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ABSTRACT 
An intrusion occurs when an attacker gains unauthorized 
access to a valid user’s account and performs disruptive 
behavior while masquerading as that user. The attacker 
may harm the user’s account directly and can use it to 
launch attacks on other accounts or machines. Developing 
“ signatures”  of users of a computer system is a useful 
method for detecting when this scenario happens. Our 
approach concentrates on developing precise user 
signatures characterizing multiple aspects of user activity. 
Thus, anytime someone behaves in a manner inconsistent 
with their signature, our system will raise an alarm which 
strength corresponds to the unlikelihood of the current 
behavior to the signature.  

1. INTRODUCTION 
Computer security has become an area of utmost 
importance as the number of people who use computers 
continues to increase. As the number of computer systems 
and networks grow, more and more bugs are discovered 
which attackers attempt to exploit. An intrusion detection 
system (IDS) is designed to monitor a computer or a 
network to detect invalid activity. IDSs can monitor users, 
applications, networks, or combinations of the three, in 
order to detect well-known and unknown attacks. 

 

There are two main approaches to detecting intrusions, 
anomaly detection and misuse detection. Anomaly detection 
is the approach in which first a model of normal system or 
user behavior is created, and then any behavior that 
deviates from the model is called anomalous. The major 
advantage of this approach is that unknown or new attacks 
can be identified, because their pattern will be a deviation 
from the model of expected behavior. The misuse detection 
approach, by contrast, attempts to model well-known 
attacks. Then any behavior that matches the model is 
recognized as an attack. The major advantage of misuse 
detection is that well known attacks can easily be identified, 
so the reaction time can be reduced. The disadvantage 
however, is that no new attacks will be identified.  

Intrusion detection systems are also classified based on the 
types of systems they monitor. The two main systems 
monitored for intrusions are host-based systems and 
network based systems. Host-based intrusion detection 
attempts to detect against attacks on a particular machine. 
This is typically done through analysis of a computers log 
files. Network-based intrusion detection attempts to detect 
against attacks on a network. This is typically done through 
analysis of network traffic. 

2. MOTIVATION 
The system we created uses a host-based anomaly detection 
scheme to identify invalid user behavior. We first generate 
a signature of normal behavior for each user of a computer 
system. We make the assumption that each user has a 
sequence of commands that they frequently type in. They 
might search for a given directory, open a text editor, check 
their mail, compile a program, etc. By having a signature of 
all the frequent (and infrequent) command traces a user 
types, we can compare future command traces the user 
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types against the signature. Since we are storing the actual 
command traces, we not only have a representation of the 
frequent commands the user types, we also have a 
representation of the orderings between commands. 

Anomalous behavior is defined as any behavior that 
deviates from the model. Thus the anomalies this system 
detects may or may not correspond to an actual intrusion. In 
some instances, the user may simply be trying out a new set 
of commands, or their behavior is different due to fatigue or 
stress. Other times, there is in fact another person 
masquerading as the user. In either instance, the system 
described in this paper will detect that the behavior deviates 
from the model. 

3. PREVIOUS WORK 
There have been many previous intrusion detection systems 
that use the anomaly detection scheme. NNID (Neural 
Network Intrusion Detection) uses neural networks to 
predict the next command a user will enter based on 
previous commands [4]. Haystack, a combined anomaly 
detection/misuse detection IDS models individual users as 
well as groups of users. It assigns initial profiles to new 
users, and updates the profiles once a pattern of actual 
behavior is recognized [5].  

ImSafe, a tool that has its roots in anomaly detection, 
monitors the system call traces produced by specific 
applications and tries to predict the next system call as 
accurately as possible [1]. First, ImSafe must go through a 
learning phase to construct a profile of the application to be 
monitored. Then, that profile is used during the detection 
process. The approach outlined in this project is similar to 
that of ImSafe except that user behavior is modeled instead 
of application behavior. Next, EMERALD eXpert-BSM, a 
real-time forward-reasoning expert system, uses a 
knowledge base to detect multiple forms of system misuse 
[3]. The forward-reasoning architecture helps eXpert-BSM 
detect intrusive behavior across multiple system event 
orderings while also accounting for specific pre- and post-
conditions of those sequences. 

