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The Paradox of Information Access: On
Modeling Polarization in the Age of Information

Chao Xu, Jinyang Li, Dachun Sun, Jinning Li, Tarek Abdelzaher, Jesse Graham, Michael Macy,
Christian Lebiere, and Boleslaw Szymanski

Abstract— The paper derives a new nonlinear stochastic
model of evolution of human beliefs that demonstrates
how an increase in democratized information production
and sharing, combined with consumers’ confirmation bias
and natural bias for outlying content, result in increased
polarization. The model shows that the evolution of human
beliefs can be approximated by a nonlinear diffusion-drift
equation in which systematic psychological biases con-
tribute to drift, whereas other random influences contribute
to diffusion. The nonlinear formulation predicts a growth
in polarization that is attributable to increasing information
production and sharing. While the core contribution is an-
alytical, an anecdotal model parameter fitting to empirical
data is also presented. Specifically, we show that our model
closely predicts the changing and increasingly polarized
distribution of ideology of members of the US Congress
over the last quarter-century (taken as an approximate
proxy for shifts in the US population ideology), when we
take the mobile phone penetration curve as a proxy for de-
mocratization of information access. The model suggests
that escaping the polarizing forces in the age of information
access may be an uphill battle.

Index Terms— Social networks; dynamic models; polar-
ization; paradox of information access.

I. INTRODUCTION

In this paper, we ask the question: how do increasing
information production and sharing relate to societal polar-
ization? A model is derived that shows that human beliefs
follow a diffusion-drift equation in which ingrained systematic
psychological biases contribute to belief drift, whereas other
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random factors and influences contribute to diffusion. The
diffusion-drift equation predicts a steady-state belief distri-
bution in which increased access to information production
and sharing contributes to increased levels of polarization.
The extent of this effect depends on the relative strength of
drift versus diffusion terms. Anecdotal empirical evidence is
presented that at least some societies may indeed be operating
in a regime consistent with a non-trivial information-access-
facilitated polarization growth. Specifically, for the US, the
model accurately predicts the growing polarization of the US
Congress, taking as input the technology penetration curve
for mobile phones (as a proxy for democratized information
access and sharing) in the last 25 years.

The work is motivated by the historic change in information
access patterns in the 21st century. Over the course of most of
human history, information broadcast has been prohibitively
expensive. It required significant investments (e.g., having a
radio station or a publishing house). With the invention of the
Internet, the barrier to making content available for potentially
global consumption was significantly reduced. We say that
“information broadcast” (both access and sharing) has become
democratized. While the benefits of democratizing information
broadcast are undeniable, it is interesting to model the impact
of this change on societal polarization (as such models are a
prerequisite to the design of proper mitigation policies for any
undesirable side effects).

The idea that increased access can facilitate polarization is
not new. For example, evidence suggests that the interstate
highway system in the US may have contributed to socio-
economic disparity and geographic polarization in metropoli-
tan areas [1]. Highways allowed individuals to live further
away from where they worked, facilitating urban sprawl, and
allowing communities to self-segregate into more homoge-
neous and separated geographic neighborhoods (in an analogy
with social echo-chambers) of significantly different character.

Are similar forces at play in the case of information access?
Our drift and diffusion terms roughly correspond to the idea
of “thinking fast and slow” [2], referring to the tension be-
tween our fast, intuitive reactions and more deliberate thinking
(known in psychology as “system 1” and “system 2”). Fitting
empirical data to the model sheds light on the regime that a
society operates in, regarding the balance between the two.

Figure 1 notionally demonstrates the paradox of access.
Given a bias for content that already agrees with one’s
prior beliefs [3], [4], when the globally available information
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Fig. 1: A notional illustration of the paradox of informa-
tion access, showing the impact of information volume on
polarization under the constraints of fixed cognitive capacity,
confirmation bias, and preference for outlying content.

sources are plentiful, the attained coverage by an individual
(specifically, coverage of alternative ideological views, perused
under cognitive capacity constraints) is small. Bias for out-
lying content [5]–[8] (and indeed competition on producing
it as a means to capture attention) leaves consumers with
biased views of reality that inch gradually at normalizing
extremes, driving consumers away from the center. Larger
ideological gaps emerge between information consumed by
different parties, leading to polarization. To prevent circular
reasoning, where we conclude what we assumed, this paper
starts with well-agreed-upon biases that are well-validated in
social psychology and proves the implications on emergent
belief distribution. It also postulates a model with tunable
weights that can be empirically estimated, thus remaining
valid over a wide spectrum of extents to which social and
psychological biases drive behavior. We acknowledge that the
accuracy of the model is generally difficult to validate without
further large-scale studies that may constitute opportunities for
future work. In addition, algorithms for closed-loop control
(for mitigation) are delegated to future work.

The rest of this paper is organized as follows. Section II
reviews related work. Section III introduces our model and as-
sumptions on human biases, borrowed from social psychology.
Section IV derives the resulting overall nonlinear dynamics,
solves for the equilibrium belief distribution under this model,
and proves key model properties, including the growth of po-
larization with volume. Section V provides anecdotal evidence
of model validity based on empirical observations. Section VI
discusses implications and future work. The paper concludes
with Section VII.

II. RELATED WORK

The paper addresses a challenge brought about by the broad
problem of modern information overload, discussed by the
authors in earlier work [9]. A two-page extended abstract,
published in an earlier workshop [10], framed the polarization
analysis problem addressed in this work. For earlier arXiv
preprints with partial results, please see [11], [12].

While neural-network models might conceivably do better
at matching empirical data, a main advantage of our model is

that it is derived from first principles and is kept intentionally
minimal in its assumptions. Thus, it has a potentially greater
explanatory value. The model leverages the well-known fact
that homophily [13] and confirmation bias [3] cause individu-
als to gravitate to other like-minded sources, an effect that may
be exacerbated by a tendency to prioritize exploitation over
exploration [14]. Prior work also demonstrated the attention-
capturing effects of more outlying content [5]–[8]. We show
that the above behaviors, if followed, will create polarization
that increases with the degree of content access and sharing.
By espousing simplicity, we hope the stylized model leads
to better generalizability, as fewer assumptions are needed to
produce the effect.

