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Divide-and-conquer policy in the Naming Game
Cheng Ma, Brendan Cross, Gyorgy Korniss, Boleslaw K. Szymanski

Abstract—The Naming Game is a classic model for studying
the emergence and evolution of language within a population.
In this paper, we extend the traditional Naming Game model
to encompass multiple committed opinions and investigate the
system dynamics on the complete graph with an arbitrarily large
population and random networks of finite size. For the fully
connected complete graph, the homogeneous mixing condition
enables us to use mean-field theory to analyze the opinion
evolution of the system. However, when the number of opinions
increases, the number of variables describing the system grows
exponentially. To mitigate this, we focus on a special scenario
where the largest group of committed agents competes with a
motley of committed groups, each of which is smaller than the
largest one, while initially, most of uncommitted agents hold
one unique opinion. This scenario is chosen for its recurrence
in diverse societies and its potential for complexity reduction
by unifying agents from smaller committed groups into one
category. Our investigation reveals that when the size of the
largest committed group reaches the critical threshold, most
of uncommitted agents change their beliefs to this opinion,
triggering a phase transition. Further, we derive the general
formula for the multi-opinion evolution using a recursive ap-
proach, enabling investigation into any scenario. Finally, we
employ agent-based simulations to reveal the opinion evolution
and dominance transition in random graphs. Our results provide
insights into the conditions under which the dominant opinion
emerges in a population and the factors that influence these
conditions.

Index Terms—Naming Game, divide-and-conquer, mean-field
theory, tipping point

I. INTRODUCTION

Research on opinion spreading and collective behavior in
social systems has spanned over four decades, with significant
interest from both mathematical and sociophysics perspectives
[1], [2], [3]. The seminal voter model, introduced by Holley
et al. [4], initiated this exploration, wherein actors, holding
binary opinions (-1 and +1), adopt the opinion of their
randomly chosen neighbors at each step. Subsequent models
such as the Sznajd model [5], and majority-rule model [6]
have been proposed to investigate binary opinion competition
and language evolution. Later, the Naming Game model [7],
[8] has been developed to study language emergence and
evolution, allowing for some agents to hold both opinions
simultaneously [9]. Recently, evolutionary game models have
emerged to elucidate social influencing from the perspective
of cooperative behavior [10], [11].

Here, we employ the Naming Game (NG) model to study
the opinion dynamics under various scenarios. Introduced as
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a linguistic evolution model, the NG was initially used as
a model for the formation of a vocabulary from different
observations, and it demonstrated how a population of agents
can collectively converge to a single unique word for labeling
different objects or observations in their environment [7], [12].
Later, it has been used as a mathematical model for the
dynamics of social influence, which describes the evolution of
competing opinions through the dyadic interactions between
agents. Various approaches have been proposed to investigate
the evolution and dynamics within the NG model, including
mean-field theory [13], [14], agent-based models [15], and
Bayesian theory [16], [17], [18]. A number of studies have
examined the spread and evolution of opinions on regular
lattices [19], as well as on diverse complex networks, including
random graphs [20], [21], small-world networks [22], [23], and
scale-free networks [24].

Furthermore, recent research has also been conducted to
understand the NG model in the presence of committed
agents [25], [26]. When individuals encounter multiple discrete
choices or opinions, some may follow the choices of their
peers or acquaintances. However, other individuals in the sys-
tem may advocate a single opinion and refuse to consider any
others, to which we refer as committed agents or zealots [27],
[28]. The presence of zealotry strongly biases the evolution of
the opinions towards those held by the committed minorities
[29]. Even the presence of one group with committed agents
of modest size may convert most uncommitted agents to
adopting the opinion of committed agents [30], [31], and such
phenomena have been observed in real social systems and
experiments [32], [33], [34].

In this study, we focus on the Naming Game with multiple
competing opinions and explore how committed members
influence opinion evolution. Given the presence of mixed
states that involve more than a single opinion, monitoring the
state of the system with m distinct single opinions becomes
extremely challenging, as there are 2m − 1 possible com-
binations of opinions which are proportional to the number
of state variables needed to describe the system evolution.
Such exponential growth of state variables makes this problem
intractable even for the case with the number of opinions, m,
larger than 10.

There are a limited number of studies discussing the effects
of committed minorities on the evolution of the system and on
possible tipping points in multi-opinion Naming Games [35],
[36]. For some special scenarios, one may reduce the system
complexity by inspecting symmetry and making appropriate
approximations [35]. We adapt this approach to investigate
the influence of committed agents and phase transition in the
quasi-symmetric setup. However, the approximation might fail
if no symmetry is preserved. Our strategy is to focus on the key
features of the system. Since the system state is determined by
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the density evolution of each single opinion, it is not necessary
to distinguish or record all mixed states. Instead, one only
needs to keep track of the density distribution and spreading
probability of each single opinion. By anonymizing mixed
states, the number of states to be monitored is reduced, making
the analysis of the system more manageable. This approach is
general and can be applied to a wide range of scenarios.

The main contributions of this article can be summarized
as follows.

1) We design the multi-opinion Naming Game model to
study the scenario where the group of the largest commit-
ted size competes with other smaller committed groups on
a complete graph, and we identify the critical transition
for the largest group to dominate the system.

2) Two special scenarios are constructed to approximate
the opinion evolution and identify tipping points for
the system under arbitrary scenarios, which significantly
reduces system complexity and facilitates the analysis of
opinion competition and dominance transition.

3) We observe that the groups of smaller committed sizes
can either promote or hinder the opinion of the largest
committed size to dominate the system, depending on
the number and distribution of committed agents among
the small groups.

4) A recursive approach for the discrete-time NG dynamics
on a complete graph is derived, yielding results consistent
with the mean-field theory. This method enables a precise
description of the system’s behavior under any initial
configuration.

5) Agent-based models are employed to simulate the
discrete-time dynamics across three types of finite-size
networks of real-world characteristics, illustrating the
“divide and conquer” phenomena.

