
Host-Based Intrusion Detection Using User Signatures
Seth Freeman

Computer Science Department
Rensselaer Polytechnic Institute

110 8th Street
Troy, NY 12180-3590

 (518) 276-8326
freems@cs.rpi.edu

 Joel Branch

 Computer Science Department
 Rensselaer Polytechnic Institute

110 8th street
Troy, NY 12180-3590

(518) 276-8326
branchj@cs.rpi.edu

 Alan Bivens
 Computer Science Department
 Rensselaer Polytechnic Institute

 110 8th street
 Troy, NY 12180-3590

 (518) 276-8326
 bivenj@cs.rpi.edu

 Boleslaw Szymanski

 Computer Science Department
 Rensselaer Polytechnic Institute

 110 8th street
 Troy, NY 12180-3590

(518) 276-8326
 szymansk@cs.rpi.edu

ABSTRACT
An intrusion occurs when an attacker gains unauthorized
access to a valid user’s account and performs disruptive
behavior while masquerading as that user. The attacker
may harm the user’s account directly and can use it to
launch attacks on other accounts or machines. Developing
“ signatures” of users of a computer system is a useful
method for detecting when this scenario happens. Our
approach concentrates on developing precise user
signatures characterizing multiple aspects of user activity.
Thus, anytime someone behaves in a manner inconsistent
with their signature, our system will raise an alarm which
strength corresponds to the unlikelihood of the current
behavior to the signature.

1. INTRODUCTION
Computer security has become an area of utmost
importance as the number of people who use computers
continues to increase. As the number of computer systems
and networks grow, more and more bugs are discovered
which attackers attempt to exploit. An intrusion detection
system (IDS) is designed to monitor a computer or a
network to detect invalid activity. IDSs can monitor users,
applications, networks, or combinations of the three, in
order to detect well-known and unknown attacks.

There are two main approaches to detecting intrusions,
anomaly detection and misuse detection. Anomaly detection
is the approach in which first a model of normal system or
user behavior is created, and then any behavior that
deviates from the model is called anomalous. The major
advantage of this approach is that unknown or new attacks
can be identified, because their pattern will be a deviation
from the model of expected behavior. The misuse detection
approach, by contrast, attempts to model well-known
attacks. Then any behavior that matches the model is
recognized as an attack. The major advantage of misuse
detection is that well known attacks can easily be identified,
so the reaction time can be reduced. The disadvantage
however, is that no new attacks will be identified.

Intrusion detection systems are also classified based on the
types of systems they monitor. The two main systems
monitored for intrusions are host-based systems and
network based systems. Host-based intrusion detection
attempts to detect against attacks on a particular machine.
This is typically done through analysis of a computers log
files. Network-based intrusion detection attempts to detect
against attacks on a network. This is typically done through
analysis of network traffic.

2. MOTIVATION
The system we created uses a host-based anomaly detection
scheme to identify invalid user behavior. We first generate
a signature of normal behavior for each user of a computer
system. We make the assumption that each user has a
sequence of commands that they frequently type in. They
might search for a given directory, open a text editor, check
their mail, compile a program, etc. By having a signature of
all the frequent (and infrequent) command traces a user
types, we can compare future command traces the user

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Walter Lincoln Hawkins
Graduate Research Conference
Copyright 2002 Rennselaer.

Bolek
Text Box
 Proc. Research Conference, Troy, NY, October, 2002

types against the signature. Since we are storing the actual
command traces, we not only have a representation of the
frequent commands the user types, we also have a
representation of the orderings between commands.

Anomalous behavior is defined as any behavior that
deviates from the model. Thus the anomalies this system
detects may or may not correspond to an actual intrusion. In
some instances, the user may simply be trying out a new set
of commands, or their behavior is different due to fatigue or
stress. Other times, there is in fact another person
masquerading as the user. In either instance, the system
described in this paper will detect that the behavior deviates
from the model.

3. PREVIOUS WORK
There have been many previous intrusion detection systems
that use the anomaly detection scheme. NNID (Neural
Network Intrusion Detection) uses neural networks to
predict the next command a user will enter based on
previous commands [4]. Haystack, a combined anomaly
detection/misuse detection IDS models individual users as
well as groups of users. It assigns initial profiles to new
users, and updates the profiles once a pattern of actual
behavior is recognized [5].