From a methodology perspective, the work reported in this
paper falls in the general area of continuous opinion dynamics.
Our contribution lies in adapting the methodologies used for
the study of (continuous) opinion dynamics to the problem of
modeling the impact of content volume on the emergence of
polarization in the age of democratized content production and
access. Work on opinion dynamics has roots in consensus for-
mation models, such as DeGroot’s pooling scheme [15] and its
extensions [16], as well as the Friedkin-Johnsen model [17]–
[19]. The latter significantly advanced the study of polarization
by incorporating exogenous influence or bias into opinion
formation, thereby producing steady state behaviors where
stable disagreements emerge. Notable extensions include (i)
the notion of bounded confidence [4], [20] that postulates that
agents influence each other only when sufficiently close in the
belief space, (ii) the related notion of stubborn agents [21]
whose opinion does not change over time, and (iii) extensions
to multidimensional opinions [22], [23]. While these models
generally assume that agents move towards a weighted average
of beliefs of their influencers (typically their neighbors in the
belief space), some models also introduce a notion of random
noise. For example, the noisy Hegselmann-Krause model [24]
assumes that, besides converging on the weighted average of
their neighbors, individuals experience random jumps. The
magnitude of allowed jumps was shown to have a significant
impact on steady state system behavior [24].

Special attention was also paid (in continuous opinion
dynamics literature) to the way interactions among agents
influence their beliefs. Of particular interest was to explain the
emergence of extremism. For example, the Deffuant-Weisbuch
model [25] extended the bounded confidence models [4], [20]
by postulating that the influence of contacts between neighbor-
ing agents in the belief space is weighted by the confidence
of the source. Thus, according to that model, an extremist
might have a higher influence than a moderate, which is a
different way of framing influence of more extreme content.
An alternative explanation of the disproportionate influence of
extremism comes from nonlinear extensions of the Friedkin-
Johnsen models, where source susceptibility to opinion change
is set proportionally to their degree of conviction [26]. Thus,
agents with more stubborn beliefs are less susceptible to
change, making those beliefs more “sticky”.

The continuous model studied in this paper is novel in
investigating the impact of information volume. We show
that an increase in volume contributes to increased polariza-
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tion when coupled with bias for more extreme or outlying
content [5]–[8]. Once upon a time, this bias gave humans
an evolutionary advantage [6]; those who paid preferential
attention to news of trouble (e.g., “wolves at the gate”) were
better able to survive the threat. We derive the population
belief distribution prompted by such content biases, reducing
it to a well-known diffusion-drift equation for which we can
study the equilibrium [27].

Opinion dynamics are also studied under the framework
of mean-field game (MFG) theory [28]–[30], which is a
non-linear model of constrained Brownian motion of many
agents while the control strategy to each agent is governed
by Hamilton-Jacobi dynamics (or equivalently Euler-Lagrange
dynamics). The non-linearity of such theory comes from
the control process to each agent. MFG is also applied to
study the polarization of opinion distribution [31], where a
reward mechanism along with cost functions is designed, and
polarization occurs in some cases. In our model, a novel non-
linearity is included by introducing a content influence weight
function. We then study the impact of information overload.

Finally, we acknowledge the parallel literature on discrete
opinion models, where individuals are forced to choose be-
tween finite alternatives (as opposed to gradually evolving
their beliefs on a continuum in the belief space). An example is
the Naming Game (NG) model where a person converges to a
single opinion from repeated interactions with neighbors [32].
This work, together with its rich extensions, is outside the
scope of our paper.

III. A MODEL OF MODERN BELIEF DYNAMICS

Let set, X , denote a society of individuals in an age of
democratized information access and sharing, where the total
population size |X | = N . Democratized information access
and sharing (in our model) means that all content published
by anyone in X is accessible to everyone in X . Thus, the key
factor influencing the topology of actual information transfer is
consumer choices (as opposed to say, physical travel distance
between producer and consumer). These choices depend on
individual beliefs. Let the position of each individual ai ∈ X
at time t be represented by a scalar value xi(t) ∈ R (where
R is the set of real numbers). The origin of the real-valued
axis represents neutrality. Deviations from the origin in either
direction represent ideological bias, such as political left versus
right, or such as conservative versus liberal outlook. Note that,
while some political systems represent political positions in a
two-dimensional space, such as the Swiss system,1 we restrict
our discussion to a single axis. We assume that individuals
produce content that reflects their positions. Thus, xi(t) refers
to both the position espoused by an individual ai and the
position espoused by content they produce at time, t. Below,
we describe the belief dynamics model addressed in this paper.
We call it a belief influence-field model because we show
that our ingrained content consumption biases (shaped by
social psychology) act as a force field that causes drift in our
ideological positions (beliefs) towards increased polarization,
the way physical forces cause drift of impacted particles.

1https://en.wikipedia.org/wiki/List of political parties in Switzerland

In the meantime, other factors (such as sampling random
content outside our ideological neighborhood) contribute to
diffusion that mitigates the drift. The model studies how the
relative strengths of the two effects impact the relation between
information volume and polarization.

A. Bounded Confidence
We assume that an individual, ai, of position xi(t) at time

t, will engage in part with a subset of sources, X (i)(t) ⊂ X ,
that match the individual’s own belief; a phenomenon known
in opinion dynamics literature as bounded confidence [4].
Bounded confidence can be thought of as a manifestation
of confirmation bias [3]; opinions supporting one’s belief are
acted upon, whereas those far from one’s belief are ignored.
Note that, since sources in X are (by definition) globally
accessible, the subset X (i)(t) depends only on ideological
positions (non-withstanding any geographic or other bound-
aries). Accordingly, for each consumer, ai, we assume that an
ideological visibility radius, ϵi, determines how ideologically
distant the neighbors they engage with might be, when acting
under the influence of bounded confidence. Thus:

X (i)(t) = {aj ||xi(t)− xj(t)| ≤ ϵi} (1)

In an age of democratized sharing and access, it is easy to find
enough like-minded individuals who match one’s own beliefs
very closely. Thus, we assume that ϵi is small compared to
the entire range of beliefs being represented in society. This
allows linearization-based approximations within radius, ϵi.
We call X (i)(t) consumer ai’s neighborhood set. 2 Note that
although the entire belief space is the range of real numbers,
the majority of beliefs fall within an interval. Exceptionally
extreme beliefs fall into the long tail in the distribution which
is only a negligible small fraction.