The rest of the paper is organized as follows. Section II pro-
vides an overview of the interaction mechanism of the Naming
Game and its variants, as well as its dynamical evolution from
the perspective of mean-field theory. Section III focuses on
the original model on complete graphs and discusses critical
transitions for three designed scenarios. Section IV presents a
recursive approach for the listener-only variant of the Naming
Game on complete graphs. In Section V, we employ the agent-
based model to simulate the original Naming Game model on
complex networks. Finally, we summarize our findings and
discuss potential avenues for future research.

II. MODEL DESCRIPTION AND MEAN-FIELD
APPROXIMATION

In the Naming Game (NG) model [7], [12], [19] with several
distinct opinions, each agent holds a subset of opinions that
defines its state. This state may change because of this agent’s
interaction with other agents when it acts as a speaker or
listener.

For the original version of NG dynamics, at each NG state,
a randomly selected agent acts as a speaker. This speaker
randomly chooses an opinion from its opinion state and
sends it to a randomly selected neighbor, who then becomes
the listener. If the listener already has the sent opinion in

its opinion state, both speaker and listener retain only this
opinion, otherwise, the listener adds it to its opinion state.
There is a special type of agent whose opinion state contains
only one opinion, and it holds its opinion unchanged during
the entire dynamics. Such agents are immune to any influence
but can spread their opinions to their neighbors when acting as
speakers. We refer to them as committed agents or zealots. The
model mechanism is summarized in Fig. 1. In addition to this
original model, there are two variants, which limit changes to
only one of the two interacting roles, named the “listener-only”
and “speaker-only” versions. For the “listener-only” type, only
the opinion state of listeners can be modified. In this paper, we
focus on the original NG model and its “listener-only” variant.

First, we investigate the opinion dynamics on the complete
graph, where mean-field theory can be applied to systemat-
ically study the evolution of opinion states. For the general
scenario with m unique single opinions, an uncommitted agent
can hold one of M = 2m − 1 opinion states at each stage.
For instance, when m = 3, the possible opinion states are
A, B, C, AB, AC, BC, and ABC. Under the condition of
homogeneous mixing, the mean-field differential equations are
written as

dxk

dt
=

M∑
i=1

M∑
j=1

U
(k)
ij xixj +

M∑
i=1

m∑
j=1

V
(k)
ij xiPj

+

m∑
i=1

M∑
j=1

W
(k)
ij Pixj .

(1)

This equation describes the changes in the density of
uncommitted agents holding different opinion states as well
as the interactions between the uncommitted agents and com-
mitted agents. The density xi(i = 1, 2, ...,m) represents the
fraction of uncommitted agents holding the single opinion state
i, and the density xi (i = m + 1,m + 2, ...,M ) represents
the fraction of agents holding the mixed opinion state i.
Pi(i = 1, 2, ...,m) is the density of zealots committed to the
single opinion i, which remains constant over time. The ma-
trices U , V , and W contain the coefficients determined by the
interaction mechanism, and they differ for the three versions
of the interaction rules. Specifically, U

(k)
ij is the probability

that the interaction between the uncommitted speaker with the
opinion state i and the uncommitted listener with j gives rise
to the opinion state k. V (k)

ij is the probability that results in
the speaker adopting the opinion state k for the interaction
between the uncommitted speaker holding the opinion state
i and the committed listener with j. Similarly, W

(k)
ij is the

probability that results in the listener adopting the opinion
state k for the interaction between the committed speaker
holding the opinion state i and the uncommitted listener with
j. The densities xi and Pi must sum up to 1, so we have∑M

i=1 xi +
∑m

i=1 Pi = 1.
For the system with a small number of single opinions, m,

the numerical integration of the mean-field differential equa-
tion, Eq. (1), can be performed to obtain the density evolution
of each opinion state in the NG model. However, as the number
of all opinion states, M , which includes both single and mixed
opinions, increases exponentially with m, performing direct
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(a) Interaction between uncommitted speaker and
uncommitted listener

(b) Interaction between committed speaker and
uncommitted listener

(c) Interaction between uncommitted speaker and
committed listener

(d) Interaction between committed speaker and
committed listener

Fig. 1. Illustration of model dynamics (Original version).
Agents hold one or multiple opinions on the question
“the most popular sport in the world”, and may update
their opinions after an interaction (indicated by the yellow
border of the opinion box). (a) An uncommitted speaker
sends one of its three opinions randomly (“soccer” in the
example) to an uncommitted neighbor (listener). If the listener
already holds this opinion, both agents retain only this sent
opinion (“soccer”) as their new state, which is considered
a success towards consensus. Otherwise, the listener adds
the sent opinion to its state, resulting in a failure. (b) A
committed speaker sends the only opinion to an uncommitted
listener. Only the listener may change its status depending
on whether the consensus is reached. (c) An uncommitted
speaker communicates with a committed listener. Similar to
(b), only the speaker may change its status. (d) Both speaker
and listener are committed to a single opinion. Their statuses
are not updated regardless of whether it is a success or failure.

numerical simulations becomes computationally infeasible and
impractical for large values of m.

III. ORIGINAL VERSION

First, the original version of NG dynamics is analyzed using
mean-field differential equations, with a focus on the density

evolution of each opinion state in the presence of committed
minorities. This section includes the study of three scenarios
varying in complexity, the first with two single opinions, the
second with three single opinions, and the third with m single
opinions in general.

A. The two-opinion scenario

In the scenario of m = 2, there are two opinions, A and B,
in the system competing against each other. Eq. (1) reduces
to two mean-field equations,

dxA

dt
= −xAxB + x2

AB + xABxA +
3

2
PAxAB − PBxA

dxB

dt
= −xAxB + x2

AB + xABxB +
3

2
PBxAB − PAxB

.

(2)

By definition, xA + xB + xAB + PA + PB = 1. Together
with Eq. (2), the two-opinion model can be analytically and
numerically solved. Such a system can exhibit rich dynamics,
including saddle-node bifurcation, indicating that it may have
multiple stable equilibria [14], [37]. Additionally, the domi-
nance of the system is primarily determined by the committed
sizes of two competing opinions [14].

