and dimension-reduced systems are different from the one-dimensional

system. When we include more components (larger m), the equilibrium state approximation

improves in Fig. 3.3. For the systems far away from the tipping point of phase transition,

one-dimensional systems (m = 1) are already sufficient to represent the system state.

Figure 3.3: The phase diagram of the global state for SF networks following the
mutualistic dynamics. The stable states are obtained from L = 900
networks (the exponent γ ranges from 2.1 to 5, and the minimal
degree kmin is 3, 4, or 5), and all of them start from the low states,
xi(t = 0) = 0.1. (a) shows the phase diagram for different values of
m. The parameter β is calculated by the one-dimensional reduction
theory. In each subplot (b) – (d), the phase diagram of the global
state against the parameter β for the same system dimensionality
(the same m) and each curve represents one individual network.

To systematically validate the proposed framework, we apply it to two more dynamical

models, neuronal dynamics [104] and gene regulatory dynamics [105], [106], which also exhibit

phase transitions between alternative stable states.
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Figure 3.4: The relative error of the global state for different dynamics.
Evolution data is collected from L = 900 networks (the exponent γ
ranges from 2.1 to 5, and the minimal degree kmin is 3, 4, or 5). (a) –
(d) display the phase diagram of the stable states against the
effective interaction strength β, which is calculated by a
single-dimension reduction system. For (a) mutualistic dynamics
starting from the low state xi(t = 0) = 0.1, the tipping point of phase

transition β
(m=1)
c = 7, (b) Wilson-Cowan (CW) neuronal dynamics

starting from the low state xi(t = 0) = 0.0, β
(m=1)
c = 56, (c) gene

regulatory dynamics starting from the high state xi(t = 0) = 100,

β
(m=1)
c = 2, and (d) CW neuronal dynamics starting from the high

state xi(t = 0) = 100, β
(m=1)
c = 8. (e) -(h) The error of the global state

is calculated for m-dimensional systems in the comparison of the
original networks. (i) – (l) are heatmaps of the error as a function

of dimensionality m and the distance to the tipping point β
(m)
c .

The Wilson-Cowan neuronal dynamics in Eq. (3.8) describes the firing-rate activity of a

population of neurons. Although the Wilson-Cowan equations are already an approximation

by mean-field theory [107], [108], they can still exhibit very complicated behavior for the

large system. Our approach provides an alternative and complementary way to simplify the
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neural dynamics,

dxi

dt
= −xi +

N∑
j=1

Aij
1

1 + eθ−δxj
, (3.8)

where the parameters θ = 5 and δ = 1 control the firing-rate threshold and the steepness of

the activation function, respectively.

We also apply our approach to biological networks. The gene regulatory dynamics are

governed by the Michaelis-Menten equation (3.9),

dxi

dt
= −Bxf

i +
N∑
j=1

Aij

xh
j

xh
j + 1

, (3.9)

where the parameters are also node-uniform and set as B = 1, f = 1, h = 2. The first term

on the right-hand side describes the degradation of each gene, and the second term captures

genetic activation, indicating the level of cooperation between genes.

In Fig. 3.4, one can observe that the prediction accuracy depends on the coupling

strengths. For different dynamics, the relative error of y(gl) behaves in a similar fashion. As

the system interaction strength approaches the tipping point of the one-dimensional system,

the error increases in most cases. Therefore, more clusters are needed to correctly understand

the system states.

3.2.3 Tipping point approximation

For heterogeneous networks, the m-dimensional reduction strategy achieves a much

better approximation accuracy than the one-dimensional reduction model. In many cases,

a small number of clusters can capture the system evolution. The only exception is that as

the system approaches the tipping point of phase transition, the number of clusters should

be increased to help qualitatively predict the system state and identify critical thresholds.

Fig.3.4 also shows that the prediction accuracy depends on the distance to the tipping points.

Hence, locating the tipping point of phase transition is important for distinguishing the active

state from the dead state. To determine the critical point of either the dimension-reduced

system or the original networked system, appropriate criteria need to be chosen. Here, we

introduce two types of thresholds, the survival ratio threshold Rs (nodes with a state above a

certain value are considered to be in a surviving state), and the global state thresholdRy. The

tipping point wc is defined as the smallest interaction strength at which the ratio of survival
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nodes or the global state exceeds the predefined threshold (Rs or Ry). In addition, one

can quantify the approximation accuracy by calculating the relative difference of the tipping

points between the dimension-reduced system and the original network using Eq. (3.10).

To demonstrate the improvement of including more than one component, the normalized

distance of the critical point in hwt − ⟨k⟩wt space is introduced in Eq. (3.11), which is used

to represent the difference of thresholds between the one-dimensional reduction system and

the m-dimensional system. Here, hwt is the weighted degree heterogeneity defined as hwt =

wh = w ⟨k2⟩−⟨k⟩2
⟨k⟩ , ⟨k⟩wt = w⟨k⟩ is the weighted average degree, and βwt = w ⟨k2⟩

⟨k⟩ = hwt−⟨k⟩wt

is the weighted effective interaction strength of the one-dimensional reduction system.

Figure 3.5: The tipping point approximation of the dimension-reduction
framework. The results are obtained from L = 900 SF networks.
(a1) – (f2) compare the tipping points between dimension-reduced
systems and the original networks. (a3) – (f4) are the comparisons
of the tipping points between multi-dimensional systems and
one-dimensional systems in hwt − ⟨k⟩wt space. Two error thresholds,
Ry and Rs, measure the difference of the global state and the
survival ratio, respectively.

In the one-dimensional reduction framework, all networks with different degree distri-
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butions share the universal tipping point βwt
c if they follow the same dynamical mechanism

[16]. As we have already noticed in Fig. 3.1 and 3.2, the tipping points of heterogeneous

networks depend on network topology and they cannot be accurately captured by the one-

dimensional systems. In Fig. 3.5, we quantitatively compare the tipping points between the

m-dimensional reduction system and the original network and demonstrate that the differ-

ence typically decreases as m increases. We also show that the tipping points predicted by

the one-dimensional reduction system significantly deviate from the ground truth, and the

difference depends on the network topology. From Fig. 3.6, one can observe that the average

accuracy of SF network ensembles increases as the number of clusters increases, and such

results hold for different types of dynamics.

Err =
|w(m)

c − w
(N)
c |

w
(m)
c + w

(N)
c

(3.10)

l = |w(m)
c − w(N)

c |
√

⟨k⟩2 + h2

βwt
c

(3.11)

Figure 3.6: The difference of the critical point changes with the number of
clusters for SF networks with different dynamics. For each system,
the results are obtained from L = 900 SF networks. (a) – (d) show
the distance of tipping points between the original systems and the
dimension-reduction systems, and (e) – (h) show the relative errors.
Different symbols represent different threshold types and values.
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3.3 The application to time-delay systems

In this section, we use this framework to study the dynamical networks in the presence

of time delays and further analyze the critical time delay in terms of stability.

