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Abstract This paper describes initial work in the development of the DNA@Home

volunteer computing project, which aims to use Gibbs sampling for the identifi-

cation and location of DNA control signals on full genome scale data sets. Most

current research involving sequence analysis for these control signals involve sig-

nificantly smaller data sets, however volunteer computing can provide the necessary

computational power to make full genome analysis feasible. A fault tolerant and

asynchronous implementation of Gibbs sampling using the Berkeley Open Infras-

tructure for Network Computing (BOINC) is presented, which is currently being

used to analyze the intergenic regions of the Mycobacterium tuberculosis genome.

In only three months of limited operation, the project has had over 1,800 volunteered

computing hosts participate and obtains a number of samples required for analysis

over 400 times faster than an average computing host for the Mycobacterium tuber-

culosis dataset. We feel that the preliminary results for this project provide a strong

argument for the feasibility and public interest of a volunteer computing project for

this type of bioinformatics.

1 Introduction

Cutting edge computational science is requiring larger and larger computing sys-

tems as the size and complexity of scientific data continues to increase far faster

than advances in processor speeds. This is particularly true in the area of computa-
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tional biology, as biologists are gathering data on the full genomes of many different

species. In the domain of biological sequence analysis, high-dimensional integra-

tion allows the identification and location of DNA control signals (cis-regulatory

elements such as protein binding sites) in analyses of dozens of co-regulated genes

at a time. Identifying and locating these cis-regulatory elements at the genome and

multi-genome scales continues to be too complex for today’s clusters and clouds.

However, emerging peta-scale systems (those providing petaFLOPS, millions of bil-

lions of FLoating point OPerations per Second, of computational power) can enable

this computationally challenging research, which will add significantly to under-

standing of the cellular processes of a diverse set of organisms, including organisms

for disease, biofuel production, and environmental bioremediation.

Apart from a few of the world’s fastest supercomputers1, volunteer computing

projects such as Stanford’s Folding@HOME [1] and the Berkeley Open Infrastruc-

ture for Network Computing (BOINC) [2] have also reached peta-scale levels of

computing power. BOINC in particular is a very interesting computing environment

for new scientific projects, in that it provides an open source environment for de-

veloping projects and has a highly active social community which actively seeks

out new projects to participate in. Further, there is very low overhead to starting

a BOINC project, as purchasing and maintaining a server machine is a fraction of

cost of purchasing and maintaining supercomputer, and many volunteers actively

upgrade and purchase new equipment while the hardware in a supercomputer re-

mains fixed and degrades over time.

However, traditional numerical integration methods are highly sequential, relying

on variations of Monte-Carlo Markov Chains (MCMC), which makes them not well

suited to volunteer computing environments, which are inherently heterogeneous

and can be extremely volatile with volunteered hosts frequently joining and leaving,

and potentially returning malicious results. Current parallel approaches to MCMC

are not fault tolerant and cannot scale to the number processors used by peta-scale

systems. Additionally, many peta-scale systems, including the world’s fastest super-

computer and many BOINC computing projects, are accomplishing these speeds by

using graphical processing units (GPUs). However, utilizing GPUs for full genome

analysis proves problematic, as performing computation requiring full genome scale

data may not fit into a GPUs limited memory.

This paper presents preliminary work done in the development of DNA@Home,

a BOINC volunteer computing project started with the goal of performing sequence

analysis at the full genome level. The project extends the Gibbs Sampling algorithm,

an MCMC approach for finding transcription factors [3, 4, 5, 6] which also has uses

in other scientific disciplines [7, 8, 9, 10], by adding parallelism and fault toler-

ance making it suitable for use on a volunteer computing grid. This asynchronous

Gibbs Sampling approach is currently being used by DNA@Home to analyze the

full genome of Mycobacterium tuberculosis consisting of 2,066 intergenic regions

(segments of DNA between known genes) totaling 350,825 nucleotides. Volunteered

hosts report a set of samples at a rate of approximately 0.6 every second, with a sam-

1 http://www.top500.org/
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pling task taking on average 22.4 minutes – which equates to a 896 times speedup

over a single average speed CPU. After only three months of operation, more than

1,800 volunteered hosts have participated in the project with over 1,600 staying

active since joining, which highlights the potential for this approach to reach the

scales required to look for transcription factors using the full genomes of complex

prokaryotes (bacteria) and eukaryotes (even humans).