B. Random Influence
Some cultural values (such as tolerance, inclusion, diversity,

and “worldliness”), as well as elements of random chance
and acts of exploration in lieu of exploitation, introduce an
additional component of influence in belief dynamics that
breaks out of confirmation bias and bounded confidence.
Since, by definition, this component captures factors that are
orthogonal and free of bias, we model its effect by a random
walk, or Brownian motion, scaled by some coefficient, σ,
proportional to the strength of such additional influences.

C. Belief Updates
As a result of an individual’s interactions with others, the

individual’s beliefs are updated. The considerations described
above suggest a belief update form similar to the Friedkin and
Johnsen model [33]. Namely, an individual of position xi(t)
in the belief space at time, t, will move to position xi(t+∆t)
at time t+∆t, given by:

xi(t+∆t) = (1− α∆t)xi(t) + α∆tf(X (i)(t)) + σ∆W

2One can argue that the ideological radius, ϵi, of an individual’s neigh-
borhood set will continue to decrease with increased information produc-
tion/access, since an individual of finite cognitive capacity will not be able to
consume the increasing amount of content generated within a fixed ideological
radius, ϵi. The paper proves a stronger result that depends only on ϵi
being small, and does not require it to continue to decrease with increased
information production/access.
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or, rearranging:

xi(t+∆t) = xi(t) + α∆t(f(X (i)(t))− xi(t)) + σ∆W . (2)

The above equation features three components:

• Susceptibility to local influence, α∆t: The value α∆t is
a constant, 0 ≤ α∆t ≤ 1, that represents how susceptible
individuals generally are to external influence due to con-
tent in their neighborhood sets (in other words, 1−α∆t is
essentially stubbornness). A larger α∆t leads to a larger
belief update during time ∆t. Our stylized model views
susceptibility as a global parameter in order to facilitate
the study of society at large. While, in reality, different
individuals can have different susceptibility values, it is
not our goal to study a specific population mix. Thus, we
defer such individualization to future work.

• Center of bias, f(X (i)(t)): This is the center of gravity
of systematic forces describing the influence of those in
one’s neighborhood set on one’s beliefs.

• Other influences: Finally, σ is a constant that scales the
influence of remaining factors on the belief update. For
example, marriages, relocation, ideological exploration,
new job environments, and cultural values emphasizing
new experiences might influence evolution of one’s be-
liefs. These events might have independent causes and
thus are modeled by a stochastic term, ∆W . Specifically,
∆W , is the integral of white noise over ∆t, which is
given by a Wiener process (i.e., Brownian motion).

D. The Components of Influence
The steady state distribution of beliefs in the above model

depends, in part, on the shape of the function f(X (i)(t)), rep-
resenting the influence of sources in one’s belief neighborhood
on their beliefs. Below, we elaborate two key factors that shape
this function; namely, bias for outlying content and nonlinear
social influence.

1) Consumer Bias for Outlying Content
A key novel element of the model represents the fact that we

increasingly seek (and spread) more sensational and surprising
news, as confirmed in prior studies [5]–[8]. This asymmetric
interest pattern arguably biases our collective attention towards
more extreme content. Thus, consistently with prior literature,
we take into account that, of the content consumed by an agent,
more outlying news have a deeper influence. Specifically,
a source in X (i)(t), that espouses position x in the belief
space, has an influence weight, η0(x) = η0(|x|), that generally
increases with distance |x| from the (neutral) origin. However,
beyond a certain |x|, influence decreases again, when the
espoused beliefs become “too extreme”. Later in Section V, we
show an example of η0(x) derived from empirical observations
(in Figure 4b).

Although the consumer bias for outlying content is well
studied in psychology, its exact form requires further study to
determine. Fortunately, the exact equations do not affect our
derivation as long as η0(x) reflects a bias for more extreme
content and thus has a minimum at the origin and two maxima
on the two sides. Eventually, biases drive beliefs as people seek
information that reinforces those beliefs as truth [34].

2) Nonlinear Social Influence
Social influence makes a position more desirable if it is

adopted more frequently in one’s neighborhood set. We model
social influence related to position, x, by a nonlinear function
of the number of points in the immediate neighborhood of
x. Thus, we assume that a consumed source in X (i)(t), that
lies at position, x, in the belief space, has a component of
influence that increases with the density of points around x.
Let the density of sources around position, x, and time, t,
be denoted by ρs(x, t). We assume that content influence in-
creases with eκρs(x,t). The exponential form has the advantage
of approximating a family of polynomial functions, depending
on the value of κ. For example, if κ = 0, the exponential term
becomes 1. In this case, each item or source contributes an
independent influence regardless of its agreement with other
items; the influence of item collections grows linearly with
collection size. Otherwise, if κ > 0, the higher the κ, the
more rapid the (super-linear) escalation of influence of items
(around location x) with density of adoption of x. (As we show
later, polarization emerges even with κ = 0, but it increases
with κ.)
3) Putting it together

Taking both (i) bias for outlying content (from Section III-
D.1) and (ii) social influence (from Section III-D.2) into
account, the influence weight of a source at location x in the
belief space, within consumer ai’s neighborhood set, X (i)(t),
is given by:

η(x, t) = η0(x)e
κρs(x,t) (3)

We are now ready to define the center of gravity, f(X (i)(t))
in Eq. (2). Specifically, the center of gravity of the influence
forces exerted by content in the neighborhood set of user ai
at time, t, is given by:

f(X (i)(t)) =

∑
aj∈X (i)(t) xj(t) η(xj(t), t)∑

aj∈X (i)(t) η(xj(t), t)
(4)

Upon consuming information from the neighborhood set,
per Eq. (2), a consumer is attracted towards the (ideological)
center of gravity (given by Eq. (4)) of the nearby information
items, each weighted by their influence upon the consumer.
Note that, the weight, η(xj(t), t) favors more extreme po-
sitions, per preference for outlying content, thus the center
of gravity is skewed towards the extreme. Eq. (2) further
scales the resulting change in consumer belief (in the direction
towards the center of gravity of the neighborhood set) by
consumer susceptibility to local influence, α∆t, where, as
mentioned earlier, 0 ≤ α∆t ≤ 1.

We can now explain the role of model parameter κ better
with the help of Eq. (3) and Eq. (4). When κ = 0, the
center of gravity, f(X (i)(t)), is simply the weighted sum of
all positions in the neighborhood set, weighted by consumer
bias for outlying content, η0(x). As κ increases, more popular
positions gain a disproportionately larger weight in impacting
the center of gravity. For very large κ, the model becomes
approximately winner-takes-all (a softmax). The center of
gravity gets dominated by the most popular position.

