Proc. Seventh SIAM Conference on Parallel Processing for Scientific Computing, San Francisco,
February, 1995, SIAM, Philadelphia, 1995, pp. 207-212

Parallel Object Oriented Implementation of a 2D Bounded
Electrostatic Plasma PIC Simulation®

Charles D. Norton' Boleslaw K. Szymanski' Viktor K. Decyk?

Abstract

We discuss the software development issues involved in designing parallel programs
using object oriented techniques. Simulations involving 1D and 2D Particle In Cell
plasma codes illustrate how C++ programs can effectively describe complex simulations
while performing with reasonable efficiency when compared to the equivalent Fortran
programs. The scalable object oriented modeling techniques closely match the physical
view of the problem, thus supporting modifiability and portability of the code. Selection
of a parallel programming paradigm must consider the important factors of efficiency
of the computation and the programming implementation effort. C++ and Fortran
implementation paradigms are compared and discussed from this point of view.

1 Introduction

Development of scientific applications for high performance distributed memory computer
architectures is challenging. This challenge is particularly apparent during the programming
process, when the developer often writes the application using constructs that are specific
to the programming language and computer architecture used, but remotely related to the
problem. The increasing complexity required in modeling scientific applications can only
be controlled by using paradigms which ease the programming burden. We demonstrate
how object oriented methods can address this issue on the example of a plasma Particle In
Cell simulation.

We begin by comparing the organization of the Fortran and C++ programs that
describe simulation of a beam-plasma instability experiment. In particular, we examine
the process of converting the procedural Fortran codes into object oriented C++ versions.
A comparative analysis of the simulation results obtained from the codes as well as their
performance analysis are presented. Finally, the conclusions regarding choice of developing
parallel programs in Fortran or C++ are offered.

2 The Plasma Particle In Cell Simulation Model

When a material is subjected to conditions under which the electrons are stripped off of
the atoms, acquiring free motion, the mixture of heavy positively charged ions and fast
electrons forms an ionized gas called a plasma. lonization can be introduced by extreme

*This work is supported by NASA under Grant # NASA NGT-70334. The content does not necessarily
reflect the position or policy of the U.S. Government. No official endorsements should be inferred or implied.
Access to the Intel Paragon and Cray T3D at the Jet Propulsion Laboratory was provided by NASA’s Offices
of Aeronautics, Mission to Planet Earth and Space Science.

' Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA.

{Department of Physics, University of California at Los Angeles, Los Angeles, CA 90024-1547, USA and
NASA Jet Propulsion Laboratory, Pasadena CA 91109, USA.

1

Bolek
Text Box
Proc. Seventh SIAM Conference on Parallel Processing for Scientific Computing, San Francisco,
 February, 1995, SIAM, Philadelphia, 1995, pp. 207-212

2 NORTON ET AL.

heat, pressure or electric discharges. The free electrons can transport a current; thus fusion
energy is an important area of plasma physics research, but more familiar examples include
the aurora borealis, neon signs, the ionosphere, and solar winds.

The fundamentals of the Particle In Cell plasma simulation model are described in [1].
The model integrates in time the trajectories of large numbers of charged particles in their
self-consistent electrostatic (coulomb) fields. The PIC method assumes that particles do
not interact with each other directly, but through the fields which they produce according
to the Maxwell’s equations. For a one-dimensional simulation, all spatial variation is in the
@ direction, whereas in two-dimensions, motion occurs in the # and y directions. Particles
can be located anywhere in the spatial domain; however, the field quantities are calculated
on a fixed grid.

The computational cycle begins with the known initial particle positions @; from which
the charge density p(@,,) is found at the grid points x,, by interpolation,

1) plen) = Y 4S(an -).