ImSafe, a tool that has its roots in anomaly detection,
monitors the system call traces produced by specific
applications and tries to predict the next system call as
accurately as possible [1]. First, ImSafe must go through a
learning phase to construct a profile of the application to be
monitored. Then, that profile is used during the detection
process. The approach outlined in this project is similar to
that of ImSafe except that user behavior is modeled instead
of application behavior. Next, EMERALD eXpert-BSM, a
real-time forward-reasoning expert system, uses a
knowledge base to detect multiple forms of system misuse
[3]. The forward-reasoning architecture helps eXpert-BSM
detect intrusive behavior across multiple system event
orderings while also accounting for specific pre- and post-
conditions of those sequences.

The work of Forrest, Hofmeyr, Somayaji and Longstaff details a
system similar to ours that scans system call traces of normal user
behavior and builds a database of characteristic user patterns [2].
The user patterns they store are essentially the way the system
calls follow each other. They slide a window across the system
call trace(s) of a user, and for each window of a given size k, they
record the first system call and system calls that follows it at
position 1 through position k After the database is generated,
future sequences of system calls are compared against the
database to determine if they are anomalous or not. Our system
could be viewed as an extension of this work. Instead of using
a predefined window, we determine the command trace size by
analyzing the user ’s activity. We fur ther utilize the var iability
in command traces to account for users with extremely long
command traces and large var iety of commands.

4. PROBABILISTIC STATE FINITE
AUTOMATA
We represent each user signature as a probabilistic state finite
automata (PSFA). A finite automata is a mathematical model
consisting of a set of states, a set of transitions between states, an
input alphabet, an initial state and a final state. A PSFA is an
extended finite automata in which each state has an associated
probability. The probability associated with each state
corresponds to the probability that the state will be reached from
the previous state. Each transition in the PSFA corresponds to a
user command. The input alphabet for the PSFA is the set of
commands the user entered. Figure 1 shows an example PSFA.
The transitions are labeled with commands a through f, and the
states each have an associated probability.

Figure 1. Example PSFA.

Figure 2. System Architecture.

5. SYSTEM OVERVIEW
The system described in this paper generates signatures for each
user of a computer system and tests future command traces against
signatures that are already created. The system consists of four
basic modules. The first module, the Filter Module, is responsible
for extracting user commands from log files, then converting the
user commands with the associated timestamps into command

Pb

b a

c f d e

Pa

Pc Pd Pe Pf

Filter
Module

PSFA
Tester

PSFA
Builder

PSFA
Provider

Historical
BSM data

Live BSM
data

Alarm
Statistics

PSFA

PSFA Testing

PSFA Building

traces. These command traces are then either passed to the
PSFA Builder, which constructs the PSFA, or to the PSFA
Tester, which will test future command traces against the
PSFA. The PSFA Provider is responsible for providing the
PSFA used to test future command traces to the PSFA
Tester. The diagram of the system is shown in Figure 2.

6. FILTER MODULE

6.1 Extracting User Commands from Log Files
The first step in filtering the user commands is to extract all
the system calls generated by the user from the log files.
The log file of a computer stores all the events that occurred
on the computer. Each event that is recorded is called a
system call. For every action a user makes, opening a file,
typing a command, moving the mouse, etc. many system
calls are generated. Each system call stored in the log file
contains fields that identify the type of system call, the user
who created it, the time, and other information. Extracting
the system calls belonging to a given user is done through
parsing the log file and extracting all system calls the given
user generated.

Once all the system calls are extracted for a given user, the
next step is to identify only the system calls that correspond
to actual commands the user entered. To do this, a filter is
used to identify execve system calls, because each execve
system call corresponds to an actual command the user
entered at a prompt. The filter also extracts a small set of
system calls that are not execve, namely login and chdir.
During the process of extracting the user commands, the
filter also extracts the timestamp, and writes both the user
command and timestamp to another file.