The paper proceeds as follows. Section 2 describes Gibbs Sampling and the chal-

lenges involved in using it to analyze large scale data. Section 3 describes how

Gibbs Sampling was extended for use on volunteer computing grids. Section 4 pro-

vides preliminary results describing the performance and activity of DNA@Home.

Finally, concluding remarks and future work are discussed in Section 5.

2 Gibbs Sampling for Finding Transcription Factors

Fig. 1 Motif models for different types of transcription factor binding sites (sites where proteins

bind to DNA). Transcription factors are non-exact which makes them computationally demanding

to find. These binding sites need to be modeled probabilistically. Additionally, certain positions

within the binding site may be non-binding (represented as ‘X’s in the figures). One goal of this

research is to develop an asynchronous Gibbs sampling algorithm that can use massive scale cyber-

infrastructure to find these binding sites within multiple full genomes, something not possible with

current cyber-infrastructure.

Gibbs sampling is used by computational biologists to find transcription factor

binding sites or gene regulatory elements – sites where proteins bind to DNA [11,

12]. It is a variant of Markov Chain Monte-Carlo (MCMC), where every step of the

random walk must satisfy the following criteria:

Pi ∗Ri, j = Pj ∗R j,i (1)

where Pi is the probability of state i being a solution, and Pj is the probabil-

ity of state j being a solution. It is sufficient for Pi and Pj to be relatively correct,

as opposed to the exact probability, as this is typically unknown, while the rela-

tive probabilities of two states can be calculated more easily. Ri, j and R j,i are the

transition probabilities, or the probability that the state will move from i to j and

vice versa. Fulfilling this detailed balance equation (Equation 1) ensures that a long
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enough Markov chain will consist of states sampled in proportion to the probability

distribution of the function being integrated.

The problem state of finding transcription factor binding sites consists of multiple

motif models, probabilistic representations of DNA patterns, of varying lengths (see

Figure 1). A transcription factor can bind to different sequences of DNA, so binding

sites are non-exact. A motif model represents the different probabilities of each

position within the motif being a DNA letter. Additionally, motif models can have

skipped positions (represented by ‘X’s in Figure 1) and be palindromic, where tail

of the motif model is the reverse complement of the front.

There are two main computational challenges involved in using Gibbs sampling

to find transcription factors binding sites. First, determining the next state in the

random walk can be computationally demanding. For prokaryotes, typical parameter

sizes computable by current cyber infrastructure consist of less than five motifs, 12

to 24 nucleotides wide, being sampled from within 3 to 30 intergenic regions of

less than 500 nucleotides, usually from one species. Eukaryotes have shorter motif

sizes, 6 to 12 base pairs, however the intergenic regions are larger, 1,000 to 10,000

nucleotides. Each step requires that for every intergenic region, all the motifs must

be regenerated from the samples within the other intergenic regions, and then these

new motif models are used to resample within the excluded intergenic region. Other

parameters that are modified during the random walks are the length of the motifs

and positions of the skipped positions. Because of this, increasing the motif size,

the number of motifs, intergenic regions and the region size will all increase the

computational complexity.

Second, there is no known way to start the random walk from an unbiased initial

position. To avoid bias in the samples taken by the random walk, Gibbs sampling

performs a burn-in period, where the states visited by the random walk are not used

as samples. Following the burn-in period, a sample can be taken after every step

in the random walk. There are two main problems within the burn-in and sampling

periods. First, the length of the burn-in period required to eliminate any bias in the

selection of the starting state is unknown, as is the number of samples required to

adequately capture the problem space. There have been a few approaches to ad-

dress this issue [13, 14], but this is still an open problem. Further, as the problem

size increases, the increase in burn-in period and number of samples required also

increases super-linearly, at the very least.

Because of these problems, being able to perform full genome scale analysis

requires massive amounts of computing power, which we feel can be effectively

provided by a volunteer computing project such as DNA@Home.