Delayed interactions are quite common in many dynamical systems and have been

extensively studied in terms of stability and synchronization [87], [88], [89], [99], [100], [101],

[102], [109]. The key early results were published by Hutchinson [95] and May [91], who

discussed the time delay and stability in the single-variable ecological systems [91], [95], [96],

[110]. As the time delay occurring on one individual has profound effects on its neighboring

components in the interconnected systems, one cannot capture the collective phenomena

or global dynamics by only investigating one or two components. Therefore, one might

need to investigate the complex interaction topology to understand the system evolution

and stability. On the other hand, serious computational issues arise for simulating large

networked systems. In this case, one can resort to the dimension-reduction framework to

reduce computational complexity while preserving key information about the interactions

between components.

The network dynamics in the presence of delays can be mathematically characterized

by the delay differential equations (DDE). In this study, we focus on the dynamics with

constant time delay and the delay effects are incorporated into the self-interaction term.

Correspondingly, the time-delayed dynamics of the system composed of N interacting nodes

is described by Eq. (3.12). As before, the term “dimension” refers to “the number of nodes”

in the original system or “the number of clusters” in the simplified system.

dxi

dt
= fi(xi, xi(t− τ), xj) = F (xi, xi(t− τ)) + w

N∑
j=1

AijG(xi, xj). (3.12)

We apply the degree-based dimension-reduction approach to the delayed system and

obtain the m-dimensional system defined by Eq. (3.13), where ya is the average node state

of the cluster ga, and βab is the interaction strength from the cluster gb to the cluster ga,

dya
dt

= fa(ya, ya(t− τ), yb) = F (ya, ya(t− τ)) + w
m∑
b=1

βabG(ya, yb). (3.13)

Fig. 3.7 shows the impact of time delays on the dynamical stability for a SF network

and its corresponding dimension-reduced versions. As the time delay increases, the system
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takes longer time to converge to the stable state. If the time delay exceeds a certain threshold,

the system will either go to the limit cycle for the low-dimension systems (Fig. 3.7 a1–a3) or

diverge (Fig. 3.7 b2 b3, c3, d3), so that one can determine the critical time delay in terms

of stability based on the system evolution.

Figure 3.7: A SF network of N = 1000 nodes and its corresponding
dimension-reduced systems under different time delays. This SF
network is constructed by the configurational model with the
exponent parameter γ = 2.5, and the minimal degree kmin = 3. The
edge weight w = 0.1. (a) – (d) The evolution of the global state
difference |∆y(gl)| for different values of time delay
τ = 0.19, 0.22, 0.25, 0.28 and the system dimension m = 1, 4, 16, N . ∆y(gl)

is the difference between the system global state at time t and the
stable state without time delay. Other figures show the phase space
dy(gl)

dt
versus ∆y(gl)respectively.

One can notice that the low-dimensional system (m = 1 or m = 4) does not only

yield quantitative deviations from the ground truth, but can also qualitatively miss the

actual behavior [limit cycle vs. stationary value], as shown in Fig. 3.7. One needs to

employ a higher-m (m = 16 in this example) reduction scheme to at least qualitatively

capture the nature of the steady state, and progressively higher ones for further quantitative

improvements. To determine this critical threshold, one can numerically simulate the system

evolution under different values of time delays. By using the binary search algorithm, one can

find the largest time delay with which the system still converges to a steady stable. For large
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networked systems, this method requires substantial computational resources. Hence, one

can instead use the dimension-reduction framework to reduce the system complexity. One

can observe that the global state evolution becomes more accurate compared to the ground

truth (the evolution of the original system) as the number of clusters increases (Fig. 3.7 c

and d).

Figure 3.8: The critical time delay τc determined by dynamical evolution for SF
networks using the dimension-reduction approach. All networks are
created by configuration model and they consist of N = 1000 nodes.
For each parameter choice, there are 10 realizations. The edge
weights are the same, w = 0.6. (a) – (d) The average degree ⟨k⟩ ∼ 6,
and (e) – (h) ⟨k⟩ ∼ 10.

Figure 3.9: The critical time delay τc determined by dynamical evolution for
ER networks using the dimension-reduction approach. All
networks are created by configuration model and they consist of
N = 1000 nodes. The edge weights are the same, w = 0.6. The
average degrees are set (a) ⟨k⟩ = 4, (b) ⟨k⟩ = 6, (c) ⟨k⟩ = 10, and (d)
⟨k⟩ = 32. For each setup, there are 10 realizations.

Furthermore, the critical time delay can be predicted by the dimension-reduced sys-
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tems for different network topologies as shown in Fig. 3.8 and 3.9, and the error decreases

dramatically as more clusters are included. The more heterogeneous the network is (smaller

γ for SF networks), the larger number of clusters may be needed. This approach proves to

be very efficient since even for very heterogeneous networks, the system with m = 10 clusters

can produce reasonable approximations.

Alternatively, one can derive the characteristic equation (3.14) [96], [97] associated

with the system (3.12) by exerting a small perturbation R = ceαt (α = µ + iν) around the

equilibrium and performing the first order approximation to obtain the linear stability

det(M(α; τ)) = det
(
αI − Jf (x)|xs−Jf (xτ )|xse

−ατ
)
= 0 (3.14)

In Eq. (3.14), I is the identity matrix, Jf (x) and Jf (xτ ) are the Jacobian matrices,

f = (f1, f2, ..., fN)
T is a vector of individual dynamical functions, x = (x1, x2, ..., xN)

T is

a vector of node states at time t, and xτ = (x1(t − τ), x2(t − τ), ..., xN(t − τ)) is a vector

of node states with delay τ (i.e., at time t − τ). The (i, j) element of matrix Jf (x), for

example, is calculated by ∂fi
∂xj

. The system is asymptotically stable if and only if all roots α

of Eq. (3.14) have negative real parts [96]. When the time delay reaches the threshold τc,

Eq. (3.14) has a pair of purely imaginary roots (±iν), which is the critical condition. Hence,

for any delay τ < τc, the real parts of all roots α remain negative, leading to asymptotically

stable convergence, and when τ > τc, there is at least one root with positive real part, which

destabilizes the system, according to Rouche’s theorem and continuity [111].

To determine the critical time delay, one should first set α = iν, and then solve

the characteristic equation (3.14). Because it is essentially a polynomial equation, there are

multiple solutions. For the critical condition, only the smallest positive solution is of interest.

It turns out to be another challenging numerical problem as the solutions strongly depend

on the initial condition shown in Fig. 3.10. The heuristic approach is to increase the search

space of (τ0, ν0) in order to find out more solutions and choose the smallest one as the critical

point. Although the solution obtained by this method is not guaranteed to be the ground

truth, it demonstrates the accuracy in comparison to the result from the numerical evolution

in Fig. 3.11. In addition, the critical time delays obtained by the dimension-reduced systems

are in good agreement with the original system as long as a sufficient number of clusters

(m = 10) are included.
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Figure 3.10: Solutions to Eq. (3.14) for different initial parameters (τ0, ν0). The
system consists of N = 1000 nodes. Results are for different edge
weights w and system dimensionality m. For (a) – (d) w = 0.2, (e)
– (h) w = 0.4, (i) – (l) w = 0.6, and (m) – (p) w = 0.8. For (a), (e),
(i) and (m) m = 2, (b), (f), (j) and (n) m = 4, (c), (g), (k) and (o)
m = 64, and (d), (h), (l) and (p) m = 256.

Figure 3.11: The comparison of the critical time delay obtained from the
system evolution and the characteristic equation. There are
N = 1000 nodes in the system.