This process is repeated for each of the log files we wish to
train on. It is essential that the log files we use to construct
our signatures are created from commands the actual user
typed and not a masquerader, so that each user’s signature
is valid, thus invalid behavior will never match the
signature.

6.2 Constructing Command Traces from User
Commands
Once we have the listing of commands and timestamps we
can convert them into a series of command traces. By
modeling the command traces entered by the user rather
than just the individual commands, we develop a more
accurate representation of user behavior. The command
traces that are generated are completely dependent on the
time intervals between successive commands.

We define the time between two successive commands as ξ,
and a time interval

�

t. We then specify that two successive
commands will be considered in the same command trace,
if ξ <

�

t. A large
�

t will produce longer command traces,
because there is a longer time window by which two

successive commands can still be a part of the same
command trace. A very large

�

t will in effect store an
entire user session as once command trace. A small

�

t, on
the other hand, will produce shorter command traces. The
value of

�

t is very important in determining the structure
of the PSFA. See Figure 3 and Figure 4 for an example of
two sets of command traces derived from the same
command listing, based on different time intervals,

�

t.

Figure 3. Example command and time listing.

Figure 4. Command traces der ived from � t of 1 and 3.

In comparison to the approach taken by Forrest, Hofmeyr,
Somayaji and Longstaff which uses a predefined window
size to group together commands, our approach is more
intelligent. While both our methods build models from
command traces, our system does not arbitrarily group
together commands into command traces, but instead
groups them based on their respective timings. This
provides a more accurate representation of user behavior.

7. PSFA BUILDER

7.1 Building the PSFA From Command Traces
The PSFA for each user is a collection of all the command
traces for a given user. For each command trace we add,
starting at the top of the PSFA, we step through the
commands in the trace and check if there is a transition
associated to each command. If there is no transition for the
given command, then a new transition and resulting node
will be added. We then follow the transition we added, or
the old transition if there already was one. We then repeat
the process for the next command in the command trace.

10:00

10:01

10:02

10:04

10:05

10:06

10:08

10:09

10:10

login

cd

vi

ls

pico

mv

ls

mail

exit

�

t = 1

[login, cd, vi]

[ls, pico, mv]

[ls, mail, exit]

�

t = 3

[login, cd, vi, ls, pico, mv, ls, mail, exit]

Figure 5. PSFA based on command traces der ived from
� t of 1 and 3.

Figure 5 shows the PSFA consisting of the command traces
from the Figure 4 where � t = 1. The numbers in the nodes
correspond to the number of times the node follows the
parent node.

The next step is to assign probabilities P to each node in the
automata. This is the simple computation of dividing the
number of times the node was reached from the parent node
by the total number of times all the children nodes were
reached from the parent node.

Figure 6. PSFA from Figure 5 with probabilities P
assigned to each node.

Using the same example PSFA from Figure 5, we would
compute the probability P of reaching the node following
the ‘ ls’ transition by dividing the number of times ‘ ls’ is
reached from its parent, 2, by the total number of nodes at
the same level, 3. Thus the probability of reaching node
following the ‘ ls’ transition would be 2/3. Figure 6 shows
the new automata, in which all the nodes have there
associated probability.

At this point each node in our automata has a probability P
associated to it, corresponding to the probability it will be reached
from its parent. We can now trace down individual command
traces to compute the probability of the command trace. For each
command trace, we compute the multiplied probability Pm equal
to the product of all the probabilities P of each node we
encounter. We also compute the sum of all the probabilities P
encountered and the number of all the nodes encountered in order
to calculate the average probability Pa. From Figure 6, if we traced

down the command trace ls → pico → mv, we would compute Pm
and Pa for the given command trace as done in the equations of
Equation 1 below.

722.03/)12/13/2(

333.01*2/1*3/2

=++=
==

a

m

P

P
 (1)

With the ability to trace down the automata and compute Pm
and Pa for each command trace stored in the automata, we
now can distinguish frequently seen command traces from
infrequent command traces. At this point we are able to test
future command traces against the automata by tracing
down the automata and computing Pm and Pa for the
command trace being tested. If Pm and Pa are significantly
low, the command trace being tested is determined to be
anomalous. This will be described later.