In this paper, we are interested in a situation when the
population, N = |X | is large. By large population, we refer
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to one where summations over finite fractions of members are
well-approximated by integrals. In other words, a fluid model
applies. Thus, the summation in Eq. (4) can be replaced by
an integral over source density. The influence, f(X (i)(t)) is
estimated by integrating the density of sources (weighted by
their influence) over the neighborhood ϵ around the consumer’s
position, xi(t). Thus, Eq. (3) becomes:

f(X (i)(t)) =

∫ xi(t)+ϵ

xi(t)−ϵ
x ρs(x, t)η(x, t) dx∫ xi(t)+ϵ

xi(t)−ϵ
ρs(x, t)η(x, t) dx

(5)

E. Recap: The Belief Influence-Field Model
To summarize, the belief influence-field model discussed in

this paper is characterized by Equations (2), (3), and (5), and
given by the definition below.

Definition: The belief influence-field model is a belief update
model that postulates that an individual at position, xi(t),
in the belief space will update their beliefs after time ∆t
according to the following dynamic model:

xi(t+∆t) = xi(t) + α∆t(f(X (i)(t))− xi(t)) + σ∆W

where:

f(X (i)(t)) =

∫ xi(t)+ϵ

xi(t)−ϵ
x ρs(x, t)η(x, t) dx∫ xi(t)+ϵ

xi(t)−ϵ
ρs(x, t)η(x, t) dx

and
η(x, t) = η0(x)e

κρs(x,t)

The last equation implies an asymmetry in influence depending
on the magnitude of content departure, |x|, from neutrality.
Note that, the assumptions introduced above (e.g., bounded
confidence and confirmation bias) are not a contribution of
the authors, but rather are borrowed from prior work on social
psychology. Below, we derive some implications.

IV. THE PARADOX OF INFORMATION ACCESS

In this section, we compute the steady state density of
population beliefs, ρ(x), as a function of position, x, in the
belief space. By definition, the integral of population density
over the belief space is equal to the total population. Thus:∫

x

ρ(x)dx = N (6)

We show that, at steady state, population density in the belief
space is given by the solution to a diffusion-drift equation
that is well-studied in physical systems, with a clear mapping
between social model parameters and physical variables.

A. Deriving the Density of Steady-State Beliefs
The following theorem describes the relation between model

variables (including number of globally accessible information
sources) and the steady state belief distribution.

Theorem 1: In a large population, X , that follows the belief
influence-field model, the equilibrium distribution of popula-
tion density, ρ(x), in the belief space is well-approximated
by:

ρ(x) = Λη
µ/D
0 (x)e

µκρ(x)
D (7)

where Λ is a constant such that
∫
x
ρ(x)dx = N , µ is

a constant proportional to susceptibility to local influence,
lim∆t→0

α∆t

∆t , and D = σ2/2− µ.

Proof: Our proof is inspired by a methodology common in
fluid dynamics, where one first models the dynamics of indi-
vidual particles, then derives properties of populations, such
as (dynamics of) overall flow and particle density distribution.
Steady state expressions can then be obtained. We will first
describe the simplest diffusion-drift mechanism in the belief
space and then derive Theorem 1 from there.

Let us examine consumer, ai. Since their visibility radius
ϵ is relatively small, compared to the overall belief space, we
can simplify Eq. (5) by linearizing the functions ρ(y, t) and
η(y, t) in the neighborhood of xi(t). Thus:

ρ(x, t) ≃ ρ(xi, t) + ρ′(xi(t), t)(x− xi) (8)
η(x, t) ≃ η(xi, t) + η′(xi(t), t)(x− xi) (9)

where η′(xi(t), t) = ∂η(x, t)/∂x computed at x = xi(t),
and ρ′(xi(t), t) = ∂ρ(x, t)/∂x computed at x = xi(t).
Substituting with these linearized expressions into Eq. (5),
after some simplifications (see Appendix A), we get:

f(X (i)(t)) ≃ xi(t) +
ϵ2

3

(η′(xi(t), t)

η(xi(t), t)
+

ρ′(xi(t), t)

ρ(xi(t), t)

)
(10)

Recall that the center of gravity is weighted by the influence
weight. There are two forces impacting each individual above;
one depends on the normalized influence gradient η′(x)/η(x)
that attracts each individual towards more extreme opinions,
and the other depends on the normalized population density
gradient ρ′(x)/ρ(x) that pushes each individual towards more
densely-populated positions. Substituting from the above equa-
tion into Eq. (2), the belief update becomes:

xi(t+∆t)− xi(t) ≃(α∆t)
ϵ2

3

(η′(xi(t), t)

η(xi(t), t)
+

ρ′(xi(t), t)

ρ(xi(t), t)

)
+ σ∆W .

(11)

Dividing Eq. (11) by ∆t and taking the limit of as ∆t → 0,
we get:

dxi(t)

dt
≃ µ

(η′(xi(t), t)

η(xi(t), t)
+

ρ′(xi(t), t)

ρ(xi(t), t)

)
+ σ

dW

dt
, (12)

where

µ =
ϵ2

3
lim

∆t→0

α∆t

∆t
. (13)

Recalling the definition of α∆t, we call, µ the normalized
consumer susceptibility to local influence.

Next, we invoke a well-known result in fluid dynamics
that relates the stochastic dynamics of individual particles to
the resulting population properties, such as the dynamics of
flow and particle density distribution. Specifically, the Fokker-
Planck equation of motion (see [27] for a brief introduction)
states that if positions, xi, of particles are governed by a
nonlinear stochastic diffusion-drift process of the form:

dxi

dt
= µ̃(xi, t) + σ

dW

dt
, (14)
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then the steady state population density, ρ(x), satisfies the
following differential equation:

µ̃(x, t)ρ(x)− σ2

2

∂

∂x
ρ(x) = 0 (15)

(See Appendix B for more detail.) Comparing Eq. (12) and
Eq. (14), we get:

µ̃ = µ
(η′(xi(t), t)

η(xi(t), t)
+

ρ′(xi(t), t)

ρ(xi(t), t)

)
(16)

Substituting with this µ̃ in Eq. (15) and rearranging, the steady
state distribution must satisfy:

D
∂

∂x
ρ(x) = −µρ(x)

( ∂

∂x
V (x)− κ

∂

∂x
ρ(x)

)
(17)

which is a generalized diffusion-drift Eq. [35] containing a
nonlinear effect. In the physics interpretation of above equa-
tion, ρ(x) is the local density of particles; D = σ2/2−µ is the
diffusion constant, V (x) = − ln η0(x) is an external potential
applied to the fluid (particles tend to converge to positions
with relatively lower potential), and κ can be interpreted as a
strength of “attraction” among the particles. It is easy to show
that the solution to Eq. (17) is:

ρ(x) = Λe−µYx/D (18)

where Yx = V (x)−κρ(x), and Λ is a constant computed such
that

∫
x
ρ(x)dx = N . To see that the above is true, simply

obtain the derivative of both sides of Eq. (18) with respect to
x, and multiply by D to produce Eq. (17).