3.4 Discussions

In this study, we present a mean-field framework to reduce the dimensionality of large

complex networks. In this framework, the network is first classified into m clusters based on

node degrees such that the nodes in the same cluster share similar degrees with the assump-

tion that nodes of similar degrees have similar dynamical evolutions. For each cluster, one
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observable is then introduced to represent the degree-weighted average state. Therefore, an

N -dimensional network is described by an m-dimensional system and the dimension-reduced

version preserves the original dynamical rules. Compared with the previous one-dimensional

mean-field approaches [16], [17], this framework better approximates the state evolutions and

tipping points, especially for heterogeneous networks and networks with communities. We

find that the approximation accuracy depends on the network topology, the distance to the

underlying tipping point of phase transition, and the number of clusters m. Generally, the

approximation error increases as the system approaches the tipping point, which indicates

that more clusters are needed to have a reasonable understanding of system evolutions. Un-

der different interaction strengths, the number of clusters required to obtain the predefined

accuracy (i.e., the value of mopt) differs. It can be determined by comparing the node evo-

lutions of the m-dimensional reduction system with the original network. It turns out that

mopt is almost always much smaller than the number of nodes N in the original network. In

other words, one can have a reasonable approximation of system evolutions by constructing

a much simpler system with mopt representatives instead of investigating the original net-

work. Another advantage of this dimension-reduction framework is that the interpretation is

very clear, as each variable in the dimension-reduced system represents the average of node

states in that cluster. Further, one can study how the interactions between clusters influence

the cluster states and the system evolution, especially around the tipping points of phase

transition. This may guide us to recover the dysfunctional systems by controlling certain

clusters [40], [112].

This framework can not only be used to approximate the system state, but it also has

some other potential applications. Here we show that one can apply this theory to time-delay

dynamical systems and evaluate the critical threshold in terms of the system stability. In

the presence of time delays, the system becomes unstable if the delay is greater than the

critical point. Using this method, one can avoid numerically simulating the dynamics of all

components or computing the eigenvalues of characteristic matrices for large networks. We

also show that our approach can be universally applied to different types of networks and

dynamics or with co-adaptation [113].

Despite the promising results, there are still open questions that need to be addressed

in future research. For instance, the impact of network topology and dynamics on the opti-

mal number of clusters remains unclear. Currently, the choice of the number of clusters is
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determined empirically for each system. This issue also arises when the dimension-reduction

framework is applied to time-delay systems. A theoretical investigation of this issue would

provide guidelines for the relationship between the error produced by the mean-field approx-

imation and the system dimension. Our approach will be significantly empowered if the

method is developed to compute how many clusters the system should be partitioned into

based on the network structure and its dynamics from a more theoretical perspective.



CHAPTER 4

DIVIDE-AND-RULE POLICY IN THE NAMING GAME

4.1 Introduction

Opinion spreading, language evolution, and collective behavior in social systems have

been of great interest to researchers and they were investigated from mathematical and so-

called sociophysics perspectives for at least four decades [19], [114], [115], [116], [117], [118],

[119], [120], [121], [122], [123], [124], [125], [126]. Agent-based models and statistical physics

provide powerful tools for studying the opinion dynamics and social influence, often modeled

by dyadic agent interactions [23], [127], [128], [129]. When choosing one of the several

opinions, some individuals may follow the choices of their peers or acquaintances. However,

other individuals in the system may advocate a single opinion and refuse to consider any

others, to which we refer as committed agents or zealots. The presence of zealotry strongly

biases the evolution of the opinions towards those held by the committed minorities. Even the

presence of one group with committed agents of modest size may convert all the uncommitted

agents to adopting the opinion of committed agents [20], [21], [22], [24], [130], [131], [132].

Here, we focus on the Naming Game (NG) to study the opinion dynamics in the

presence of committed minorities. Introduced as a linguistic evolution model, the NG was

initially used as a model for the formation of a vocabulary from different observations, and

it demonstrated how a population of agents can collectively converge to a single unique word

for labeling different objects or observations in their environment [23], [128], [133], [134].

Recently, it has been used as a mathematical model for the dynamics of social influence,

which describes the evolution of competing opinions through the dyadic interactions be-

tween agents. A number of theoretical studies have been done to investigate the spread and

evolution of opinions on various regular and complex networks in the presence of committed

agents [135], [136], [137], [138], [139], [140], [141]. Yet many of them focus on the models

with two competing opinions. To gain a general understanding of this model, the scenario

with multiple opinions deserves more attention. In such systems, agents can hold a variety

of opinions, and the dynamics of opinion evolution can be more complex and diverse than

in the two-opinion scenario.

Portions of this chapter previously appeared as: C. Ma, G. Korniss, and B. K. Szymanski, “Divide-and-
rule policy in the Naming Game,” Jun. 2023. arXiv:2306.15922.
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In our study, we consider the Naming Game with an arbitrarily large number of com-

peting opinions and examine the influence of committed members on opinion evolution.

Given the presence of mixed states that involve more than a single opinion, monitoring the

state of the system with m distinct single opinions becomes extremely challenging, as there

are 2m − 1 possible combinations of opinions which are proportional to the number of state

variables needed to write the equations for the state evolution of the system. Such exponen-

tial growth of state variables makes this problem intractable even for the system of size m

larger than 10 for both numerical simulation and analytical derivation of the solution.

There are also a limited number of studies discussing the system with multiple com-

peting opinions [142], [143], [144], [145]. For some special scenarios, one may reduce the

system complexity by inspecting symmetry and making appropriate approximations [142].

We adapt this approach to investigate the influence of committed agents and phase transi-

tion in the quasi-symmetric setup. However, the approximation might fail if no symmetry is

preserved. Our strategy is to focus on the key features of the system. Since the system state

is determined by the density evolution of each single opinion, it is not necessary to distin-

guish or record all mixed states. Instead, one can just keep track of the density distribution

and spreading probability of each single opinion. By anonymizing mixed states, the number

of states to be monitored is reduced, making the analysis of the system more manageable.

This approach is general and can be applied to a wide range of scenarios.

The rest of the study is organized as follows. Section II provides an overview of the

interaction mechanism of the Naming Game and its variants, as well as its evolution from

the perspective of mean-field theory. Section III focuses on the original model on complete

graphs and uses the mean-field differential equations to investigate opinion evolution. This

section considers systems with different numbers of opinions, including two opinions, three

opinions, and an arbitrarily large number of opinions. We also discuss phase transitions

for different allocations of committed agents among multiple groups and the conditions

under which the critical points arise, as well as two simplified systems of symmetrical setups

designed to approximate the critical thresholds of the arbitrary initial conditions. Section

IV studies the listen-only variant of the Naming Game on complete graphs and presents

a recursive approach to reduce the system’s complexity. In Section V, we investigate the

original Naming Game model on Erdős-Rényi ER networks and show that for the given

simplified scenario, the system evolution makes the divide and rule policy observable.
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4.2 Model description and mean-field approximation

In the Naming Game (NG) model [23], [128], [137] using several distinct opinions, each

agent holds a subset of opinions that defines its state. This state may change as a result

of this agent’s interaction with other agents when it acts as a speaker or listener in the NG

current state.