7.2 Updating the Probabilities Using Standard
Deviation Approach
When we began testing command traces against the PSFA’s
we ran into a problem. If when tracing down the PSFA we
encounter a node with a very small probability P, the value
will clearly lower the computed values Pm and Pa. In the
case where all the sibling nodes of that node also have small
probabilities, returning the small P unfairly lowers the Pm
and Pa. We needed to implement a strategy that would only
return low probabilities when the probability of reaching
the node was significantly lower than the probabilities of
reaching its sibling nodes. Thus we implemented an
approach that assigned probabilities to each node based on
how many standard deviations the probability of reaching
the node is from the average probability of reaching all the
sibling nodes.

To implement the standard deviation approach, each time
the probability P of reaching a node is computed, all the
probabilities P of the sibling nodes of the node and P are
averaged. Then all of those same probabilities are
compared to the average to determine the standard
deviation. A second probability, P2 is then assigned to each
node, which corresponds to the number of standard
deviations from the average probability the probability of
reaching the given node is.

This second probability P2 is computed by first obtaining
the difference between the probability of reaching the node,
and the average probability. By dividing the absolute value
of this difference from the standard deviation, the number
of deviations from the average is obtained. Let Pavg be the
average of all the nodes of all the siblings, and let X denote
the number of standard deviations the probability P is from
Pavg. The equation shown in Equation 2 is then used to
compute the second probability P2. Using these equations,
Figure 7 shows the new automata in which each node has a
second probability P2 associated with it.

1/3 2/3

1 1 1

1 1 1

ls

pico mail

login

cd

mv exit vi

1 2

1 1 1

1 1 1

ls

pico mail

login

cd

mv exit vi

avgPP > If

)*1.0(12 XP +=

 avgPP < If (2)

)*2.0(12 XP −=

avgPP = If

0.12 =P

Figure 7. PSFA from Figure 5 with probabilities P2

assigned to each node.

There are two major reasons why this method was adopted.
One reason is that by assigning a probability P2 to a node
which is greater than 1, when future command traces reach
that given state, the high probability essentially rewards the
behavior. Similarly nodes whose probability P is lower than
the average will be assigned a lower probability P2.

It is important to note that each time a command trace is
added to the PSFA, the probability P that nodes will be
reached, the average probability Pavg of all nodes on a given
level, the standard deviation and the second assigned
probability P2 all have to be recalculated. This ensures that
at all times the automata has the most recent signature of a
user. Also, it was necessary to define one other data
structure used alongside the PSFA that consists of all the
commands the user has entered, along with the number of
times the command was entered. This data structure is
important in the testing phase, when it is necessary to
distinguish between commands not seen in a particular
command trace versus commands never seen before.

8. PSFA Tester
8.1 Testing User Signatures

Once a PSFA is created for a specific user, future
command traces can be tested against the PSFA to
determine if the behavior is anomalous or not. The
command traces to be tested against the PSFA will be
generated in the same manner as command traces used to
build the PSFA and using the same time interval. During

testing, the PSFA will return two probabilities for each
command trace it tests, Pm and Pa described earlier. In both
cases, keep in mind the probability being multiplied or
averaged is P2, the one based on the standard deviation from
the average, not the probability of reaching the node P.

The process of traversing the PSFA for testing is done as
follows. We get the first command from the test command
trace and then look for a transition with the command in the
first level of the automata. If there is an associated
transition, we follow the transition and keep track of the
probability P2 at the node we encounter. If there is no
transition for the command, we first check if the command
has ever been seen, by checking the data structure of all the
commands ever seen. If the command is in this table, then it
has been seen, just not following the current state. A
probability is assigned in this case which corresponds to the
number of times the command has been seen in relation to
all the commands that have been seen. If the command is
not in this table, then the user has never typed this
command before so an ultra low probability is assigned.
Whenever there is no corresponding transition in the
automata to take, the PSFA remains in the same state, and
the next command from the test command trace is
evaluated. This process is repeated for all the commands in
a given test trace. When all the commands have been
evaluated, the multiplied and averaged probabilities are
returned.. Figure 8 is a representation of part of an actual
PSFA our system generated. The probabilities associated
with each node in the figure correspond to P2. Figure 9 shows
the results of testing the PSFA in Figure 8 against four
different command traces. First the command trace being
tested is listed, then below it are the computed values of Pm
and Pa. Below the second command trace (lpr →→→→ lpr →→→→ lpr →→→→
lpr) are the actual er ror messages our program
generates since the commands were never seen
anywhere in the PSFA.