The work of Forrest, Hofmeyr, Somayaji and Longstaff details a 
system similar to ours that scans system call traces of normal user 
behavior and builds a database of characteristic user patterns [2]. 
The user patterns they store are essentially the way the system 
calls follow each other. They slide a window across the system 
call trace(s) of a user, and for each window of a given size k, they 
record the first system call and system calls that follows it at 
position 1 through position k After the database is generated, 
future sequences of system calls are compared against the 
database to determine if they are anomalous or not. Our system 
could be viewed as an extension of this work. Instead of using 
a predefined window, we determine the command trace size by 
analyzing the user ’s activity. We fur ther  utilize the var iability 
in command traces to account for  users with extremely long 
command traces and large var iety of commands. 

4. PROBABILISTIC STATE FINITE 
AUTOMATA  
We represent each user signature as a probabilistic state finite 
automata (PSFA). A finite automata is a mathematical model 
consisting of a set of states, a set of transitions between states, an 
input alphabet, an initial state and a final state.  A PSFA is an 
extended finite automata in which each state has an associated 
probability. The probability associated with each state 
corresponds to the probability that the state will be reached from 
the previous state. Each transition in the PSFA corresponds to a 
user command. The input alphabet for the PSFA is the set of 
commands the user entered. Figure 1 shows an example PSFA. 
The transitions are labeled with commands a through f, and the 
states each have an associated probability. 

 

 

 

 

 

 

 

 

 

Figure 1. Example PSFA. 

Figure 2. System Architecture. 

5. SYSTEM OVERVIEW 
The system described in this paper generates signatures for each 
user of a computer system and tests future command traces against 
signatures that are already created. The system consists of four 
basic modules. The first module, the Filter Module, is responsible 
for extracting user commands from log files, then converting the 
user commands with the associated timestamps into command 
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traces. These command traces are then either passed to the 
PSFA Builder, which constructs the PSFA, or to the PSFA 
Tester, which will test future command traces against the 
PSFA. The PSFA Provider is responsible for providing the 
PSFA  used to test future command traces to the PSFA 
Tester. The diagram of the system is shown in Figure 2.  

6. FILTER MODULE 

6.1 Extracting User Commands from Log Files 
The first step in filtering the user commands is to extract all 
the system calls generated by the user from the log files. 
The log file of a computer stores all the events that occurred 
on the computer. Each event that is recorded is called a 
system call. For every action a user makes, opening a file, 
typing a command, moving the mouse, etc. many system 
calls are generated. Each system call stored in the log file 
contains fields that identify the type of system call, the user 
who created it, the time, and other information. Extracting 
the system calls belonging to a given user is done through 
parsing the log file and extracting all system calls the given 
user generated. 

Once all the system calls are extracted for a given user, the 
next step is to identify only the system calls that correspond 
to actual commands the user entered. To do this, a filter is 
used to identify execve system calls, because each execve 
system call corresponds to an actual command the user 
entered at a prompt. The filter also extracts a small set of 
system calls that are not execve, namely login and chdir. 
During the process of extracting the user commands, the 
filter also extracts the timestamp, and writes both the user 
command and timestamp to another file. 

This process is repeated for each of the log files we wish to 
train on. It is essential that the log files we use to construct 
our signatures are created from commands the actual user 
typed and not a masquerader, so that each user’s signature 
is valid, thus invalid behavior will never match the 
signature.  

6.2 Constructing Command Traces from User 
Commands 
Once we have the listing of commands and timestamps we 
can convert them into a series of command traces. By 
modeling the command traces entered by the user rather 
than just the individual commands, we develop a more 
accurate representation of user behavior. The command 
traces that are generated are completely dependent on the 
time intervals between successive commands.  

We define the time between two successive commands as ξ, 
and a time interval 

�

t. We then specify that two successive 
commands will be considered in the same command trace, 
if ξ < 

�

t. A large 
�

t will produce longer command traces, 
because there is a longer time window by which two 

successive commands can still be a part of the same 
command trace. A very large 

�

t will in effect store an 
entire user session as once command trace. A small 

�

t, on 
the other hand, will produce shorter command traces. The 
value of 

�

t is very important in determining the structure 
of the PSFA. See Figure 3 and Figure 4 for an example of 
two sets of command traces derived from the same 
command listing, based on different time intervals, 

�

t.  

 

 

 

 

 

 

 

 

 

Figure 3. Example command and time listing. 

 

 

 

 

 

 
Figure 4. Command traces der ived from � t of 1 and 3. 

In comparison to the approach taken by Forrest, Hofmeyr, 
Somayaji and Longstaff which uses a predefined window 
size to group together commands, our approach is more 
intelligent. While both our methods build models from 
command traces, our system does not arbitrarily group 
together commands into command traces, but instead 
groups them based on their respective timings. This 
provides a more accurate representation of user behavior.  