In the original NG dynamics, at each NG state, a randomly chosen agent becomes a

speaker and sends a random opinion from its opinion state to a randomly chosen neighbor to

be a listener. If the listener already has the sent opinion in its opinion state, both speaker and

listener retain only this opinion, otherwise, the listener adds it to its opinion state. There is

a special type of agent whose opinion state contains only one opinion, and it never acts as a

listener, so it holds its opinion unchanged during the entire NG. In other words, such agents

are immune to any influence but can still spread their opinions to their neighbors when

acting as a speaker. We refer to them as committed agents or zealots. In addition to this

original model, there are two variants, which limit changes to only one of the two interacting

nodes, named the “listener-only” and “speaker-only” versions. For the “listener-only” type,

only the opinion state of the listeners can be modified. Here, we focus on the original NG

model and its “listener-only” variant.

For the opinion dynamics on the complete graph, mean-field theory can be applied to

systematically study the evolution of opinion states. For the general scenario with m unique

single opinions, an uncommitted agent can hold at most M = 2m− 1 opinion states in total.

For instance, when m = 3, the possible opinion states are A, B, C, AB, AC, BC, and

ABC. Under the condition of homogeneous mixing, the mean-field differential equations are

written as
dxk

dt
=

M∑
i=1

M∑
j=1

U
(k)
ij xixj +

M∑
i=1

m∑
j=1

V
(k)
ij xiPj +

m∑
i=1

M∑
j=1

W
(k)
ij Pixj. (4.1)

Such equations describe the changes in the density of uncommitted agents holding different

opinion states as well as the interactions between the uncommitted agents and committed

agents. The density xi(i = 1, 2, ...,m) represents the fraction of uncommitted agents holding

the single opinion state i, and the density xi (i = m+1,m+2, ...,M) represents the fraction

of agents holding the mixed opinion state i. It represents the fraction of agents in this

system that have opinion i in their opinion state. Pi(i = 1, 2, ...,m) is the density of zealots

committed to the single opinion i, which does not change over time. The matrices U , V , and
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W contain the coefficients determined by the interaction mechanism and they differ for the

three versions of the interaction rules. Specifically, U
(k)
ij is the probability that the interaction

between the uncommitted speaker with the opinion state i and the uncommitted listener with

j gives rise to the opinion state k. V
(k)
ij is the probability that results in the speaker adopting

the opinion state k for the interaction between the uncommitted speaker holding the opinion

state i and the committed listener with j. Similarly, W
(k)
ij is the probability that results in

the listener adopting the opinion state k for the interaction between the committed speaker

holding the opinion state i and the uncommitted listener with j. The densities xi and Pi

must sum up to 1, so we have
∑M

i=1 xi +
∑m

i=1 Pi = 1.

For the system with a small number of single opinions, m, the numerical integration

of the mean-field differential equation, Eq. (4.1), can be performed to obtain the density

evolution of each opinion state in the NG model. However, as the number of all opinion

states, M , which includes both single and mixed opinions, increases exponentially with m,

performing direct numerical simulations becomes computationally infeasible and impractical

for large values of m.

4.3 Original version

First, the original NG dynamics are analyzed using mean-field differential equations,

with a focus on the density evolution of each opinion state in the presence of committed

minorities. This section includes the study of three scenarios varying in complexity., the first

with two single opinions, the second with three single opinions, and the third with m single

opinions in general.

4.3.1 The two-opinion scenario

In the scenario of m = 2, there are two opinions, A and B, in the system competing

against each other. Eq. (4.1) reduces to two mean-field equations,

dxA

dt
= −xAxB + x2

AB + xABxA +
3

2
PAxAB − PBxA (4.2)

dxB

dt
= −xAxB + x2

AB + xABxB +
3

2
PBxAB − PAxB (4.3)

By definition, xA + xB + xAB + PA + PB = 1. Together with Eq. (4.2) and Eq. (4.3), the

two-opinion model can be analytically and numerically solved.
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We are interested in the scenario in which one opinion (let us say A) has a higher

fraction of committed agents than the other opinion, B, but the latter is initially supported

by all uncommitted agents, making it the majority opinion. Committed agents of opinion

A can assimilate uncommitted agents, thus causing opinion A to eventually become the

majority opinion. Previous studies [21], [131] have shown that there exists a minimal fraction

of committed agents, denoted by P
(c)
A , which is required for a fast phase transition of the

dominant opinion from B to A. Below this threshold, the waiting time for such a transition

grows exponentially with the number of agents, making it infeasible to observe in practical

cases. To understand the final dominant state of the system, a new variable, ni, is introduced,

which represents the total fraction of agents holding opinion i in equilibrium. This fraction

includes both the committed and uncommitted agents for a single opinion, ni = x
(s)
i + Pi,

whereas for mixed opinion states, ni only accounts for the uncommitted agents, ni = x
(s)
i ,

because committed agents only advocate their single opinions.

(a) (b)

Figure 4.1: Phase transition and the tipping point for m = 2. (a) The stable
density of agents with opinion A nA as a function of their
committed fraction PA for different values of PB. (b) The critical

point P
(c)
A changes with PB. The blue dots represent the

discontinuous transition of nA versus PA, while the red ones
represent the continuous change.

Previous studies [21] have shown that in the absence of committed agents advocating

opinion B (PB = 0, PA > 0), a minimal fraction of committed agents advocating opinion

A (P
(c)
A ) of approximately 0.098 is required to trigger a fast transition from the majority

opinion B to A. As Fig. 4.1a shows, when both committed groups, opinions A and B, are
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present, there are two types of transitions, the discontinuous transition and the continuous

one, that may occur depending on the committed fractions. They are separated by the point

(P (c), P (c)) ≈ (0.162, 0.162) [131]. For PB > P (c), the fraction of agents holding opinion A

increases continuously with PA, and the critical points lie on the line P
(c)
A = PB.

4.3.2 Three-opinion scenario

A slightly more complex system arises with three opinions. Let us consider three

opinions A, B, and C, where opinions A and C are committed by two minor fractions of

committed agents, and initially, all uncommitted agents, which form the majority of all

agents, hold opinion B. We ask a similar question as in the previous example. For the

scenario of PA > PC , to enable opinion A to dominate the system, what is the minimal

fraction of committed agents, P
(c)
A , and how does this threshold depend on the committed

fraction of the opinion C?

(a) (b)

Figure 4.2: Phase transition and tipping point for m = 3. (a) The stable density
of agents with opinion A nA as a function of their committed
fraction PA for different values of PC. (b) The critical point P

(c)
A

changes with PC. The blue dots represent the discontinuous
transition of nA versus PA, while the red ones represent the
continuous change.

According to Eq. (4.1), the evolution of each state variable can be numerically inte-

grated. For small values of PC , the fraction of agents holding opinion A, nA, exhibits a

discontinuous transition with respect to PA (Fig. 4.2a), and beyond the critical point P
(c)
A ,

opinion A wins the majority of supporters. The relationship between the critical point P
(c)
A
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and PC is non-monotonic. In the regime of discontinuous transition, P
(c)
A first decreases with

PC and then increases linearly with PC , indicating that increasing the latter is beneficial

for the agents committed to opinion A to dominate the majority of uncommitted agents

given that PC is smaller than a certain value (PC ≈ 0.077 at the lowest point in Fig. 4.2b).