S is the particle shape function which replaces point charges with a finite size charge cloud
to reduce close range collision effects. The particle charge is ¢; with center x; [5]. Next,
the electric field E(x,,) is found at the grid points by solving Poisson’s Equation

(2) V- E(2,) =~V = dnp(a,),

using the Fast Fourier Transform. This electric field is then used to calculate the force on
each particle whose trajectories are updated by integrating Newton’s Law,

dv; g
dt m; (CIZ)
dx;

(3) FTR

(Note that we will not account for the magnetic field B in this simulation). The velocity
and position of each particle is advanced in time using a time centered leap-frog scheme,

’Ui<t—|—%) = ’Ui<t—%)—|—MAt

m;

(4) xz;(t + At) zi(t)+ v, (t + %) At.

This cycle then repeats for the duration of the simulation. Diagnostics are computed along
the way and all lengths are normalized to the grid spacing. These lengths are related back
to physical lengths later.

The General Concurrent Particle in Cell Algorithm described in [3] was used for the
beam-plasma instability simulation. The GCPIC method partitions the particles and grid
points among the N, processors of the MIMD distributed memory machine. Each processor
is assigned a subdomain and is responsible for the particles in its domain. During each time
step a primary decomposition, which makes advancing particles in space eflicient, and a
secondary decomposition, which makes solving the field equations on the grid efficient, are
used. When a particle moves from the current to the new partition, it is passed to the
processor responsible for the new partition. The grid spacing is uniform and the particles
are initially distributed uniformly. Initial motion of particles is described by Maxwellian

PARALLEL OBJECT ORIENTED PIC SIMULATION 3

velocity with drift. Although the number of particles per processor will vary during this
simulation, the load usually remains well balanced.

The beam-plasma instability experiment models a beam of electrons in a plasma which
drives plasma waves to instability. Initially, there are two groups of electrons, a large
population at rest (the background) and a smaller one moving at some nonzero velocity
(the beam). An experiment such as this can be used to verify plasma theories and to
study the time evolution of macroscopic quantities like potential and velocity distributions.
Additionally, phase space diagrams of the particle positions over time can be examined
to study the closed orbits of particle trapping in a potential well. More sophisticated
experiments have been developed based on this model. However, for the purpose of
examining Fortran verses C++4 development, this experiment is sufliciently complex.

3 PIC Simulation in Fortran & CH4++

Most of the computational time in PIC simulation involves performing operations on
particles and fields. Advancing the particles in space requires knowledge of the force due to
the field. Additionally, computing the field requires knowledge of the charge contribution
on the grid from the presence of particles. In Fortran, arrays maintain particle position
and velocity information as well as grid data associated with charge density and directional
forces. These arrays are passed by reference among functions which compute various energy
diagnostics at each simulated time step. Although passing data arrays leads to a very
efficient simulation in Fortran, the data interrelations are lost.

The simulation algorithm and its representation in Fortran displays certain character-
istics of operations performed. Electrons, or particles, are advanced to new positions in
space. Charge is deposited on the grid. The electric field is calculated on the grid and
particles are distributed based on their type. In non-object oriented languages, we can
write subroutines that perform these operations based on the availability of data; that is,
less emphasis is placed on what the data represents and more on its availability.

In object oriented languages, however, a classification of the data and associated
operations emphasizes its meaning. Thus, we need to look into what the data represents
and find an appropriate set of classes and operations that support the user’s idea of what
the data means. For example, we should develop classes that utilize a grid with appropriate
operations such as charge deposition. Classes that operate on particles with common and/or
unique properties should also be introduced. Furthermore, objects of these classes should
be integrated so that they can function together to perform specific operations. Various
approaches have been presented regarding object oriented class design in plasma simulation
[2, 4]. We discuss our design decisions in the next section.

3.1 The Object Oriented Class Design

When deciding how to represent a PIC program using an object oriented hierarchy, issues
to be considered include:

e The impact of Fortran program structure on class design.
e The interdependence of efficiency and class design.
e The numerical reliability of C++ compared to Fortran.

o The utilization of various features of C+4++4.