Here, we are interested in the scenario in which one opinion
(let us say A) has a higher fraction of committed agents than
the other opinion, B, but the latter is initially supported by all
uncommitted agents, making it the majority opinion. However,
committed agents of opinion A can assimilate uncommitted
agents, thus causing opinion A to eventually become the
majority opinion. Previous studies [13], [14] have shown that
there exists a minimal fraction of committed agents, denoted
by P

(c)
A , which is required for a fast phase transition of the

dominant opinion from B to A. Below this threshold, the
waiting time for such a transition grows exponentially with the
number of agents, making it infeasible to observe in practical
cases.

To understand the final dominant state of the system, a
new variable, ni, is introduced, which represents the total
fraction of agents holding opinion i in equilibrium. This
fraction includes both the committed and uncommitted agents
that support opinion i, ni = x

(s)
i + Pi, whereas for mixed

opinion states, ni only accounts for the uncommitted agents,
ni = x

(s)
i , because committed agents only advocate their

single opinions. Previous studies [13] have shown that in the
absence of committed agents advocating opinion B (PB = 0,
PA > 0), a minimal fraction of committed agents advocating
opinion A (P (c)

A ) of approximately 0.098 is required to trigger
a fast transition from the majority opinion B to A. As Fig. 2
shows, when both committed groups, A and B, are present,
there are two types of transitions, the discontinuous transition
and the continuous one, which may occur depending on
their committed fractions. They are separated by the point
(P (c), P (c)) ≈ (0.162, 0.162) [14]. For PB > P (c), the
fraction of agents holding opinion A increases continuously
with PA, and the critical points lie on the line P

(c)
A = PB .
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(a) dominance transition of A (b) tipping point P (c)
A

Fig. 2. Phase transition from B dominance to A dominance and the corresponding tipping points for two-opinion
scenario (m = 2). All uncommitted agents support B initially. (a) The stable density of agents with opinion A, nA, changes
as a function of the committed fraction PA for different values of PB . As PA increases, the system is dominated by A. (b)
The critical point P (c)

A changes with PB . The increase in PB raises the value of the critical points for A to dominate. The
blue dots represent the discontinuous transition of nA versus PA, while the red ones represent the continuous change.

B. Three-opinion scenario

A slightly more complex system arises with three opinions:
A, B, and C, with two opinions A and C committed by two
minor fractions of committed agents and, initially, the majority
of agents are uncommitted and they all hold opinion B. We ask
a similar question as in the previous example. For the scenario
of PA > PC , to enable opinion A to dominate the system,
what is the minimal fraction of committed agents, P (c)

A , and
how does this threshold depend on the committed fraction of
the opinion C? According to Eq. (1), the evolution of each
state variable can be numerically integrated.

Depending on the fractions of agents committed to opinions
A and C, the system can be dominated by any of three
opinions. Observed from Fig. 3, for small values of PC

(< 0.06), the system exhibits a discontinuous transition from
being dominated by B to A dominance when the committed
fraction PA is above the critical point. In contrast, for large
values of PC , the system undergoes a continuous transition,
where opinion A wins the competition against C by increasing
PA to the critical point. Additionally, the relationship between
the critical point P

(c)
A and PC is non-monotonic, as shown

in Fig. 3d. As PC increases, P
(c)
A decreases first with the

transition being discontinuous. These observations indicate
that increasing the population committed to C speeds up the
spread of opinion A to the majority of uncommitted agents,
as long as PC is smaller than a certain value (PC ≈ 0.077

at the lowest point in Fig. 3b). Otherwise, P
(c)
A increases

linearly with PC , signaling a change of relationship between
opinions A and C from collaboration to competition. Unlike
the previous two-opinion scenario, this one includes both
the discontinuous transition and the continuous one. It is
noteworthy that the critical point separating the two types of
transitions remains the same as in the two-opinion scenario.

C. The general scenario – multi-opinion model

For the general scenario with m single opinions (A, B,
C1, C2, C3, ..., Cm−2), it is of interest to understand the
impact of committed agents on the majority of uncommit-
ted agents and potential for one single opinion to dominate
over other competitors. Consider a scenario where most of
uncommitted agents support a single opinion, denoted as B,
while the remaining agents are committed to m − 1 single
opinions. Among these m − 1 opinions, the one with the
largest committed fraction, denoted as A, has the ability to
reverse the majority of uncommitted agents from supporting
B to supporting A. The question then arises as to the minimum
fraction of committed agents, P (c)

A , required for such a transi-
tion to occur. To streamline the analysis, the committed agents
supporting opinions other than A are grouped into a single
category, referred to as Ã, with a combined committed fraction
of PÃ. This simplification is justified as none of the single
opinions in the group Ã can prevail in the competition with a
larger committed group A. However, the number of competing
opinions in the group Ã, m−2, their total committed fraction,
PÃ, and the allocation of these committed agents, Pi, may all
potentially affect the critical point, P (c)

A .
Hence, we investigate the impact of such factors on the dom-

inance transition of opinion dynamics by constructing three
different scenarios for allocating committed agents within the
group Ã.

1) Scenario S0: randomly distributed. The committed
fraction, Pi, of each single opinion in group Ã is gener-
ated by a truncated Gaussian distribution with a mean of
PÃ/(m − 2), a predefined standard deviation σ = 0.02
and a restricted interval [0, PÃ]. One should note that
the actual standard deviation can be different from the
predefined value as shown in Fig. 6. This distribution
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(a) the fraction of agents supporting A (b) the fraction of agents supporting B

(c) the fraction of agents supporting C (d) tipping point P (c)
A

Fig. 3. Phase transition from B or C dominance to A dominance and the corresponding tipping points for three-opinion
scenario (m = 3). All uncommitted agents support B initially. (a) The stable fraction of agents with opinion A changes as
a function of the committed fractions PA and PC . Similarly, (b) and (c) show the change of nB and nc, respectively. As PA

increases, the system is dominated by A, including continuous and discontinuous transitions. When PA is below the tipping
point P (c)

A , the system is dominated by B for small PC (< 0.1) and dominated by C for large PC . (d) The critical point P (c)
A

changes with PC . As PC increases, the transition nA versus PA changes from the discontinuous transition (blue dots) to the
continuous transition (red dots).

allows for any value between 0 and PÃ, though subject
to a constraint that their sum totals PÃ.