However, for PC > 0.077, P
(c)
A increases linearly with PC and this regime includes both the

discontinuous transition and the continuous one, different from the previous two-opinion

scenario. The critical point separating two types of transitions remains the same as the

two-opinion scenario.

4.3.3 The general scenario – multi-opinion model

For the general scenario with m single opinions (A, B, C1, C2, C3, ..., Cm−2), it is

of interest to understand the impact of committed agents on the majority of uncommitted

agents and potential for one single opinion to dominate over other competitors. Consider

a scenario where the majority of uncommitted agents support a single opinion, denoted

as B, while the remaining agents are committed to m − 1 single opinions. Among these

m−1 opinions, the one with the largest committed fraction, denoted as A, has the potential

to reverse the majority of uncommitted agents from supporting B to supporting A. The

question then arises as to the minimum fraction of committed agents, P
(c)
A , required for such

a transition to occur. To streamline the analysis, the committed agents supporting opinions

other than A are grouped into a single category, referred to as Ã, with a combined committed

fraction of PÃ. This simplification is justified as none of the single opinions in the group Ã

can prevail in the competition. However, the number of competing opinions in the group Ã,

m− 2, their total committed fraction, PÃ, and the allocation of these committed agents, Pi,

may all potentially affect the critical point, P
(c)
A .

We, therefore, investigate the impact of such factors on the dominance transition of

opinion dynamics by constructing three different scenarios for allocating committed agents

within the group Ã.

1. Scenario S0: randomly distributed. The committed fraction, Pi, of each single

opinion in the group Ã can be any value between 0 and PÃ, but their total adds up to

PÃ.

2. Scenario S1: perfectly symmetric. m− 2 opinions in the group Ã share the equal
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fraction of committed agents, Pi = p0 = PÃ/(m − 2). The quantity, p0, in the later

context also refers to the average committed fractions of agents advocating the single

opinion state in the group Ã.

3. Scenario S2: extremely polarized. In contrast to the scenario S1, we maximize the

deviation of Pi in the group Ã to establish the highly uneven distribution of committed

fractions. Provided that the single opinion A has the largest committed fraction in the

system, the largest committed fraction in the group Ã should be smaller than PA. To

set up the numerical simulation, we chose max{Pi} = p1 = PA−10−3, and the number

of opinions with the committed fraction p1 is also maximized, which is n1 = ⌊PÃ/p1⌋.
The rest of committed agents, p2 = PÃ−n1p1(< p1), are assigned to one single opinion.

In this scenario, there are m − n1 − 3 (≥ 0) single opinions in the group Ã without

any committed followers. In the group Ã, Pi can take three values, p1, p2, and 0. As

there are no uncommitted agents assigned to the group Ã, some single opinions may

end up with no supporters. One should note that the number of single opinions is still

considered as m when compared with the scenarios S0 and S1.

The mean-field equations (4.1) can be directly integrated to analyze the opinion dy-

namics for a system with a limited number of single opinions. However, for a system with

many opinions m, this method becomes computationally infeasible because the number of

variables, M , increases exponentially with m. To overcome this challenge, simpler scenarios

are considered, as described in the scenarios S1 and S2. The simplified structures of scenarios

S1 and S2 allow for a more efficient and manageable study of the critical transition in com-

parison to direct numerical integration for the scenario S0 with arbitrary initial conditions.

In the scenario S1, a collection of single opinions (denoted as the group Ã) are designed to

have the same fraction of committed agents and no uncommitted supporters. Under the

homogeneous mixing condition, the number of supporters for these opinions is expected to

evolve in the same fashion. In this scenario, the number of state variables to be monitored

is reduced from 2m− 1 to 4m− 5. For example, when m = 5 where single opinions are A, B,

C1, C2, C3. Opinions C1, C2, and C3 are assigned the same fraction of committed agents, so

the fraction of uncommitted agents they can assimilate to themselves is expected to be the

same by symmetry. Further, some mixed opinion states, such as C1C2, C1C3, and C2C3, or

AC1, AC2, and AC3 also have the same uncommitted supporters as time progresses. This
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results in a reduction in the number of state variables that need to be monitored. A similar

argument also applies to the scenario S2.

Next, we study the fraction of supporters of opinion A which is assigned the largest

committed fraction, and the critical transition in which this opinion assimilates the majority

of uncommitted individuals to itself for the three scenarios.

(a) (b) (c)

(d) (e) (f)

Figure 4.3: Scenario S1. The fraction nA holding the opinion A changes with PA

for different values of PÃ. (a) m = 4, (b) m = 5, (c) m = 6, (d) m = 7,
(e) m = 8, (f) m = 9.

In the scenario S1, the total fraction of supporters of opinion A, nA exhibits a discon-

tinuous transition with PA for small values of PÃ shown in Fig. 4.3. Also, as seen Fig. 4.4, in

the critical point P
(c)
A displays a non-monotonic behavior as PÃ or p0 increases. The presence

of a small committed group plays a key role in the formation of a dominant opinion. The

initial decrease in the critical value P
(c)
A as the committed fraction p0 of the smaller groups

increases suggests that as the number of committed individuals in these groups grows, they

become more effective in facilitating the dominance of the opinion with the largest commit-

ted fraction. The initial decrease in P
(c)
A can be attributed to the increased potential for

interactions and conversions between the committed individuals in the smaller groups and

the uncommitted individuals in the system. Moreover, the non-monotonic behavior of P
(c)
A
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with increasing PÃ or p0 also indicates the presence of a threshold effect. Beyond a certain

value of PÃ or p0, the critical value P
(c)
A begins to increase, indicating that the positive in-

fluence of the smaller committed groups on the dominant opinion’s growth becomes weaker.

The linear relationship instead shows the competition between opinion A and other opinions

with a smaller committed fraction.

(a) (b)

Figure 4.4: Scenario S1 for m = 4, 5, 6, 7, 8, 9. The critical point p
(c)
A changes with

(a) p0 and (b) PÃ. It only includes discontinuous transitions. The

continuous transition follows the relationship P
(c)
A = p0.

To explore how the value of the tipping point P
(c)
A depends on the distribution of

committed agents in the group Ã, we manipulate the committed fraction Pi while preserving

PÃ in the scenario S0. Results displayed in Fig. 4.5(a)–(c) show a non-monotonic behavior

of the critical point P
(c)
A as a function of the maximum value of Pi in group Ã. The initial

decrease of P
(c)
A indicates that the presence of a large fraction of committed agents within

group Ã is beneficial for opinion A to dominate the system compared to when the committed

agents are uniformly distributed among the m− 2 single opinions.

This conclusion can also be confirmed by observing how P
(c)
A changes with the standard

deviation of Pi. However, it is worth noting that a higher Pi does not always result in

a favorable outcome in terms of the dominance of opinion A. For opinion A to become

dominant, its committed fraction PA must be greater than any other committed fraction in

the group Ã, which explains the linear increase of P
(c)
A observed in the results. The non-

monotonic behavior of the critical value of P
(c)
A highlights the importance of considering the

effects of different distributions of committed fractions on the overall dynamics of the system,
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especially the dominance transition.