4 NORTON ET AL.

PointVector<T> Inheritance o—
Use Relationship ——»

IChargedPanicIe<T>|‘—i Vector<T> I I VPMachine I

\
| Species |._| Plasma l._.[Fidd HGrid<T>|
D!

IPartitionRegionI I EnergyDiag I

Fia. 1. Class Hierarchy

There will certainly be tradeoffs in the process of identifying and organizing classes from
a Fortran based code. We overview this process while discussing the class organization of
our program.

The C++4 program uses templates to operate on a vector space of particles. A
particle is described by a typed vector (specifically as either a VectoriD<T> or a
Vector2D<T>) together with overloaded mathematical component point vector operations.
The vector represents the position/velocity component in the corresponding dimensions.
These vectors are inherited into a ChargedParticle class which enhances the physical
description of a particle. Next, the vector space of charged particles is formed from the
Vector<ChargedParticle> template class, allowing for the description of the plasma as a
vector space of charged particles with vector operations on the collective group.

Actions such as distributing particles in space are performed on the charged particle
vector space object, which is a collection of charged particles. Although each charged
particle is a template object, care is taken to ensure that this organization is no less
efficient than representing particles as arrays. Moreover, template representation allows
the particles to be parameterized objects which is useful in specifying particle distribution
properties and in computations associated with updating particle positions.

The Species class maintains specific information based on the group properties of
particles, such as their thermal and drift velocities which distinguish them as background
or beam particles. The EnergyDiagnostic class is used to collect and monitor plasma
parameters associated with system energy. The VirtualMachine class parameterizes the
parallel machine and therefore aids in portability since only the internal message passing
calls need to be modified in this class. However, most of the computational effort is focused
on the interactions between the electrostatic field and particles which result in the definition
of the most complex classes, the Field and Plasma classes.

3.2 The Particle/Field Class Interaction

The field consists of a uniform computational grid which is distributed across processors.
Since the Field is computed in Fourier Space there are actually two grids that compose the
field, a scalar and a complex grid. Our Field class contains scalar and complex Grid<T>
template classes as members. Since the field is partitioned across processors this class
also contains a PartitionRegion object which maintains partitioning related information.
Operations associated with depositing charge based on particle positions and calculating a
uniform background ion density are members of the field class since they perform operations
that modify the field.

Particles are treated as a collection in the vector space, therefore, a Plasma class
was introduced to allow for collective operations. These include advancing particles and

PARALLEL OBJECT ORIENTED PIC SIMULATION 5

Fortran and C++ Field Energy Fortran and C++ Kinetic Energy
nnnnn

nnnnn

uuuuu

nnnnn

nnnnn

mmmmmm

Fia. 2. Energy/Speed Distributions

updating their distribution across processors as they cross domain boundaries. Particles
are also distributed, potentially in a different manner than the field, across processors, thus
this class also maintains a PartitionRegion object. Additionally, particle space/velocity
distributions can be specified.

It is useful to consider alternative organizations. In this code, we decided to bind
operations that change the data associated with some concept to that class. Thus,
modifying the grid charge density is a field operation. Similarly, moving particles
among processors is a plasma operation. However, certain actions represent the union of
particle/field interactions, such as advancing particles to new positions. We chose to view
this as an operation on the particles under the influence of the field, therefore advancing
particles is a plasma class operation. An alternative view would be to create a distinct
class that operates on the collective interaction of particles and fields. This strategy would
allow for particle and field classes to act specifically on particles and fields with a separate
unified class used to operate on their interaction. Both approaches have merits and we are
currently considering this alternative modeling approach. As sketch of the major portions
of our class hierarchy is shown in Figure 1.

4 Simulation Results

In our beam-plasma instability experiment, we measure the field, kinetic and total energies
of the system at each simulated time step. As mentioned, we begin with two populations
of electrons; one large group at rest and a smaller group in motion. Our 1D Paragon
simulations consisted of 4,096,000 background electrons and 409,600 beam electrons with
16384 grid points. The 2D SP1 simulations consisted of 3,276,800 background and 294,912
beam particles with 32768 grid points. Since the original Fortran codes have been well
benchmarked [3], we will restrict our performance overview to these rather arbitrarily
selected cases.