2) Scenario S1: perfectly symmetric. m − 2 opinions in
the group Ã share the equal fraction of committed agents,
Pi = p0 = PÃ/(m − 2). The quantity, p0, in the later
context also refers to the average committed fractions of
agents advocating any single opinion in the group Ã.

3) Scenario S2: extremely polarized. In contrast to sce-
nario S1, we maximize the deviation of Pi in group Ã
to establish a highly uneven distribution of committed
fractions. Provided that the single opinion A has the
largest committed fraction in the system, the largest
committed fraction in the group Ã should be smaller
than PA. To set up the numerical simulation, we choose
max{Pi} = p1 = PA − 10−3 and maximize the num-

ber of opinions with the committed fraction p1, which
is n1 = ⌊PÃ/p1⌋. The remaining committed agents,
p2 = PÃ − n1p1(< p1), are assigned to another single
opinion. In this scenario, there are m−n1−3 (≥ 0) single
opinions in group Ã without any committed followers.
Within group Ã, Pi can take three values, p1, p2, and 0.
As there are no uncommitted agents assigned to group Ã,
some single opinions may end up with no supporters. To
compare with scenarios S0 and S1, the number of single
opinions is still considered as m.

The mean-field equations (1) can be directly integrated to
analyze the opinion dynamics for a system with a limited
number of single opinions. However, for a system with many
opinions m, this method becomes computationally infeasible
because the number of variables, M , increases exponentially
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(a) the fraction of supporting A (b) the fraction of supporting B (c) the fraction of supporting C

Fig. 4. The density of agents supporting single opinions at the steady state in scenario S1. The number of opinions is set
as m = 6. The fractions of agents holding opinions A, B, and C (representing any single opinion C1, C2, C3, or C4 in group
Ã) are shown in subfigures (a) – (c), respectively. As PA increases, the system is dominated by A, including continuous and
discontinuous transitions. When PA is below the tipping point P (c)

A , the system is dominated by B for small PÃ (< 0.2) and
dominated by the unified group Ã for large PÃ.

(a) critical point changes with p0 (b) critical point changes with PÃ

Fig. 5. The phase transition and the critical points in scenario S1. For different values of m (m = 4, 5, 6, 7, 8, 9), the
critical point p(c)A changes with (a) p0 and (b) PÃ (PÃ = (m− 2)p0). The initial decrease of P

(c)
A with p0 (or PÃ) indicates

that the minority group facilitates the dominance of A, corresponding to the discontinuous transition. The linear increasing
regime suggests the competition between A and the unified group Ã, corresponding to the continuous transition.

with m. To overcome this challenge, simpler scenarios with
symmetry are considered, as described in scenarios S1 and S2.
The simplified structures of scenarios S1 and S2 allow for a
more efficient and manageable study of the critical transition
in comparison to direct numerical integration for scenario S0

with random initial configurations. In scenario S1, a collection
of single opinions (denoted as the group Ã) is designed to have
an equal fraction of committed agents with no uncommitted
supporters. Under the assumption of homogeneous mixing in
a complete graph, the fraction of supporters for these opinions
is expected to evolve in the same fashion. Consequently, the
number of state variables to be monitored is reduced from
2m − 1 to 4m − 5. For example, when m = 5 where single
opinions are A, B, C1, C2, C3. Opinions C1, C2, and C3 are
assigned the same fraction of committed agents, so the fraction
of uncommitted agents they can assimilate to themselves is

expected to be the same by symmetry. Further, some mixed
opinion states, such as C1C2, C1C3, and C2C3, or AC1, AC2,
and AC3 also have the same uncommitted supporters as time
progresses. This results in a reduction in the number of state
variables that need to be monitored. A similar argument also
applies to scenario S2 as some of the opinions in group Ã
have the same fraction of committed agents.

Next, we focus on the evolution of the fraction of agents
supporting opinion A, which is assigned the largest committed
fraction, and explore the critical transition where this opinion
assimilates most of the uncommitted individuals across the
three scenarios. In scenario S1, for small values of PÃ, the sys-
tem undergoes a discontinuous transition from B dominance to
A dominance as PA increases (Fig. 4). Also, as seen Fig. 5, the
critical point P (c)

A shows a non-monotonic behavior as PÃ or
p0 increases. The presence of a small committed group plays
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(a) critical point changes with max(Pi) (b) critical point changes with SD(Pi)

Fig. 6. The critical point for A to dominate in scenario S0. The number of opinions is set as m = 6. (a) For different
values of the minority committed fraction, p0 = 0.03, 0.04, 0.05, 0.06, P (c)

A changes with the maximum of Pi in group Ã with
an initial decrease followed by a linear increase. (b) P (c)

A changes with the standard deviation (SD) of Pi, which only includes
the data of the decreasing regime in (a). This indicates that stronger opponents within the unified group Ã may lower the
critical values for A to dominate, provided that this unified group is not the largest opponent.