Note how the steady state distribution is related to the
potential V (x), where V (x) is shaped by consumer content
biases, η0(x). The potential, V (x), produces the “force-field”
that gives our model its name.

Substituting for Yx in Eq. (18) with V (x) − κρ(x) =
− ln η0(x)− κρ(x), we get the final result.

This completes the proof.

B. Properties
Many interesting properties follow directly by inspecting

Eq. (7). We present them as corollaries of Theorem 1. We
mention these corollaries without proof below. For proofs,
please refer to Appendix C.

We start by observing that Eq. (7) features ρ(x) on both
sides. While it is easy enough to solve for ρ(x) numerically, it
is possible to remove ρ(x) from the right-hand-side, if desired.
The corollary below derives this expression.

Corollary 1: The steady state belief distribution in Theorem
1 can alternatively be expressed by:

ρ(x) = γ−1
(
Λη

µ/D
0 (x)

)
.

where:

γ(y) =

(
D

µκ

)
2Γ(y; 2, µκ/D) ,

and Γ refers to the regular Gamma distribution in statistics,
defined as:

Γ(y;α, β) =
βα

(α− 1)!
yα−1e−βy .

In other words, the value of ρ(x), at position x in the
belief space, is equal to the value of a scaled inverse function,
γ−1(y), of a Gamma distribution, computed at y = Λη

µ/D
0 (x),

with Gamma distribution parameters α = 2 and β = µκ/D.

Corollary 2: The equilibrium distribution of population den-
sity, ρ(x), is bimodal (i.e., polarized) with peaks aligned with
those of the content weighting function, η0(x).

To measure the extent of polarization, it is convenient to
define the ratio, Q, as follows:

Q =
peak − valley

peak + valley
=

peak/valley − 1

peak/valley + 1
(19)

where peak = ρmax = maxx(ρ(x)) and valley = ρmin =
ρ(0). Note that, Q increases when the ratio peak/valley
increases. Note also that Q, by definition, ranges between 0
(when peak = valley) and 1 (when valley = 0). In this paper,
we focus on the special case of a bimodal distribution. If there
are more than two peaks in the belief space (more opinions),
Q can be defined between each two adjacent peaks.

It may be tempting to think that the result in Corollary 2
(that polarization follows the shape of η0(x)) trivially follows
from the assumption that outlying content has more influence
on beliefs. Interestingly, this is not true. Rather, the additional
assumptions on (high) information volume and confirmation
bias are also necessary for the correctness of Corollary 2.
To appreciate this point, note intuitively that if the volume
of information was low, and if everyone was able/willing to
consume all content, then the resultant force will always move
people towards the center, where it cancels out, no matter what
η0 looks like (as long as η0 is symmetric around the center).
Thus, for example, in an age of large monopolies, a content
provider might find it more beneficial to strike a neutral tone
to maximize distribution among ideologically distinct groups
as opposed to limiting sales by appealing to one side only. It
is the democratized broadcast (no monopoly), large volume
(not being able to consume all content) and confirmation
bias (prioritizing one’s local neighborhood), embedded in the
model, that cause Corollary 2 to be true. The corollary is
true regardless of the exact expression of η0, as long as it
is bimodal. This is important because social psychology only
gives us qualitative descriptions of shape, not exact equations.

Note also that, while our formulation seems to implicitly
assume symmetry of η0(x) in x, intuitively, this assumption
(while simplifying some proofs) is not strictly necessary. To
appreciate the reason, note that confirmation bias causes all
interactions among points to be local. Thus, what happens near
one peak of η0(x) is largely independent of what happens near
another peak. This allows the peaks to be different without
invalidating the key results. Also, if the consumer biases were
unimodal, at steady state we would observe one peak instead
of two. Formal proofs of the above reasoning, however, are
beyond the space available in this paper.

Corollary 3: For a sufficiently small κ, the polarization, Q,
in the equilibrium distribution of population density, ρ(x), (i)
increases with population size N , (ii) decreases with random
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Fig. 2: Bifurcation of belief distribution as a function of total volume N , susceptibility µ and random influences σ. As N or
µ increases, bifurcation becomes more visible. As σ increases, bifurcation becomes less visible.

influence, σ, (iii) increases with susceptibility, µ, and (iv)
increases with social influence factor, κ.

Proof: For all corollary proofs, see Appendix C.
Interestingly, note that Corollary 3 holds even for κ = 0. In

other words, the super-linear effect of social influence is not
needed for the above effects to manifest. The effects manifest
even at κ = 0. These effects are driven by confirmation bias
and bias for outlying content, balanced against an individual’s
willingness to seek information in an uncorrelated fashion
to their bias. In fact, as pointed out earlier, the diffusion-
drift model helps us understand the system by analyzing two
combating forces: the diffusion and the drift. It shows that
there is a competition between the confirmation bias and other
random influences not correlated with bias. If the confirmation
bias is weak, the polarization is less pronounced. If cultural
factors encourage deliberate efforts to overcome bias, diffu-
sion is higher and polarization is also less pronounced. As
pointed out in the introduction, this is very reminiscent of
the components of “thinking fast and slow” [2] (known in
psychology as “system 1” and “system 2”). We show that
thinking “fast” (following our primitive instincts) increases
polarization. Thinking “slow” (e.g., making a conscious ef-
fort to process views without correlation with our instincts)
decreases it. There are indeed recent examples in history of
how a deliberate emphasis on “thinking slow” successfully
diminished harmful stereotypes presumably ingrained due to
“thinking fast”. An example is education campaigns focused
on destroying subconscious gender and race biases and stereo-
types [36], [37].