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Scenario S0. (a)–(c) The critical point P
(c)
A changes with the

maximum of Pi in the group Ã with an initial decrease followed by
a linear increase. (d)–(f) only include the data of the decrease

regime, which shows that P
(c)
A changes with the standard deviation

(SD) of Pi. (a) and (d) m = 4, (b) and (e) m = 5, (c) and (f) m = 6.

(a) (b) (c)

Figure 4.6: The critical point P
(c)
A changes with p0 in three scenarios S0, S1, and

S2. For the scenario S0, only the data where P
(c)
A is along the

decreasing branch with max{Pi} in Fig. 4.5 is included. (a) m = 4,
(b) m = 5, (c) m = 6.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.7: The steady state nA changes with PA in three scenarios S0, S1, and
S2. (a)–(c) m = 4, (d)–(f) m = 5, (g)–(i) m = 6. (a), (d), and (g),
p0 = 0.02; (b), (e), and (h), p0 = 0.04; (c), (f), and (i), p0 = 0.06.

As seen in Fig. 4.5, the scenario S2 is expected to have a smaller critical point P
(c)
A

than S1 given the fraction of committed agents in group Ã is small enough, which can be

confirmed from Fig. 4.6. The critical points obtained from two scenarios, S1 and S2, provide

the upper bound and the lower bound, respectively, for the scenario S0. Additionally, one

can compare the steady states of the three scenarios in Fig. 4.7. The scenarios S1 and S2

also provide a good approximation for the steady state nA in the scenario S0. It is observed

that the critical point P
(c1)
A in the scenarios S1 is always greater than P

(c2)
A in the scenario S2,

and the two critical points P
(c1)
A and P

(c2)
A divide the parameter space into three parts. For

values of PA less than P
(c2)
A , the scenario S1 yields the lower bound of nA while S2 provides
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the upper bound. For P
(c2)
A < PA < P

(c1)
A , both scenarios establish the lower bound. For

PA > P
(c1)
A or the scenario when there are no critical points, the scenario S1 corresponds to

the upper limit of nA while S2 corresponds to the lower limit. By investigating the scenarios

S1 and S2, the critical points and the steady states of the single opinion A with the largest

committed fraction in the scenario S0 are well estimated.

(a) (b)

Figure 4.8: Divide and rule. The critical point P
(c)
A in the scenario S1 is

obtained by the recursive approach in (a), and the integration of

the differential equations in (b). The critical point, P
(c)
A , has a

non-monotonic relationship with the number of single opinions, m.
Dividing the committed agents into a moderate number of
competing minorities can aid in the domination of uncommitted
agents by opinion A in the system. The parameter is set as
PÃ = 0.1, 0.12, 0.14, 0.16.

We now analyze the opinion competition from another perspective. The key question is

to determine the dynamics of opinion A as it competes against opinions B and Ã. As shown

in Fig. 4.8a, the critical point, P
(c)
A , in the scenario S1 has a non-monotonic relationship with

the number of single opinions, m. Given a fixed committed fraction, PÃ, as m increases,

the individual committed fraction, p0 (= PÃ/(m− 2)), in group Ã decreases, weakening the

opposition from this group. The initial decrease of P
(c)
A reveals the validity of divide and

rule policy, whereby the more opinions splits among themselves the committed agents of

the group Ã, the easier it is for opinion A to dominate uncommitted agents in the system.

Reversing this rule reveals that the major obstacle to the opinion A dominance is the small

number of opinions in the group Ã. However, if m continues to increase, the critical point
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P
(c)
A also increases, suggesting that opinion B becomes the major threat. In this scenario,

the strong opponent, Ã, (large p0) can be helpful for opinion A to dominate the system, thus

making group Ã a friend of opinion A, in line with the Heider balance theory rule [146] that

states “The enemy of my enemy is my friend”.

The critical point P
(c)
A in the scenario S0 can differ depending on the distribution of the

committed agents. However, the scenarios S1 and S2 serve as an approximation by providing

the upper and lower bounds, respectively, for this critical value. Additionally, the symmetry

exhibited in the scenarios S1 and S2 results in identical evolution for opinion states with the

same committed fraction in the group Ã under the homogeneous mixing condition. This

reduction in complexity allows for a more efficient analysis of the system dynamics, as a

satisfactory approximation can be obtained by considering the scenarios S1 and S2.

4.4 Simplification by recursive relationship

In the previous section, we discussed how one can establish the symmetrical distribution

of committed agents to reduce the complexity and approximate the opinion dynamics in more

arbitrary scenarios. In this section, we will present a more general approach to reducing the

system’s complexity.

Since the largest committed opinion defines the system state, it is sufficient to focus on

this opinion density evolution. We introduce a quantity Q
(t)
i , which represents the probability

of a single opinion i being communicated at step t from the population [142], and we establish

an iteration function for the opinion density at step t based on the state at step t− 1. It has

been shown that the original NG dynamics and the listener-only version on the complete

graph have qualitatively similar results [147]. As it is easier to derive the iterative function

by considering only the state change of listeners, we develop our framework for the listener-

only version. For an uncommitted node to adopt a single opinion i at step t, it must have

held the opinion i in its list at step t− 1 and received opinion i at step t. Eq. (4.4) describes

such conditions, where xi+ is the total fraction of all mixed states containing the opinion i.

The first term of Eq. (4.4) represents the scenario when a listener holding the single opinion

i receives the signal i, and the second term corresponds to the scenario when a listener in

the mixed state containing the single opinion i hears the opinion i. After the interaction,

the listener in both scenarios either remains in the single state i or adapts to it. Eq. (4.5)

establishes the recursive relationship of the mixed state containing two opinions, i and j.
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Specifically, if a listener initially supports opinion i (j) and subsequently receives signal j

(i), it will switch to the mixed state, ij. This equation accounts for the scenario where a

listener holds one opinion but is influenced by the received opinion through interaction with

other agents. Similarly, the recursive relationship of the mixed state containing three single

opinions is derived in Eqs. (4.6). One can easily generalize the iteration function of the

mixed state containing n single opinions as Eq. (4.7), where Sn(i1, i2, ..., in) represents all

permutations of a set containing n elements.

x
(t)
i = x

(t−1)
i Q

(t−1)
i + x

(t−1)
i+ Q

(t−1)
i (4.4)

x
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(t−1)
i Q
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x
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∑
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To simplify the computation and focus on the density distribution of single opinions,

xi, the need to calculate or record all mixed states is eliminated. Instead, only Qi and xi+

need to be tracked. The density evolution of mixed states containing opinion i, such as xĩi,

xĩĩi, xĩĩĩi, can be derived using Eq. (4.7), where ĩ refers to any single opinion other than

opinion i. In this way, the number of variables is reduced from 2m − 1 to m2.

By summing up Eq. (4.5) over a subset that includes any single opinion j other than

i, one can obtain x
(t)

ĩi
as Eq. (4.8), where M is the set of m single opinions, and M \ i

represents the set of all single opinions excluding the opinion i.
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x
(t)

ĩi
= x

(t−1)
i

∑
j∈M\i

Q
(t−1)
j +Q

(t−1)
i

∑
j∈M\i

x
(t−1)
j (4.8)

Similarly, one can derive the general formula for the mixed state of length n + 1 with

opinion i and other n opinions, x
(t)

i ĩ ... ĩ︸︷︷︸
n

,

x
(t)

i ĩ ... ĩ︸︷︷︸
n

=
∑
j∈M

x
(t−n)
j

∑
i∈(j1,...,jn)∈M\j

Q
(t−n)
j1

...Q
(t−1)
jn

(4.9)

In Eq. (4.9), j1, ..., jn are n distinct integers, representing n different single opinions.