7. PSFA BUILDER 

7.1 Building the PSFA From Command Traces 
The PSFA for each user is a collection of all the command 
traces for a given user. For each command trace we add, 
starting at the top of the PSFA, we step through the 
commands in the trace and check if there is a transition 
associated to each command. If there is no transition for the 
given command, then a new transition and resulting node 
will be added. We then follow the transition we added, or 
the old transition if there already was one. We then  repeat 
the process for the next command in the command trace.  
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Figure 5. PSFA based on command traces der ived from 
� t of 1 and 3. 

Figure 5 shows the PSFA consisting of the command traces 
from the Figure 4 where � t = 1. The numbers in the nodes 
correspond to the number of times the node follows the 
parent node.   

The next step is to assign probabilities P to each node in the 
automata. This is the simple computation of dividing the 
number of times the node was reached from the parent node 
by the total number of times all the children nodes were 
reached from the parent node.  

 

 

 

 

 

 

 

 

 

Figure 6. PSFA from Figure 5 with probabilities P 
assigned to each node. 

Using the same example PSFA from Figure 5, we would 
compute the probability P of reaching the node following 
the ‘ ls’  transition by dividing the number of times ‘ ls’  is 
reached from its parent, 2, by the total number of nodes at 
the same level, 3. Thus the probability of reaching node 
following the ‘ ls’  transition would be 2/3. Figure 6 shows 
the new automata, in which all the nodes have there 
associated probability. 

At this point each node in our automata has a probability P 
associated to it, corresponding to the probability it will be reached 
from its parent. We can now trace down individual command 
traces to compute the probability of the command trace. For each 
command trace, we compute the multiplied probability Pm equal 
to the product of all the probabilities P of each node we 
encounter. We also compute the sum of all the probabilities P 
encountered and the number of all the nodes encountered in order 
to calculate the average probability Pa. From Figure 6, if we traced 

down the command trace ls → pico → mv, we would compute Pm 
and Pa for the given command trace as done in the equations of 
Equation 1 below. 
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With the ability to trace down the automata and compute Pm 
and Pa for each command trace stored in the automata, we 
now can distinguish frequently seen command traces from 
infrequent command traces. At this point we are able to test 
future command traces against the automata by tracing 
down the automata and computing Pm and Pa for the 
command trace being tested. If Pm and Pa are significantly 
low, the command trace being tested is determined to be 
anomalous. This will be described later. 

7.2 Updating the Probabilities Using Standard 
Deviation Approach 
When we began testing command traces against the PSFA’s 
we ran into a problem. If when tracing down the PSFA we 
encounter a node with a very small probability P, the value 
will clearly lower the computed values Pm and Pa. In the 
case where all the sibling nodes of that node also have small 
probabilities, returning the small P unfairly lowers the Pm 
and Pa. We needed to implement a strategy that would only 
return low probabilities when the probability of reaching 
the node was significantly lower than the probabilities of 
reaching its sibling nodes. Thus we implemented an 
approach that assigned probabilities to each node based on 
how many standard deviations the probability of reaching 
the node is from the average probability of reaching all the 
sibling nodes. 

To implement the standard deviation approach, each time 
the probability P of reaching a node is computed, all the 
probabilities P of the sibling nodes of the node and P are 
averaged. Then all of those same probabilities are 
compared to the average to determine the standard 
deviation. A second probability, P2 is then assigned to each 
node, which corresponds to the number of standard 
deviations from the average probability the probability of 
reaching the given node is. 

This second probability P2 is computed by first obtaining 
the difference between the probability of reaching the node, 
and the average probability. By dividing the absolute value 
of this difference from the standard deviation, the number 
of deviations from the average is obtained. Let Pavg be the 
average of all the nodes of all the siblings, and let X denote 
the number of standard deviations the probability P is from 
Pavg. The equation shown in Equation 2 is then used to 
compute the second probability P2. Using these equations, 
Figure 7 shows the new automata in which each node has a 
second probability P2 associated with it. 
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Figure 7. PSFA from Figure 5 with probabilities P2 

assigned to each node. 

There are two major reasons why this method was adopted. 
One reason is that by assigning a probability P2 to a node 
which is greater than 1, when future command traces reach 
that given state, the high probability essentially rewards the 
behavior. Similarly nodes whose probability P is lower than 
the average will be assigned a lower probability P2.  