C. Numerical Observations
To give a sense of the above trends, in this section, we

solve Eq. (7) for ρ(x) to compute the steady state belief
distribution according to the modeled social dynamics. The
figures demonstrate earlier observations, as follows:

• Effect of volume: Figures 2a and 2b show how the
bifurcation of population density, Q (in the belief space),
changes with population size, N , for different values of µ
and σ. When N increases, bifurcation increases (Q → 1).
The effect is exacerbated when the susceptibility to local
influence, µ, increases (higher drift), or when the impact
of other diverse influences, σ, decreases (lower diffusion).

• Effect of diversity: Figure 2c shows how the diversity
of influence affects the population’s belief distribution.

Parameter σ describes the degree to which belief updates
are affected by random (i.e., diverse) factors outside the
immediate belief neighborhood of consumers. As ex-
pected, increasing the σ (and thus decreasing the relative
impact of confirmation bias) has a beneficial effect.

• Effect of susceptibility: More susceptible populations
have a higher rate of belief change, µ, for the same dis-
tribution of neighboring content items. Figure 2d shows
that when individuals’ susceptibility increases, the degree
of bifurcation increases (Q → 1).

• Effect of social influence: The more pronounced the
nonlinear effect of social influence is (i.e., the higher
the parameter κ that describes the super-linear growth of
influence with local density), the more pronounced the
belief bifurcation, as shown in Figure 3.

N

×10
8

0.5

1.0

1.5

2.0

κ

×10−9

0

2

4

6

Q

0.40

0.45

0.50

0.55

0.60

0.65

Fig. 3: Joint effect of population size, N , and social influence
coefficient, κ. σ = 2.3, µ = 1.0. When the population size
N is fixed, Q increases with κ (i.e., the bifurcation becomes
more pronounced as the “winner-takes-all” effect, described in
Section (III-D.2) becomes stronger). For a fixed κ, bifurcation
becomes more pronounced as the population grows.

The figures confirm that an increase in content volume leads
to increased polarization. The effect is further magnified by
social influence, κ, and susceptibility, µ.

Because of the motion model (III-C), the belief update
always goes towards the center of the mass of the neighbors
which is always bounded. The social influence, simply a
weight of the mass, only affects the direction within the
boundary. Note that, polarization emerges even if κ is zero.
This is because bias for outlying content will still drive
opinions towards more extreme versions over time.
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Fig. 4: Empirical study showing that mobile phone penetration is a good proxy for “democratization of content sharing” that
is consistent with observed growth in congress polarization of the last 25 years.

V. EMPIRICAL EVIDENCE

If the model predicts an increase in polarization as a
consequence of increased information access and sharing, are
these predictions consistent with empirical observations? To
offer (at least) anecdotal evidence that addresses this question,
one needs to (i) determine a suitable proxy for the evolution of
the number of democratized information broadcast sources, N
(or equivalently, Λ, since it is proportional to N ) in the age of
information, and (ii) find a suitable estimate of the evolution of
a population’s distribution of beliefs during the same interval.
We can then determine whether Eq. (7) correctly relates
the two quantities. Note that, Eq. (7) describes the steady
state belief distribution as a function of several parameters,
including Λ (that is proportional to N ). We assume, below, that
the rate at which N changes is slow enough that the steady
state distribution, ρ(x), predicted by Theorem 1, is reached
for a given N , before this N changes significantly. With that
in mind, our methodology is as follows:

• Estimating population belief distribution, ρ(x): We con-
sidered the population of the USA, as an example of a
country that remained somewhat geographically distant
and thus relatively less impacted by large world distur-
bances, such as wars (on its territory), famine, mass influx
of refugees, or foreign occupation, in the last 25 years.
While direct estimates of population beliefs are not as
comprehensively documented for the US population, the
ideology of members of the US congress is routinely
assessed and documented. The Nokken-Poole estimates
of Congress member ideologies are publicly available
in the Voteview dataset [38]. They include liberalism-
conservatism scores ranging from -1 to 1 that map seman-
tically to our variable, x, representing positions in a belief
space. Since Congress members who do not adequately
reflect their constituents’ ideals will likely not get re-
elected, we took the distribution of Congress member
ideology values as an approximation of the distribution
of beliefs of the US population. In general, this is not
exactly accurate as was shown in studies on other forces
that impact Congress polarization [39]. The polarization

in Congress is usually more extreme than that of the
whole population. It is a unique data set, however, in
that it includes detailed ground truth on member ideology
that extends for many decades, making it an interesting
case study. We defer a more faithful ideology estimation
to future work. With the above caveat, in this paper,
we simply scale the ideology distribution of Congress
members by the country’s population to compute the
estimated belief density function, ρ(x), for the US popu-
lation. Figure 4a shows the results for years 1995 through
2018. Interestingly, note how as time goes by, the peaks
become somewhat larger and the valley becomes deeper
with a more depleted center. Figure 4a also shows the
corresponding value of polarization index Q on the side
of each time window (computed from Eq. (19), applied
after averaging each pair of peaks), demonstrating gradual
increase as predicted by Corollary 3.

• Estimating the number of democratized broadcast
sources, N : While this number cannot be estimated
exactly, we expect that it must be correlated with two
important technological developments in the last quarter-
century; namely, (i) the growth of the Internet as a
medium for democratized information exchange, and (ii)
the proliferation of mobile phones as devices that enable
untethered real-time information access and sharing.

From the empirical data, we can calculate peak/valley esti-
mates for each congress. Further, we used the average popu-
lation for Λ. By Peak/V alley = (η

µ/D
max − Θ)/(η

µ/D
min − Θ)

and Θ = Λ(ηminηmax)
µ/D(µκD ), we get an estimate of κ.