Examining the energy diagnostics for the SP1 two-dimensional simulations with
3,571712 particles on 16 processors, Figure 2 shows that the curves correspond for the
Fortran and C++4 versions, illustrating the field /kinetic energy exchange. Additionally, we
illustrate the plasma phase space. The Fortran version completed in 802 seconds while the
C++ version finshed in 1,228 seconds. The Paragon one-dimensional 4,505,600 simulation
on 32 processors gives completion times of 231 seconds and 377 seconds for Fortran and
C++ respectively, which also is reasonably competitive.

6 NORTON ET AL.

4.1 Implementation Issues

C++ compilers are still very much in the evolutionary stage. We used the GNU g++
compiler v2.4.5 for the one-dimensional simulation results we have presented on the
Intel Paragon. When the g++4 compiler was upgraded to v2.5.7 the identical programs
compiled correctly, yet the energy diagnostics reported were completely incorrect. The
two-dimensional code was easily ported to the Paragon from the SP1, however we could
observe that template references under g++ v2.5.7 introduced numerical errors into
ChargedParticle vector operations when advancing particles. The identical references
using x1C performed correctly. The Cray T3D C++ compiler, which is in beta release at
this writing, could not instantiate templates correctly. Interestingly enough, however, the
identical program did build correctly on the Cray YMP. Cray support is examining this
issue at the time of this writing. The IBM x1C C++ compiler was used during development
on the SP1. Both the SP1 and xIC compiler performed extermely well.

This code was easily ported among machines and compilers. However, lack of
standardization regarding C+4 template instantiation has been an issue of concern.
Templates provide for many organizational advantages, but outstanding implementation
issues currently limit their usefulness.

5 Conclusion

We have given an overview of the design of C++ skeleton particle simulation codes based on
existing Fortran codes. The design concepts involved in reorganizing the Fortran program
into C++4 have been discussed. Additionally, we have given performance results which
indicate that the execution speed of C4++4+ may be acceptable, given the organizational
advantages. The codes were designed with both execution and implementation scalability
in mind. The template classes aided in this extension since moving from one to two-
dimensions for particle vector spaces required just modification of the parameterized type.

Programming in an object oriented manner takes practice and patience. As numerical
classes are introduced into the language and as new techniques are found to improve the
efficiency of C++4 programs, the benefits of object oriented design will influence scalable
high performance computing. Our ongoing research into using C++ for runtime efficiency
of unstructured and irregular parallel computations, such as in more complex plasma
simulations, is the focus of our future efforts. The ability to reuse existing software and
to develop computation kernels represents a growing need as high performance computing
becomes more complex. Object oriented methods can help to achieve this goal.

References

[1] C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation, The Adam Hilger
Series on Plasma Physics, Adam Hilger, New York, 1991.

[2] S. W. Haney and J. A. Crotinger, C++ Proves Useful in Writing a Tokamak Systems Code,
J. Computers in Physics, 6 (1991), pp. 450-455.

[3] P. C. Liewer and V. K. Decyk, A General Concurrent Algorithm for Plasma Particle-in-Cell
Simulation Codes, J. of Computational Physics, 85 (1989), pp. 302-322.

[4] J. V. W. Reynders, Object-Oriented Particle Simulation on Parallel Computers, in 15th Inter-
national Conference on the Numerical Simulation of Plasmas, King of Prussia, Pennsylvania,
1994, Princetion University Plasma Physics Laboratory and U.S. Department of Energy Office
of Fusion Research, pp. 1B2 1-4.

[5] T. Tajima, Compuiational Plasma Physics: With Applications to Fusion and Astrophysics,
Frontiers in Physics Lecture Note Series, Addison Wesley, Redwood City, CA, 1989.