3 Gibbs Sampling on Volunteer Computing Grids

Effectively distributing Gibbs sampling is non-trivial, as Markov Chain random

walks are inherently sequential. This makes it difficult to effectively utilize the com-

puting power offered by massive scale computing systems, like volunteer computing
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grids. The application used for computation on the volunteered computing hosts is a

modification of the Gibbs sampling algorithm described in Section 2 that performs

partial random walks, which are chained by the server-side parallel walk sampling

software. Section 3.1 describes how the standard Gibbs sampling algorithm has been

extended to use asynchronous communication and to provide fault tolerance and er-

ror checking. This parallel walk sampling enables the computational biologists par-

ticipating in DNA@Home to utilize these massive scale computing environments.

Section 3.2 gives details on how this was implemented and optimized for use with

BOINC’s open source software.

3.1 Parallel Walk Sampling

While sampling using parallel walks does not reduce the burn-in time, it is an effec-

tive way of reducing the sampling time, providing linear speedup in the number of

samples generated after the walks have completed their burn-in period. In parallel

walk sampling, each Gibbs sampling walk starts from an independent state, then

after they have completed the burn-in period to eliminate the initial bias, samples

are collected in parallel. For full genome scale data, an extremely large number of

samples is required to gather an accurate picture of the sampling space to find these

transcription factors, so having a large number of parallel walks being computing

by volunteer computing hosts is an effective way of gathering enough samples in a

reasonable amount of time.

However, at the massive computing scale simply running the Gibbs sampling

walks in parallel is not sufficient as any processor failure will lose the burn-in steps

and any samples collected, wasting all that work. It also does not take into account

processors dynamically joining and leaving in the case of a volunteer project. Be-

cause of this, DNA@Home uses an asynchronous approach to perform the parallel

walks, as shown in Figure 2. The BOINC server stores the last reported position of

each walk along with any reported samples. Host processors perform partial walks,

by contacting the BOINC server and requesting an initial starting state. The server

will also specify a starting seed for randomization and the length of the walk the host

will compute. This will allow the server to send the same partial walk to multiple

hosts for DNA@Home so results can be compared from different hosts for valida-

tion. In this way, individual processors can fail or leave and the server can send that

particular processors partial walk to another host; significantly reducing the impact

of failures.

3.2 BOINC Implementation Details

The BOINC architecture (see Figure 3) consists of a set of server-side daemons

which control the generation, scheduling and validation of tasks, or workunits, and
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Fig. 2 A strategy for Gibbs sampling using

parallel walks. Each arrow represents a worku-

nit, or processing job, where a processor re-

ceives an initial state with depth x, Sx, and re-

ports a final state with depth y, Sy. Each worku-

nit has a fixed length walk (in this case 1).

After each walk completes its burn-in period,

samples can be taken. Processors can join and

leave, restarting from walks of previously left

processors.

Fig. 3 The BOINC architecture consists of

multiple server-side daemons which handle

work generation, validation and scheduling of

work to clients. Tasks that clients will be or are

currently computing are called workunits and

clients report results to those workunits. A tran-

sitioner daemon updates the state of the worku-

nits and results in the database, which triggers

the other daemons to act on them.

the individual results from clients. After a workunit is generated by a work generator

daemon, the transitioner daemon updates the database with state changes for that

workunit and its results; which trigger the other daemons. The feeder controls what

workunits are available to be sent to clients, while the scheduler determines which

clients should receive what workunits. The validator compares results to ensure that

they are correct, after which the assimilator handles the processing of valid results.

The parallel walk sampling strategy used by DNA@Home combines the assim-

ilator and work generator into a single daemon. A database is used to store the

parameters to multiple searches which can be performed concurrently, each consist-

ing of any number of motif models of any given size and type (e.g. standard, reverse

complement or palindromic) and a given dataset (e.g. Mycobacterium tuberculosis

or Yersinia pestis). When a search is started, a fixed number of walks are created,

each with a randomly selected set of sampled positions within the intergenic se-

quences. While burn-in is being performed on a particular walk, the results of that

workunit will report the final positions walked to by the Gibbs sampling algorithm.

When the results for a workunit are validated (if two or more separate hosts report

the same final sample positions those results are considered valid), a new worku-

nit is generated which includes those final positions as a new starting position. The

current position of that walk is updated in the database, and its burn-in depth is

increased.