(a) m = 4 (b) m = 5 (c) m = 6

Fig. 7. The critical point P
(c)
A changes with p0 in three scenarios S0, S1, and S2. The number of opinions is set as (a)

m = 4, (b) m = 5, (c) m = 6. For scenario S0, only the data where P
(c)
A is along the decreasing branch with max(Pi) in

Fig. 6 is included. The tipping points in scenarios S1 and S2 provide the upper and lower bound for S0.

a key role in the formation of a dominant opinion. Initially,
the critical value P

(c)
A decreases as the committed fraction p0

of the small groups increases, indicating that as the number
of committed individuals in these groups grows, they become
more effective in promoting the dominance of opinion A. This
implies a catalyzing role of small groups for disseminating
opinion A to uncommitted agents. The initial decrease in
P

(c)
A can be attributed to the increased chance for interactions

and conversions between the committed individuals in the
smaller groups and the uncommitted individuals in the system.
Moreover, the non-monotonic behavior of P (c)

A with increasing
PÃ or p0 also indicates the presence of a threshold effect.
Beyond a certain value of PÃ or p0, the critical value P

(c)
A

begins to increase, indicating that the positive influence of
the smaller committed groups on the dominant opinion’s
growth reverses. The linear relationship instead shows the

competition between opinion A and other opinions with a
smaller committed fraction, which can also be confirmed by
comparing Fig. 4a and c.

To explore how the value of the tipping point P
(c)
A de-

pends on the allocation of committed agents to group Ã, we
manipulate the committed fraction Pi while preserving PÃ

in scenario S0. Results displayed in Fig. 6a show a non-
monotonic behavior of the critical point P (c)

A as a function of
the maximum value of Pi in group Ã. The initial decrease
of P

(c)
A indicates that the presence of a large fraction of

committed agents within group Ã is beneficial for opinion A
to be adopted by most of the uncommitted agents compared
to the case when the committed agents are equally distributed
among the m− 2 single opinions.

This conclusion can also be confirmed by observing how
P

(c)
A changes with the standard deviation of Pi in Fig. 6b.
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(a) p0 = 0.02 (b) p0 = 0.04 (c) p0 = 0.06

Fig. 8. The steady state nA changes with PA in three scenarios S0, S1, and S2 with m = 6 opinions. The average
committed fraction in group Ã is set as (a) p0 = 0.02; (b) p0 = 0.04; (c) p0 = 0.06. The stable fraction in scenario S0 can be
approximated by S1 and S2.

However, it is worth noting that a higher Pi does not always
result in a favorable outcome in terms of the dominance of
opinion A. For opinion A to become dominant, its committed
fraction PA must be greater than any other committed fraction
in the group Ã, which explains the linear increase of P

(c)
A

observed in the results of p0 = 0.05. The non-monotonic be-
havior of the critical value of P (c)

A highlights the importance of
considering the effects of different distributions of committed
fractions on the overall dynamics of the system, especially the
dominance transition.

From the observation in Fig. 6, one may expect that scenario
S2 has a smaller critical point P

(c)
A than S1 as the standard

deviation of committed sizes in group Ã is maximized. This
expectation is confirmed by Fig. 7. The critical points obtained
from two scenarios, S1 and S2, provide the upper and lower
bounds for scenario S0, respectively. Additionally, one can
compare the steady states of the three scenarios in Fig. 8.
Scenarios S1 and S2 also provide a good approximation for the
steady state nA in scenario S0. It is observed that the critical
point P

(c1)
A in scenarios S1 is always greater than P

(c2)
A in

scenario S2, and the two critical points P (c1)
A and P

(c2)
A divide

the parameter space into three parts. For values of PA less
than P

(c2)
A , scenario S1 yields the lower bound of nA while

S2 provides the upper bound. For P
(c2)
A < PA < P

(c1)
A , both

scenarios establish the lower bound. For PA > P
(c1)
A or the

case when there are no critical points, scenario S1 corresponds
to the upper limit of nA while S2 corresponds to the lower
limit. By investigating scenarios S1 and S2 of symmetric setup,
the critical points and the steady states of opinion A with the
largest committed fraction in scenario S0 are well estimated.

We now analyze the opinion competition from another
perspective. The key question is to determine the dynamics of
opinion A as it competes against opinions B and Ã. As shown
in Fig. 9a, the critical point, P (c)

A , in scenario S1 has a non-
monotonic relationship with the number of single opinions,
m. Given a fixed committed fraction, PÃ, as m increases,
the individual committed fraction, p0 (= PÃ/(m − 2)), in
group Ã decreases, weakening the opposition from this group.
The initial decrease of P (c)

A reveals the validity of the divide-
and-conquer policy, whereby the more opinions split among

themselves the committed agents of group Ã, the easier it is
for opinion A to dominate uncommitted agents in the system.
Reversing this rule reveals that the major obstacle to the
opinion A dominance is the small number of opinions in the
group Ã. However, if m continues to increase, the critical
point P (c)

A also increases, suggesting that opinion B becomes
the major threat. In this scenario, a strong opponent, Ã, (large
p0) can be helpful for opinion A to dominate the system, thus
making group Ã a friend of opinion A, in line with the Heider
balance theory rule [38] that states “The enemy of my enemy
is my friend”. This “divide and conquer” phenomenon has
been observed in other systems, such as pathogen infection
dynamics, where increasing diversity of host species may
either amplify or buffer the disease outbreaks depending on the
transmission types [39]. Additionally, a similar phenomenon
has also been reported in the multi-species system, where
outside invasions are more likely to succeed as the number
of species increases [40].

IV. SIMPLIFICATION BY RECURSIVE RELATIONSHIP

In the previous section, we explored methods for estab-
lishing symmetrical distributions of committed agents and
utilizing mean-field frameworks to simplify the continuous-
time dynamics, thereby approximating opinion dynamics for
scenarios with arbitrary distributions of committed agents. In
this section, we shift our focus to its discrete-time version and
introduce a more general method for reducing system com-
plexity using the recursive approach. This approach enables
a more focused examination of the evolution of supporters
for single opinions by anonymizing mixed states, facilitating
the determination of the dominant opinion in a more efficient
manner.