By definition, opinion i must be one of n distinct single opinions j1, ..., jn. The ultimate

objective is to track the evolution of single opinions over time, as captured by Eq. (4.4). This

requires computing the probability of transmitting opinion i, Q
(t)
i , and the density of mixed

states, x
(t)
i+, (i = 1, 2, ...,m) at each interaction step t. According to the interaction rule, only

speakers with a single opinion i in their list can communicate opinion i. Additionally, for

the mixed state, each single opinion in the list has an equal probability of being transmitted.

Therefore, Q
(t)
i and x

(t)
i+ are expressed as Eqs. (4.10) and (4.11), respectively.

Q
(t)
i = x

(t)
i + P

(t)
i +

1

2
x
(t)

ĩi
+

1

3
x
(t)

ĩĩi
+ ...+

1

m
x
(t)

ĩĩĩi ... ĩ︸︷︷︸
n
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x
(t)
i+ = x

(t)

ĩi
+ x

(t)

ĩĩi
+ x

(t)

ĩĩĩi
+ ...+ x

(t)

ĩĩĩi ... ĩ︸︷︷︸
n

(4.11)

By employing recursive functions (4.4), (4.9), (4.10), and (4.11), one can calculate

the density evolution of single opinions for any initial condition. One can further simplify

the computation if the system’s stable state is of primary interest, which means that the

probabilities of communicating opinion i at different time steps are the same. Therefore,

these probabilities Q
(t)
i , Q

(t−1)
i ,..., Q

(t−n)
i can be represented by one quantity Q

(s)
i . Comparing

the system evolution obtained by the recursive approach and differential equations in Fig. 4.9,

we find that the results are nearly identical, validating the recursive approach.
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(a) (b) (c)

Figure 4.9: The evolution of the uncommitted fraction for the opinions A, B
and C1 (same as C2, C3, C4, thus denoted as C) obtained by the
recursive approach and the differential equations. The number of
opinions m = 6, PA = 0.1, and PC1 = PC2 = PC3 = PC4 = 0.025. Initially,
all the uncommitted agents support the opinion B, xB(t = 0) = 0.8.

4.5 The multi-opinion system on random networks

While, in principle, it is possible to develop a heterogeneous (degree-based) mean-

field approximation scheme [120], [148], we do not pursue that approach here. Instead, we

resort to the original agent-based simulation of the Naming Game (i.e., using node-based

local update rules) to study the density evolution of agents supported by different opinions.

We consider a similar problem discussed in the previous sections, and the difference is that

all the single opinions are supported by committed agents. The opinion with the largest

committed fraction is denoted as A. For simplicity, the other m − 1 opinions share the

same fraction of committed fraction, p0, and are initially supported by the same number of

uncommitted agents. Hence, they are classified into one group, Ã with the total committed

fraction PÃ = (m − 1)p0. For the finite networked system, either the opinion A or one of

the opinions in Ã would dominate the system in the steady state. We are interested in the

critical point, P
(c)
A , that enables the dominance by the opinion A, and the influence of the

number of single opinions, m on the critical point.

4.5.1 The impact of random communication topology – ER networks

Networks generated by the Erdős-Rényi (ER) model [4] used with the same parameter

may have different connectivities. As seen in Fig. 4.10, in some cases, the evolution of the

system and the dominant opinion in the stable state differs from one realization to another.

This variability arises due to the differences in the connectivity structure among agents across



69

realizations and the random selection order of agents as speakers and listeners. These factors

introduce randomness in finite systems, leading to variations in the system’s behavior.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.10: The fraction of agents supporting the opinion A changes with the
interaction time on ER networks with N = 1000 agents. The
number of single opinions m = 5, and the committed fraction of
each opinion in the group Ã is p0 = 0.01. There are 50 realizations
for each parameter setting. The average degrees are ⟨k⟩ = 6 in
panels (a) – (c), ⟨k⟩ = 8 in panels (d) – (f), and ⟨k⟩ = 16 in panels
(g) – (i). For the committed size, in (a), (d), and (g), PA = 0.02, in
(b), (e), and (h), PA = 0.03, in (c), (f), and (i), PA = 0.04.

To represent the system state, the average fraction ⟨ni⟩ of agents supporting the opinion
i is defined in Eq. (4.12), where L is the number of realizations. Additionally, we introduce
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the ratio Ri as the fraction of realizations that end up being dominated by the opinion i.

⟨ni⟩ =
1

L

L∑
j=1

n
(j)
i (4.12)

(a) (b) (c)

(d) (e) (f)

Figure 4.11: The system stable states change with the committed fraction PA

on ER networks with N = 1000 agents. PÃ = 0.06. (a) – (c) ⟨n(s)
A ⟩ is

the fraction of agents supporting A in the steady state, which is
averaged over L = 50 realizations. (d) – (f) RA is the fraction of
realizations that end up with A dominant state. The average
degrees are ⟨k⟩ = 6 in (a) and (d), ⟨k⟩ = 8 in (b) and (e), and
⟨k⟩ = 16 in (c) and (f).

Fig. 4.11 shows that as the committed fraction PA increases, there is a critical transition

from a low density to the dominant state for the average number of agents holding opinion

A, ⟨n(s)
A ⟩, as well as for the ratio RA. To further investigate the transition on networks, we

define the critical point on random networks, denoted by P
(c)
A , as the smallest committed

fraction that enables the transition ratio RA to exceed 1
2
(Note that our chosen conventional

cutoff value 1
2
does not affect the findings). To analyze the relationship between the average

degree ⟨k⟩ and the critical point P
(c)
A on random networks, we examined complete graphs
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and networks with varying ⟨k⟩, as shown in Figure 4.12. Our results indicate that as the

number of single opinions m increases, the critical point P
(c)
A decreases, in line with the

divide and rule policy. Additionally, we observed that the critical point decreases as the

average network degree decreases, suggesting that sparse random communication topologies

may amplify the impact of committed members on the system, such that opinion A with the

largest committed fraction is easier to dominate the system [148].

(a) (b)

Figure 4.12: The critical point P
(c)
A changes with the number of single opinions

on ER networks and is compared with complete graphs. The
number of agents is N = 1000 in (a), and N = 10000 in (b). The
total fraction of committed agents in the group Ã is PÃ = 0.06. The
critical point is the smallest committed fraction which enables half
of the realizations to stabilize with opinion A as a dominant state.
The critical point increases as the average degree increases.

4.6 Discussions

In this study, we focus on the competition of the opinion with the largest fraction

of committed agents against other opinions with committed agents and the opinion with

the majority of uncommitted supporters. We study such competition using the original

NG dynamics and its listener-only version. While continuous-time mean-field differential

equations can accurately describe the opinion evolution for complete graphs in the infinite-

size limit, the complexity of systems with multiple opinions grows exponentially, making

direct integration of the corresponding differential equations impractical.