It is important to note that each time a command trace is 
added to the PSFA, the probability P that nodes will be 
reached, the average probability Pavg of all nodes on a given 
level, the standard deviation and the second assigned 
probability P2 all have to be recalculated. This ensures that 
at all times the automata has the most recent signature of a 
user. Also, it was necessary to define one other data 
structure used alongside the PSFA that consists of all the 
commands the user has entered, along with the number of 
times the command was entered. This data structure is 
important in the testing phase, when it is necessary to 
distinguish between commands not seen in a particular 
command trace versus commands never seen before. 

8. PSFA Tester  
8.1 Testing User Signatures 

Once a PSFA is created for a specific user, future 
command traces can be tested against the PSFA to 
determine if the behavior is anomalous or not. The 
command traces to be tested against the PSFA will be 
generated in the same manner as command traces used to 
build the PSFA and using the same time interval. During 

testing, the PSFA will return two probabilities for each 
command trace it tests, Pm and Pa described earlier. In both 
cases, keep in mind the probability being multiplied or 
averaged is P2, the one based on the standard deviation from 
the average, not the probability of reaching the node P. 

The process of traversing the PSFA for testing is done as 
follows. We get the first command from the test command 
trace and then look for a transition with the command in the 
first level of the automata. If there is an associated 
transition, we follow the transition and keep track of the 
probability P2 at the node we encounter. If there is no 
transition for the command, we first check if the command 
has ever been seen, by checking the data structure of all the 
commands ever seen. If the command is in this table, then it 
has been seen, just not following the current state. A 
probability is assigned in this case which corresponds to the 
number of times the command has been seen in relation to 
all the commands that have been seen. If the command is 
not in this table, then the user has never typed this 
command before so an ultra low probability is assigned. 
Whenever there is no corresponding transition in the 
automata to take, the PSFA remains in the same state, and 
the next command from the test command trace is 
evaluated. This process is repeated for all the commands in 
a given test trace. When all the commands have been 
evaluated, the multiplied and averaged probabilities are 
returned.. Figure 8 is a representation of part of an actual 
PSFA our system generated. The probabilities associated 
with each node in the figure correspond to P2. Figure 9 shows 
the results of testing the PSFA in Figure 8 against four  
different command traces. First the command trace being 
tested is listed, then below it are the computed values of Pm 
and Pa. Below the second command trace (lpr  →→→→ lpr  →→→→ lpr →→→→ 
lpr ) are the actual er ror  messages our  program 
generates since the commands were never  seen 
anywhere in the PSFA. 

From Figures 8 and 9, it is clear that command traces that 
match the signature will clearly return higher probabilities 
than the command traces which do not match any pattern. 
Furthermore, commands traces that do not match a given 
pattern still return higher probabilities than command traces 
consisting of commands never seen before. 

9. PSFA PROVIDER 
The PSFA Provider is responsible for providing the PSFA 
to the PSFA Tester. The PSFA it provides may come from 
the PFSA Builder after the completion of the building stage 
or it could be provided by an outside source like a 
distributed PFSA Manager. In this case, the manager would 
create an updated PFSA and send it to the PSFA provider 
module of the current detection application. When the 
PSFA Provider receives a new PSFA, it simply replaces the 
old PSFA in the PSFA Tester with the new PSFA. 
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Figure 8. Graphical representation of PSFA. 

 

 login → cd → tcsh → quota → cat 
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Figure 9. Output of PSFA from testing command traces. 

10. CONCLUSIONS 
The system outlined in this project is very successful at 
identifying anomalous user behavior. The strength of the 
system is that the signatures it creates stores information 
about the frequent commands as well as ordering between 
commands. The signatures created provide extremely 

accurate models of typical user behavior. Any user behavior 
that clearly detours from the signature will return low 
probabilities and raise an alarm.   

The success of this system is directly related to the strength 
of the signatures it creates. One problem that threatens the 
creation of strong signatures is the lack of sufficient training 
data to truly develop a strong representation of a users 
activity. This may somewhat be solved by using clustering 
methods, which attempt to group together patterns of 
similar valid behavior to further isolate invalid behavior. 

Finally, a major strength of this system is the fact that it 
could easily be reconfigured to monitor different patterns of 
behavior. The possibilities for this include network 
behavior or specific application behavior. 

11. FUTURE WORK 
One way to strengthen the signatures this system creates is 
to generate signatures of groups of user instead of 
individual users. This can be done through using clustering 
methods that would group together individual users that 
have similar signatures. By having PSFA for a group of 
users, future command traces can be tested against the 
automata to determine if the behavior matches the group 
signature. This approach has the advantage that the group 
signatures would be stronger since it would likely 
encompass more valid user activity.  
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