A. Establish recursive relationship

Since the committed agents define the dominant state in
NG dynamics at equilibrium, it is sufficient to focus on only
the density evolution of supporters for single opinions. We
introduce a quantity Q

(t)
i , which represents the probability of

a single opinion i being communicated at step t from the
population [35], and we establish an iteration function for the
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(a) recursive approach (b) integration of ODEs

Fig. 9. Divide and conquer. The number of total committed agents in group Ã is set as PÃ = 0.1, 0.12, 0.14, 0.16. The
critical point P (c)

A in scenario S1 is determined by using the recursive approach in (a) and the integration of the differential
equations in (b). The critical point, P (c)

A , exhibits a non-monotonic relationship with the number of single opinions, m. This
implies that dividing the committed agents into a moderate number of competing minorities can facilitate the dominance of
opinion A among the uncommitted agents in the system.

opinion density at step t based on the state at step t − 1.
It has been shown that the original NG dynamics and the
listener-only version on the complete graph have qualitatively
similar results [8]. It is easier to derive the iterative function by
considering only the state change of listeners, so, we develop
our framework for the listener-only version.

For an uncommitted agent to adopt a single opinion i at step
t, it must have held the opinion i in its list at step t− 1 and
received opinion i at step t. By unifying all mixed states that
contain opinion i into one variable, xi+, such requirements
are outlined by Eq. (3). The first term describes the scenario
when a listener already holding the single opinion i receives
the signal i, and the second term corresponds to the scenario
when a listener in the mixed state xi+ hears opinion i. After
the interaction, the listener in both scenarios either remains
in the single state i or adapts to it. Next, one can establish
the recursive relationship of the mixed state containing two
opinions, i and j, in Eq. (4). Specifically, if a listener initially
supports opinion i (j) and subsequently receives signal j (i),
it will switch to the mixed state, ij. This equation accounts
for the scenario where a listener holds one opinion but is
influenced by another received opinion through interaction
with other agents. Similarly, the recursive relationship of the
mixed state containing three single opinions is derived in
Eq. (5). Furthermore, one can easily generalize the iteration
function of the mixed state containing n single opinions as
Eq. (6), where Sn(i1, i2, ..., in) represents all permutations of
a set containing n elements.

x
(t)
i = x

(t−1)
i Q

(t−1)
i + x

(t−1)
i+ Q

(t−1)
i (3)

x
(t)
ij = x

(t−1)
i Q

(t−1)
j + x

(t−1)
j Q

(t−1)
i (4)

x
(t)
ijk =x

(t−1)
ij Q

(t−1)
k + x

(t−1)
ik Q

(t−1)
j + x

(t−1)
jk Q

(t−1)
i

=x
(t−2)
i Q

(t−2)
j Q

(t−1)
k + x

(t−2)
j Q

(t−2)
i Q

(t−1)
k

+ x
(t−2)
i Q

(t−2)
k Q

(t−1)
j + x

(t−2)
k Q

(t−2)
i Q

(t−1)
j

+ x
(t−2)
j Q

(t−2)
k Q

(t−1)
i + x

(t−2)
k Q

(t−2)
j Q

(t−1)
i

=
∑

(i′,j′,k′)∈S3(i,j,k)

x
(t−2)
i′ Q

(t−2)
j′ Q

(t−1)
k′

(5)

x
(t)
i1i2...in

=
∑

(i′1,i
′
2,...,i

′
n)∈Sn(i1,i2,...,in)

x
(t−n+1)
i′1

×Q
(t−n+1)
i′2

Q
(t−n)
i′3

...Q
(t−2)
i′n−1

Q
(t−1)
i′n

.

(6)

B. The focus on single opinions

To simplify the computation and focus on the density
distribution of single opinions, xi, the need to calculate or
record all mixed states is eliminated. Instead, only Qi and
xi+ need to be tracked. The density evolution of mixed states
containing opinion i, such as xĩi, xĩĩi, xĩĩĩi, can be derived
using Eq. (6), where ĩ refers to any single opinion other than
opinion i. Therefore, the number of variables is reduced from
2m − 1 to m2.

By summing up Eq. (4) over a subset that includes any
single opinion j other than i, one can obtain x

(t)

ĩi
as Eq. (7),

where M is the set of m single opinions, and M\i represents
the set of all single opinions excluding opinion i.

x
(t)

ĩi
= x

(t−1)
i

∑
j∈M\i

Q
(t−1)
j +Q

(t−1)
i

∑
j∈M\i

x
(t−1)
j (7)
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(a) the fraction of supporting A (B) (b) the fraction of supporting C

Fig. 10. Comparison between the recursive approach and the differential equations. The evolution of the uncommitted
fraction for opinions A, B (shown in (a)), and C1 (same as C2, C3, C4, thus denoted as C) (shown in (b)) are obtained by
two methods. The number of opinions is set as m = 6, the fraction of agents committed to A is PA = 0.1, and the fraction of
agents committed to each minority opinion is PC = PC1 = PC2 = PC3 = PC4 = 0.025. Initially, all the uncommitted agents
support opinion B, xB(t = 0) = 0.8.

(a) PA = 0.02 (b) PA = 0.03 (c) PA = 0.04

Fig. 11. Time evolution of the fraction of agents supporting opinion A on ER networks. The system comprises N = 1000
agents, with an average degree of ⟨k⟩ = 8 and an interaction time of T = 1000. There are m = 5 single opinions, with a
committed fraction of p0 = 0.01 for each opinion in group Ã, and different values of the fraction committed to opinion A
for (a) PA = 0.02, (b) PA = 0.03, and (c) PA = 0.04. In each panel, there are L = 50 random realizations, with each line
representing one of these realizations.

Similarly, one can derive the general formula for the mixed
state of length n + 1 with opinion i and other n distinct
opinions, x(t)

i ĩ ... ĩ︸︷︷︸
n

,

x
(t)

i ĩ ... ĩ︸︷︷︸
n

=
∑
j∈M

x
(t−n)
j

∑
i∈(j1,...,jn)∈M\j

Q
(t−n)
j1

...Q
(t−1)
jn

(8)

In Eq. (8), j1, ..., jn are n distinct integers, representing n
different single opinions. By definition, opinion i must be one
of n distinct single opinions j1, ..., jn.