To address this challenge, we introduce two simplified scenarios, S1 and S2, which fea-



72

ture more symmetric setups. These scenarios significantly reduce computation complexity

and they can provide upper and lower bounds for the critical point (P
(c)
A ) of dominance

transition in the scenario with an arbitrary distribution of committed agents. Through com-

parative analysis of critical transitions across the three scenarios, we highlight the significant

influence of the distribution of committed agents within the minority committed group, Ã,

in determining P
(c)
A . Specifically, the number of opinions and the distribution pattern of

committed agents within group Ã can either facilitate or hinder the propagation and even-

tual dominance of opinion A over uncommitted agents. When opinion B without committed

followers is the primary competitor, augmenting the number of committed agents in Ã can

lower P
(c)
A by diminishing the support for opinion B. Conversely, if agents committed to

opinions other than A are the main opponents, increasing their number requires a higher

fraction of agents committed to A, thereby raising the critical point.

Furthermore, to enhance the accuracy of depicting the NG opinion dynamics and cap-

ture critical transitions across various initial conditions in a computationally manageable

manner, we develop the discrete-time recursive approach. This method focuses more on the

evolution of single opinions by consolidating mixed states with the same opinion into a single

variable and introducing the probability of a randomly chosen speaker communicating any

single opinion. By streamlining computations while preserving the system’s dynamics, this

framework offers an efficient representation of NG dynamics in a complete graph.

Additionally, to gain insights into real-world opinion evolution, we conducted agent-

based simulations to understand system dynamics and capture critical transitions across

various finite-sized networks. In our experimental setup, the primary committed group

advocates for opinion A, while the remaining agents, both committed and uncommitted,

are evenly distributed among other minor committed opinions. Our observations reveal a

strategy akin to the “divide and rule” policy, where dividing agents into more minor groups

results in a reduced critical fraction of agents committed to A required for system dominance.

This phenomenon suggests that segmenting agents facilitates the easier domination of the

opinion with the largest committed size in the system.

While we presented two frameworks to simplify the multi-opinion NG model, there

are some limitations to this work. Firstly, extending the theoretical analysis to networks of

various topologies would provide a more comprehensive understanding of opinion dynamics

in real-world scenarios. Secondly, we can introduce varied commitments to allow individuals
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to stick to a single opinion temporarily while maintaining their long-term flexibility, par-

ticularly relevant for moderately committed agents. Thirdly, we would also like to extend

the original Naming Game model from pairwise interactions to group interactions, allowing

for the consideration of discussions within groups of friends, which is common in real-life

situations.



CHAPTER 5

CONCLUSIONS AND OUTLOOK

In this thesis, we have investigated the realm of critical transitions, a phenomenon found

ubiquitously across diverse systems. Leveraging the tools of network science, our explorations

have spanned various aspects of network dynamics and critical phenomena. Specifically,

we have explored the system resilience and dimension reduction within ecological systems,

alongside investigating opinion dynamics within social systems.

Within the domain of ecological systems, our research has been primarily focused on

understanding system resilience in response to external perturbations. Through our analysis,

we have identified two distinct cluster modes associated with different system sizes and noise

intensities, each exhibiting unique evolutionary patterns and statistical characteristics. The

single-cluster phase exhibits random individual recovery lifetimes and exponential waiting

time distributions, contrasting with the more deterministic evolution observed in the multi-

cluster mode. We have further revealed the dependence of recovery time on system size and

noise strength. Employing nucleation theory, we have discovered a universal scaling law, of-

fering a framework to predict critical transitions and guide resilience restoration in complex

dynamical systems. However, challenges remain in leveraging mean-field theory to simplify

the study of critical transitions in noisy environments and addressing the complex inter-

actions of real-world ecosystems. Future research efforts will concentrate on investigating

diverse network topologies and fluctuation signals, as well as exploring stochastic switching

phenomena to advance our understanding of critical transitions in ecological systems.

In our exploration of complex networks, computational challenges arise as the sys-

tems scale up. Dimension reduction has emerged as a powerful tool for simplifying complex

network dynamics while preserving essential features. We have developed a degree-based

mean-field framework to reduce the complexity of large networked systems. This framework

involves classifying the network into clusters based on node degrees, where nodes within the

same cluster exhibit similar degrees and dynamical evolutions. Each cluster is represented

by one observable, capturing the degree-weighted average state. Consequently, the origi-

nal network is described as an dimension-reduced system, preserving the original dynamical

rules. Unlike previous one-dimensional mean-field approaches, this framework provides a

more accurate approximation of state evolutions and tipping points of critical transitions,

74
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particularly for heterogeneous networks and those with communities. We observe that the

approximation accuracy improves as one increases network homogeneity, the distance to the

tipping point of phase transition, and the number of clusters. Though the optimal number

of clusters varies under different interaction strengths, it is consistently much smaller than

the number of nodes in the original network. Moreover, this framework offers clear interpre-

tation, with each variable in the dimension-reduced system representing the average of node

states in its respective cluster. Beyond state approximation, the framework demonstrates

potential applications in evaluating critical thresholds for system stability in time-delay dy-

namical systems, avoiding the need for numerical simulations or computing characteristic

matrix eigenvalues. While promising, future research should address open questions regard-

ing the impact of network topology and dynamics on the optimal number of clusters, and

the development of theoretical guidelines for cluster partition.

Turning our attention to social systems, we have explored the dynamics of opinion

spreading in the Naming Game model and observed critical transitions within such model.

We focus on scenarios involving committed agents (or referred to as zealots) and uncom-

mitted supporters, and examine how the opinion with the largest fraction of committed

agents contends against other committed opinions and the majority uncommitted opinion.

Leveraging mean-field theory, we have described the opinion dynamics for evolution on a

complete graph in the infinite-size limit. To address computational complexities inherent in

multi-opinion systems, we have devised two simplified scenarios and developed a recursive

approach. Our comparisons of critical transitions across the two scenarios have revealed that

committed agents within the minority group can either facilitate or impede the dominance

of the largest committed group, depending on the initial opinion status. Moreover, these

scenarios provide upper and lower bounds for estimating the critical threshold of the original

system. Through agent-based simulations on random finite-sized networks, we have further

elucidated the dynamics, highlighting how the divide-and-rule strategy influences the critical

fraction required for opinion dominance. Additionally, our study serves as an abstract model

of political contests, wherein the large committed group symbolizes government supporters,

and minor committed groups represent divided opposition factions, which can be used to ana-

lyze significant social-political transformations. While our proposed frameworks can simplify

the multi-opinion NG model, making it computationally easier to track the opinion evolution

and capture tipping points, there are also some revenues for future explorations, including ex-
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tending the theoretical analysis to networks of real-world characteristics, introducing varied

commitments to allow committed individuals to only stick to a single opinion temporarily,

and incorporating group interactions to allow for the consideration of discussions within

groups of friends, which is common in real-life situations.

Across diverse systems ranging from ecological networks to biological dynamics and

social opinion spreading, we have uncovered and examined the presence and importance of

critical transitions. The identification of tipping points of such transitions has consistently

been a focal point of our investigations, which enables us to comprehend and anticipate

abrupt changes within systems, providing insights into their resilience and stability.
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“Converting high-dimensional complex networks to lower-dimensional ones preserving

synchronization features,” EPL, vol. 140, no. 2, Oct. 2022, Art. no. 21001.
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