After a walk has completed its burn-in period, a flag is set telling the workunits

to additionally report every site sampled during its random walk. When the results

for one of these sampling workunits are validated (when the final positions and
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accumulated samples of two or more results are the same), the server saves the

accumulated samples and generates a new sampling workunit from the new end

position, updating the number of samples taken by that walk in the database.

Various flags have also been specified for these workunits to enable more relia-

bility in the turnaround time for any given workunit. While the number of results

required for validation (or quorum) is two, BOINC’s target nresults flag has

been set to three for every workunit. This causes the scheduler to send out the same

task to three hosts initially (instead of two), which reduces the impact of one of those

hosts returning an erroneous result, or from leaving the project and never returning

a result.

4 Preliminary Results

Fig. 4 The number of hosts that have participated in DNA@Home since it began sending work

to volunteers in March, 2011, as recorded by the boincstats.com project tracking website. In only

three months, DNA@Home has had over 1,600 hosts participate, with new hosts joining daily.

After only three months of limited operation, with small batches of workunits

sent out periodically, DNA@Home has already had over 1,800 hosts participate

and return valid results to the project (Figure 4 shows the increase in host partici-

pation since DNA@Home started sending out workunits)2. Binary versions of the

application run on volunteered hosts is provided for both 32 and 64 bit versions

of Windows, Mac OS X and Linux, which allows any type of computer to partici-

pate in the project. These volunteers were only ’recruited’ through word of mouth

and DNA@Home’s listing on various BOINC project tracking websites. We feel

that this provides a significant example of the public interest in this type of project,

2 http://boincstats.com/stats/project graph.php?prd̄na&view=hosts
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and its ability to achieve the required computational power for full genome scale

analysis.

DNA@Home is currently using a dataset consisting of the intergenic regions of

the Mycobacterium tuberculosis genome. In this dataset there are 2,066 intergenic

regions, consisting of a total of 350,825 nucleotides. With approximately 1,600 ac-

tive volunteers, it takes less than a week to gather 30,000,000 samples after a burn-

in of 1,000,000 steps using 3,000 parallel walks, using a reverse complement motif

model of length 16. A workunit consists of 10,000 steps, which over the set of all

volunteers takes on average 22.4 minutes. Approximately 0.6 results are reported

every second, for a speedup of 896 times an average processor. Alternately, to per-

form a burn-in of 1,000,000 steps and 30,000,000 samples on an average processor

would take 2,893 days to complete, so DNA@Home can obtain a useful amount of

samples over 400 times faster.

5 Conclusions and Future Work

This paper presents an asynchronous and fault tolerant implementation of parallel

Gibbs sampling for use on the DNA@Home volunteer computing project. Prelimi-

nary results show DNA@Home gathering a required number of samples for analy-

sis of the intergenic regions of the full Mycobacterium tuberculosis genome in less

than a week, a speedup of over 400 times an average single processor. Addition-

ally, with only limited operation over three months, the DNA@Home project has

already grown to over 1,600 active volunteers, contributing 1,800 computing hosts,

highlighting the public interest and potential for this type of project to analyze even

larger genomes from more complex bacteria or even humans. Further, the implica-

tions of this research go beyond DNA sequence analysis, as Gibbs sampling is pop-

ular and efficient way to sample from complex probability distributions that are not

easily reduced to the common tractable probability distributions. It thus has general

applicability in statistics where it allows one to sample from a (Bayesian) poste-

rior probability distribution. It also has immediate, and fairly generally applicable,

uses in numerical integration where it is almost always significantly more efficient

than approaches that approximate a multi-dimensional integral by evaluating the

integrand at evenly spaced points or at points chosen uniformly at random.

Future research for the DNA@Home project involves development of a graph-

ical processing unit (GPU) version of the Gibbs sampling application, which has

been attempted by other groups [15, 16], as these provide a significant amount of

the computational power of the BOINC computing system. Additionally, the devel-

opment of a web-based interface for participating biologists would ease the use of

the system for large number of researchers. Finally, we wish to investigate asyn-

chronous methods for decreasing the time to complete the burn-in period for Gibbs

sampling, which could dramatically reduce the time required to gather the number

of samples required for this type of analysis.
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