The primary aim is to monitor the temporal evolution of sin-
gle opinions, as captured by Eq. (3). This requires computing
the probability of transmitting opinion i, Q(t)

i , and the density
of mixed states, x(t)

i+ , (i = 1, 2, ...,m) at each interaction step

t. According to the interaction rule, only speakers with a single
opinion i in their list can communicate opinion i. Additionally,
for the mixed state, each single opinion in the list has an equal
probability of being transmitted. Therefore, Q(t)

i and x
(t)
i+ are

expressed as Eqs. (9) and (10), respectively.

Q
(t)
i = x

(t)
i + P

(t)
i +

1

2
x
(t)

ĩi
+

1

3
x
(t)

ĩĩi
+ ...+

1

m
x
(t)

ĩĩĩi ... ĩ︸ ︷︷ ︸
n

(9)

x
(t)
i+ = x

(t)

ĩi
+ x

(t)

ĩĩi
+ x

(t)

ĩĩĩi
+ ...+ x

(t)

ĩĩĩi ... ĩ︸ ︷︷ ︸
n

(10)

By employing recursive functions (3), (8), (9), and (10), one
can calculate the density evolution of single opinions for any
initial condition, offering computational efficiency compared
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to mean-field differential equations. Comparing the system
evolution obtained by two approaches in Fig. 10, we find
that the results are nearly identical, validating the recursive
approach. One can further simplify the computation if the
system’s stable state is of primary interest, which means
that the probabilities of communicating opinion i at different
time steps are the same. Therefore, these probabilities Q

(t)
i ,

Q
(t−1)
i ,..., Q(t−n)

i can be represented by one quantity Q
(s)
i .

V. THE MULTI-OPINION SYSTEM ON RANDOM NETWORKS

In previous sections, our focus was on understanding
opinion dynamics within a complete graph. However, real-
world communication often occurs within complex networks.
Hence, in this section, we delve into investigating the NG
dynamics across diverse network models characterized by real-
world features. We aim to identify the tipping point for the
dominance transition. While, in principle, it is possible to
develop a heterogeneous (degree-based) mean-field approxi-
mation scheme [41], [42], we do not pursue that approach here.
Instead, we resort to the agent-based simulation (i.e., using
node-based local update rules) to study the density evolution
of agents supporting different opinions more precisely. On a
networked system, agents can be chosen as either speakers
or listeners and communicate their opinions with one of their
neighbors at each interaction step. Following this exchange,
their opinion states are updated according to the NG rule. To
set up the agent-based simulation, we employ a system size
of N = 1000, a simulation time of T = 1000 (defined as the
number of pairwise interactions for each agent on average),
and conduct L = 50 random realizations unless specific
parameter choices are provided. All committed agents are se-
lected uniformly at random in this study. We acknowledge that
the different strategies for allocating the committed minorities
on the network can yield varying results [21], especially for
heterogeneous networks. A systematic exploration of these
strategies is beyond the scope of this paper.

We examine a problem similar to what we discussed in the
previous sections, with a slight variation: all single opinions
now have committed supporters. The opinion with the largest
committed fraction is denoted as A. For simplicity, when the
other m − 1 opinions share the same fraction of committed
fraction, p0, and are initially supported by the same number
of uncommitted agents, they can be classified into one group
by symmetry, denoted as Ã with the total committed fraction
PÃ = (m− 1)p0. For the finite networked system, either the
opinion A or one of the opinions in Ã would dominate the
system in the steady state. Our focus lies on determining the
critical point, P (c)

A , at which opinion A achieves dominance,
and understanding how the number of single opinions, m,
influences this critical point.

A. The impact of random communication topology – ER
networks

The first model we explore is Erdős-Rényi (ER) networks
[43] because of its wide research interests. As agents have
different connectivity in random networks and the system
size is finite, the evolution and the dominant opinion in the

stable state can vary slightly from one realization to another,
observed from Fig. 11. This variability arises also due to the
random selection order of agents as speakers and listeners.
These factors introduce randomness in finite systems, resulting
in variations in the system’s behavior.

To represent the system state, the average fraction ⟨ni⟩ of
agents supporting the opinion i is defined in Eq. (11), where
L is the number of realizations. Additionally, we introduce
the ratio Ri as the fraction of realizations that end up being
dominated by opinion i.

⟨ni⟩ =
1

L

L∑
j=1

n
(j)
i (11)

Fig. 12 shows that as the committed fraction PA increases,
there is a critical transition from a low density to the dominant
state for the average fraction of agents holding opinion A,
⟨n(s)

A ⟩, as well as for the ratio RA. To further investigate
the transition on ER networks, we define the critical point on
random networks, denoted by P

(c)
A , as the smallest committed

fraction that enables the transition ratio RA to exceed 1
2 (Note

that our chosen conventional cutoff value 1
2 does not affect

the findings). To analyze the relationship between the average
degree ⟨k⟩ and the critical point P (c)

A on random networks, we
examined complete graphs and networks with varying average
degree ⟨k⟩, as shown in Fig. 13 a. Our results indicate that as
the number of single opinions m increases, the critical point
P

(c)
A decreases, in line with the divide-and-conquer policy.

Additionally, we observed that the critical point decreases as
the average network degree decreases, suggesting that sparse
random communication structures may amplify the impact
of committed members on the system, such that opinion A
with the largest committed fraction is easier to dominate.
This phenomenon has been observed in the two-opinion NG
system [42], and it has been also reported in other social
dynamics, including innovation spreading dynamics [44], [45]
and evolutionary games [46].

B. Critical points in different types of random networks

Having analyzed how the degree of random networks affects
the evolution of stable states in our system, we next look into
this evolution for random networks with real-world character-
istics. ER random networks are often noted as not reflecting
the properties displayed in many real-world networks, like
power-law degree distribution and small-world connectivity,
and varied nodes clustering. To understand how the stable state
might evolve in real-world networks, we extend our analysis
to scale-free and small-world networks.