From Figures 8 and 9, it is clear that command traces that
match the signature will clearly return higher probabilities
than the command traces which do not match any pattern.
Furthermore, commands traces that do not match a given
pattern still return higher probabilities than command traces
consisting of commands never seen before.

9. PSFA PROVIDER
The PSFA Provider is responsible for providing the PSFA
to the PSFA Tester. The PSFA it provides may come from
the PFSA Builder after the completion of the building stage
or it could be provided by an outside source like a
distributed PFSA Manager. In this case, the manager would
create an updated PFSA and send it to the PSFA provider
module of the current detection application. When the
PSFA Provider receives a new PSFA, it simply replaces the
old PSFA in the PSFA Tester with the new PSFA.

.85 1.07

1.0 1.0 1.0

1.0 1.0 1.0

ls

pico mail

login

cd

mv exit vi

Figure 8. Graphical representation of PSFA.

 login → cd → tcsh → quota → cat

Pm = 1.1777 Pa = 1.035

lpr → lpr → lpr→ lpr

flag.. lpr never seen before

flag.. lpr never seen before

flag.. lpr never seen before

flag.. lpr never seen before

Pm = 1.0E-16 Pa = 1.0E-4

ls

Pm = 1.011 Pa = 1.011

login → cd → quota → ls → cat → more

Pm = 2.2E-6 Pa = 0.391

Figure 9. Output of PSFA from testing command traces.

10. CONCLUSIONS
The system outlined in this project is very successful at
identifying anomalous user behavior. The strength of the
system is that the signatures it creates stores information
about the frequent commands as well as ordering between
commands. The signatures created provide extremely

accurate models of typical user behavior. Any user behavior
that clearly detours from the signature will return low
probabilities and raise an alarm.

The success of this system is directly related to the strength
of the signatures it creates. One problem that threatens the
creation of strong signatures is the lack of sufficient training
data to truly develop a strong representation of a users
activity. This may somewhat be solved by using clustering
methods, which attempt to group together patterns of
similar valid behavior to further isolate invalid behavior.

Finally, a major strength of this system is the fact that it
could easily be reconfigured to monitor different patterns of
behavior. The possibilities for this include network
behavior or specific application behavior.

11. FUTURE WORK
One way to strengthen the signatures this system creates is
to generate signatures of groups of user instead of
individual users. This can be done through using clustering
methods that would group together individual users that
have similar signatures. By having PSFA for a group of
users, future command traces can be tested against the
automata to determine if the behavior matches the group
signature. This approach has the advantage that the group
signatures would be stronger since it would likely
encompass more valid user activity.

12. REFERENCES
[1] L. Eschenauer. Inside the ImSafe IDS. ImSafe – Host

Based Anomaly Detection Tool.
http://imsafe.sourceforge.net/.

[2] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff.
A Sense of Self For Unix Processes. In Proceedings of
the 1996 IEEE Symposium on Security and Privacy,
pages 120-128.1996.

[3] P.A. Porras and P.G. Neumann. Emerald:Event
Monitoring Enabling Responses to Anomalous Live
Disturbances. In Proceedings of the 20th National
Information Systems Security Conference, pages 353-
365, October 1997.

[4] J. Ryan, L. Meng-Jane, and R. Miikkulainen. Intrusion
Detection with Neural Networks. In Advances in
Neural Information Processing Systems 10, May 1998.

[5] S. Stephen. Haystack: An Intrusion Detection System,
37-44. In Proceedings of the Fourth Aerospace
Computer Security Applications Conference. Orlando,
Florida, December 12-16, 1988. Washington, DC:
IEEE Computer Society Press, 1989

.

login

cd

tcsh

quota

cat

1.0

1.0

1.177

ls

1.0

date

1.0

1.011

cd

sh

tcsh

cd

1.0

1.135

1.0

1.0

1.0