Meanwhile, we also have the estimated belief density function,
ρ(x). It is clear from the data that ρ(x) is bimodal, so we
assumed that η0(x) is a mixture of two Gaussian distributions.
Using Theorem 1, we optimized the Gaussian mixture η0(x)
to minimize the difference between the left and the right side
of the equation across multiple congresses. The result shows
that η0(x) has two peaks around x = ±0.4, µ/D = 0.33, and
κ = 7.0E−10. Figure 4b shows the estimated η0(x). Note
that, this function represents human bias for outlying content.
Indeed, it increases with distance from the origin up to a point,
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then decreases when the beliefs become too extreme.
From Eq. (7), and using η0(x) from Figure 4b, we then used

a least-squares method to find the best Λ for each congress
so that the output, ρ(x) of the equation (for the successive
years) best matches Figure 4a. We normalized the resulting
volume Λ to a 0 to 1 range, and plotted it together with the
adoption curve of the Internet (i.e., the number of individuals
with Internet access) and the adoption curve of mobile phones
(i.e., the number of individuals with mobile phones) within
the same period (also normalized to a 0 to 1 range). These
curves are compared in Figure 4c.

A significant correlation is observed between Λ (that is
proportional to the number of sources, N ) and the proliferation
of mobile phones. The latter lags behind the penetration
of internet access, suggesting that once both technologies
were present, their joint adoption correlated with the volume
of democratized broadcast sources, which is the driver of
polarization in our model (all other “knobs” in the model
remaining constant). The slight delay between the mobile
phone penetration curve and Λ might refer to a delay reaching
the steady state, ρ(x). While no definitive conclusions can
be made based on this anecdotal evidence, the quality of
the observed correlation is cause for concern. It motivates
research community attention to the relation between content
access/sharing and polarization, as well as to mitigation poli-
cies that modulate the competing forces of diffusion and drift.

VI. DISCUSSION

Our model suggests that the biggest factors impacting
polarization stem from consumer behavior and content vol-
ume. Figure 2c suggests that when the impact of diverse
random influences, σ, that individuals react to (beyond content
that matches their beliefs) increases, polarization dramatically
decreases. Cultural trends impacting consumer willingness to
engage with diverse content outside their belief neighborhood
can therefore account for differences in polarization across
different nations, as observed in a recent study [40]. The model
also shows that, when susceptibility to local influence, µ, in-
creases, polarization increases. Importantly, when the number
or democratized content sources (and thus shared/accessible
content volume), N , increases, polarization increases.

The role of customized algorithmic curation (i.e., search and
recommendation engines that feed consumers what maximizes
engagement) in the emergence of polarization has been the
subject of much debate. Our model is agnostic to the attri-
bution of blame for selective exposure and is based only on
the assumption of bounded confidence and bias for outlying
content. At a high-level, as mentioned earlier in the paper,
the work is related to the idea (from psychology) that human
behavior is governed by two systems of the mind: system
1 that operates more quickly, automatically and intuitively,
reflecting deeply ingrained subconscious biases, and system 2
that allocates more deliberate thought and mental attention that
is more responsive to cultural effects, teachings, and logical
thinking [2]. The drift and diffusion terms in our diffusion-
drift model essentially model the struggle between the two.
The ingrained biases are “older” (referring to more primitive
responses of the brain such as aversion, disgust, and fear) and

thus live in System 1. Logical reasoning and learned cultural
norms are more teachable and live in System 2. The balance
between the two may indeed change over time.

Technological innovations can sometimes be seen as
“shocks” that change the norms, much the way, say, the
invention of “birth control pills” as an effective means of con-
traception is sometimes credited with precipitating significant
changes in social attitudes towards female sexuality, ultimately
breaking previously ingrained gender biases and beliefs. The
technology penetration for cell phones in the empirical study
may be an example of another shock. In this case, it likely
contributed to filter bubbles, greater susceptibility to local
influence, and perhaps even rising polarization in congress,
amplified by feedback loops due to content curation systems.
In the information landscape, while biases (e.g., biases that
govern human attention) do evolve, it is not clear if they evolve
in the “right direction”. Shocking news often attracts much
attention initially then becomes normalized, as the amount of
stimulus needed to produce the same attentional effect tends
to increase over time. A more detailed study of the effects of
such shocks and evolving norms in the information space is
left for future work.

An interesting question is how to extend the model to
account for publishing sources that require, say, a subscription
fee but offer more reliable information. Currently, there is no
notion of reliability of a piece of information in our model.
One might even argue that reliability is orthogonal to the
problem addressed in this paper. Indeed, in the presence of
polarization, both sides often cite reliable information (but
add their own interpretations). For example, Russian soldiers
may have evacuated some Ukrainian citizens to Russia. Some
sources covered it as an unwanted abduction. Others covered
it as a humanitarian gesture (to keep those individuals out
of harm’s way). Reliable (especially incomplete) information
can indeed be presented in different ways, and people might
choose to believe the version of the story that their ideology
agrees with. Therefore, information reliability does not seem to
be a solution to the problem addressed in this paper, although
it is nevertheless an interesting avenue for future work.

In this paper, we do not make the assumption of rationality
about the consumers. The proposed model starts from simple
microscopic dynamics, incorporates well-known heuristics and
biases in human decision-making [2] and describes population-
level phenomena rather than individual-level one. From the
modeling side of opinion dynamics, we have much to expect
in future work. For example, to study the actual time-evolving
process (reactions to sudden changes), one needs to model the
(equivalent of) velocity fields and the viscosity.

Finally, evidence provided in this paper remains anecdotal.
It would be interesting to conduct a broader study in coun-
tries with different levels of polarization to understand the
proportion of the variation in the level of polarization that
is predictable from the prevalence of use of democratized
broadcast media. It would also be interesting to compute better
proxies for democratized media use. The penetration of mobile
phones is one factor, but there may be others, such as the
popularity of specific social media, the size of the Web, and
the level of engagement with online content.
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VII. CONCLUSIONS

The paper presented a social phenomenon caused by the age
of democratized access; namely, growing ideological fragmen-
tation exacerbated by information overload. A diffusion-drift
model of this phenomenon was proposed. The model suggests
that increasing volume, in the presence of confirmation bias
and bias for more outlying content, can contribute to grow-
ing polarization. The paper is a call for solutions that may
ameliorate this effect.
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APPENDIX A

From Eq. (5), the weighted center of gravity within the
neighborhood of ϵ:

f(X (i)(t)) =

∫ xi(t)+ϵ

xi(t)−ϵ
x ρ(x, t)η(x, t) dx∫ xi(t)+ϵ

xi(t)−ϵ
ρ(x, t)η(x, t) dx

,
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Substituting from Eq. (8) and Eq. (9) for ρ(x, t) and η(x, t),
respectively, then integrating, the numerator becomes:∫ xi(t)+ϵ

xi(t)−ϵ

x ρ(x, t)η(x, t) dx

≃ 2ϵxi(t)η(xi(t))ρ(xi(t)) +
2ϵ3

3

[
η′(xi(t))ρ(xi(t))

+ η(xi(t))ρ
′(xi(t)) + xi(t)η

′(xi(t))ρ
′(xi(t))

]
,

(20)

while the denominator becomes:∫ xi(t)+ϵ

xi(t)−ϵ

ρ(x, t)η(x, t) dx (21)

≃2 ϵ η(xi(t))ρ(xi(t)) +
2

3
ϵ3η′(xi(t))ρ

′(xi(t)) . (22)

Therefore, the weighted center can be estimated by series
expansion:

f(X (i)(t)) = xi(t) +
ϵ2

3

[
η′(xi(t))

η(xi(t))
+

ρ′(xi(t))

ρ(xi(t))

]
+O[ϵ3] .

APPENDIX B

The Fokker-Planck equation of motion [27] states that if
positions, xi, of particles is governed by a stochastic diffusion-
drift process given by the following equation of motion:

dxi

dt
= µ̃(xi, t) + σ(xi, t)

dW

dt
. (23)

(where µ̃(xi, t) can be any function) then the probability
density, p(x, t), of these particles (in an analogy to our
population density ρ(x, t)) is given by the following equation:

∂

∂t
p(x, t) = − ∂

∂x
[µ̃(x, t)p(x, t)] +

∂2

∂x2

[
D̃(x, t)p(x, t)

]
(24)

where:

D̃(x, t) =
σ2(x, t)

2
. (25)

Moreover, from the continuity equation, we know that:

∂

∂t
p(x, t) = − ∂

∂x
j(x, t) . (26)

Combining Eq. (26) with Eq. (24), and integrating with respect
to x, we get the flow, j(x, t), as:

j(x, t) = µ̃(x, t)p(x, t)− ∂

∂x

[
D̃(x, t)p(x, t)

]
. (27)

Moreover, at steady state:

µ̃(x, t)p(x, t)− ∂

∂x

[
D̃(x, t)p(x, t)

]
= 0 (28)

Comparing Eq. (12) to Eq. (23), it is clear that our model
satisfies the diffusion-drift process with:

µ̃(xi,t, t) = µ(ln ηt(xi,t))
′ + µρ′(xi,t, t)/ρ(xi,t, t) . (29)

Substituting for µ̃(xi,t, t) in Eq. (28) at steady state, we get:

0 = µ̃(x, t)ρ(x, t)− ∂

∂x

[
σ2

2
ρ(x, t)

]
= µρ(x, t)

∂

∂x
(ln ηt(x)) + µ

∂

∂x
ρ(x, t)− σ2

2

∂

∂x
ρ(x, t)

= −(
σ2

2
− µ)

∂

∂x
ρ(x, t) + µρ(x, t)

∂

∂x
[ln η0(x) + λρ(x, t)]

= −D
∂

∂x
ρ(x, t)− µρ(x, t)

∂

∂x
[V (x) + gρ(x, t)] .

(30)
Eq. (17) thus follows, where D = σ2

2 −µ, V (x) = − ln η0(x),
and g = −κ.

APPENDIX C
Proof of Corollary 1: Eq. (7) can be rewritten as:

ρ(x) e−
µκ
D ρ(x) = Λη

µ/D
0 (x) . (31)

The left-hand-side, ρe−
µκ
D ρ, has the form of Gamma (Γ)

distribution. The standard Gamma distribution reads:

Γ(y;α, β) =
βα

(α− 1)!
yα−1e−βy (32)

Let us take α = 2 and β = µκ/D, then define:

γ(y) =

(
D

µκ

)
2Γ(y, 2, µκ/D) (33)

Substituting in Eq. (33) with the definition of Γ from Eq. (32),
with α = 2 and β = µκ/D, we get:

γ(y) = ye−
µκ
D y (34)

Comparing with Eq. (31), we get:

γ(ρ(x)) = Λη
µ/D
0 (x) (35)

Thus:
ρ(x) = γ−1

(
Λη

µ/D
0 (x)

)
which completes the proof.

Proof of Corollary 2: To prove the corollary, we obtain the
derivative of (both sides of) Eq. (7) from Theorem 1, and look
for the peaks (where ∂ρ/∂x = 0). This yields:

µ

D
η

µ
D−1
0

∂η0
∂x

e
µκρ(x)

D = 0 (36)

In the non-trivial case (i.e., for a non-zero η0 and µ), the
above equation can only be satisfied when ∂η0/∂x = 0. Thus,
the extrema of ρ(x) and η0 coincide. By obtaining the second
derivative around the point where the first derivative is zero, we
can further show that the ∂2ρ(x)/∂x2 and ∂2η0/∂x

2 always
have the same signs. Thus, the maxima and minima of ρ(x)
and η0 coincide. Since η0 is bimodal (symmetrically around
x = 0), so is ρ(x).

Proof of Corollary 3: Consider a Taylor series expansion of
the exponential term in Eq. (7). When κ is small, ignoring
higher order terms, the equation becomes:

ρ(x) =
Λη

µ/D
0

1− Λη
µ/D
0 (µκD )

(37)
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Let ηmax denote the value of η0(x) when ρ(x) reaches its
peak, ρmax, and ηmin denote the value of η0(x) when ρ(x)
is at the valley, ρmin (i.e., at x = 0). Substituting for ρmax

and ρmin from Eq. (37), after manipulation, we get:

Peak

V alley
=

η
µ/D
max −Θ

η
µ/D
min −Θ

(38)

where
Θ = Λ(ηminηmax)

µ/D(
µκ

D
) (39)

It can be easily seen that the right-hand side in Eq. (38), and
thus the ratio of Peak/V alley:

• Increases with Λ (because Θ increases when Λ increases,
according to Eq. (39)). Note that, Λ is proportional to the
number of information sources, N .

• Increases with µ/D. (It can be shown that the denomi-
nator decreases faster than the numerator with increased
µ/D.) Furthermore, since D = σ2 − µ, this means that
Peak/V alley increases with increased µ and decreases
with increased σ, as both lead to increased µ/D.

• Increases with κ (because Θ increases when κ increases).
Since Q changes monotonically with Peak/V alley, the same
trends apply to Q and the corollary follows.
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