Scale-free networks, like those generated by the Barabasi-
Albert model [47], are networks with a power-law degree
distribution. While there is debate on how pervasive these
properties are in the real world, they are found in many
technological and biological networks [48] with a common
example being the World Wide Web. Small-world networks,
like those generated by the Watts-Strogatz model [49], have
high clustering coefficients and low average path lengths
[50], which are properties seen in many real-world networks
like social networks, telecommunications networks, and brain
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(a) the fraction of agents supporting A (b) the ratio of realizations being dominated by A

Fig. 12. The state of opinion A changes with its committed fraction PA for different values of m on ER networks.
The system consists of N = 1000 agents with an average degree of ⟨k⟩ = 8. The fraction of committed agents in group Ã
is PÃ = 0.06. (a) The average fraction of agents supporting opinion A at steady state changes with PA. (b) The ratio of the
random realizations that end up with A as the dominant state. Both quantities, ⟨n(s)

A ⟩ and RA, exhibit a discontinuous transition
with PA, and the critical points decrease as the number of opinions increases. This again validates the “divide and conquer”
phenomenon, as A becomes easier to dominate when the unified group has more divided opinions.

(a) ER (b) SW (c) SF

Fig. 13. Heat map of the critical point P
(c)
A changes with the number of single opinions and the average degree of

networks. (a) Erdős-Rényi (ER) networks, (b) small-world (SW) networks, and (c) scale-free (SF) networks. The number of
agents is N = 1000. The total fraction of committed agents in the group Ã is PÃ = 0.06. The critical point is the smallest
committed fraction which enables half of the realizations to stabilize with opinion A as a dominant state. The critical point
increases as the average degree increases. It indicates that sparse random communication structures can amplify the impact of
committed members, such that opinion A is easier to dominate.

networks. We test these two properties by generating scale-
free networks with the Barabasi-Albert model and small-
world networks using the Watts-Strogatz model. We utilize
the NetworkX library [51] to implement these generators.

In Fig. 13 we show the critical points as a function of
the number of single opinions m and the average degree of
the generated scale-free and small-world networks. For these
more complex networks, the general relationship between the
number of opinions, the average degree, and the critical point
remains the same. For all network types, we see that either
the decrease in the average degree of networks or the increase
in the number of opinions can lower the critical point.

We also see some interesting behaviors specific to the new
network structures. For scale-free networks, the critical point
is slightly smaller than that seen in the ER networks. The
presence of hub nodes in scale-free networks, where none
exist in the other two types, explains this decrease in critical
points. The power-law degree distribution gives us several
highly connected nodes in the network that can facilitate the
quick spreading of a single opinion throughout the network.
Many poorly connected nodes need a lot of time to succeed in
propagating their opinions to other nodes. Hence, they often
end up adopting one of the opinions frequently propagated by
the hubs.
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For the small-world networks, the critical point is signifi-
cantly higher across the board. This is due, in part, to the sig-
nificantly larger clustering present in these networks. Higher
clustering allows for single opinions to become entrenched
in locally dense portions of the network. Once entrenched,
these opinions become harder to unseat, due to the weaker
connectivity around the cluster. It is even more difficult, in
highly modular networks, for the system to converge to a
single dominant opinion [21].

VI. DISCUSSIONS

In this study, we focus on the competition of the opinion
with the largest fraction of committed agents against other
opinions with committed agents and the opinion with the
majority of uncommitted supporters. We study such com-
petition using the original NG dynamics and its listener-
only version. While continuous-time mean-field differential
equations can accurately describe the opinion evolution for
complete graphs in the infinite-size limit, the complexity of
systems with multiple opinions grows exponentially, making
direct integration of the corresponding differential equations
impractical.

To address this challenge, we introduce two simplified
scenarios, S1 and S2, which feature more symmetric setups.
These scenarios significantly reduce computational complexity
and provide upper and lower bounds for the critical point
(P (c)

A ) of dominance transition in the scenario with an ar-
bitrary distribution of committed agents. Through compara-
tive analysis of critical transitions across the three scenarios,
we highlight the significant influence of the distribution of
committed agents within the minority committed group, Ã,
in determining P

(c)
A . Specifically, the number of opinions and

the distribution pattern of committed agents within group Ã
can either facilitate or hinder the propagation and eventual
dominance of opinion A over uncommitted agents. When opin-
ion B without committed followers is the primary competitor,
augmenting the number of committed agents in Ã can lower
P

(c)
A by diminishing the support for opinion B. Conversely,

if agents committed to opinions other than A are the main
opponents, increasing their number requires a higher fraction
of agents committed to A, thereby raising the critical point.

Furthermore, to enhance the accuracy of depicting the
NG opinion dynamics and capture critical transitions across
various initial conditions in a computationally manageable
manner, we develop the discrete-time recursive approach. This
method focuses more on the evolution of single opinions by
consolidating mixed states with the same opinion into a single
variable and introducing the probability of a randomly chosen
speaker communicating any single opinion. By streamlining
computations while preserving the system’s dynamics, this
framework offers an efficient representation of NG dynamics
in a complete graph.

Additionally, to gain insights into opinion evolution within
real-world structures, we conducted agent-based simulations
to understand system dynamics and capture critical transitions
across various finite-sized networks. In our experimental setup,
the primary committed group advocates for opinion A, while

the remaining agents, both committed and uncommitted, are
evenly distributed among other minor committed opinions.
Our observations reveal a strategy akin to the divide-and-
conquer policy, where dividing agents into more minor groups
results in a reduced critical fraction of agents committed to A
required for system dominance. This phenomenon suggests
that segmenting agents facilitate easier domination of the
opinion with the largest committed size in the system.

While we presented two frameworks to simplify the multi-
opinion NG model, there are some limitations to this work.
Firstly, extending the theoretical analysis to networks of
various topologies would provide a more comprehensive
understanding of opinion dynamics in real-world scenarios.
Secondly, we can introduce varied commitments to allow
individuals to stick to a single opinion temporarily while
maintaining their long-term flexibility, particularly relevant for
moderately committed agents. Thirdly, we would also like to
extend the original Naming Game model from pairwise inter-
actions to group interactions, allowing for the consideration
of discussions within groups of friends, which is common in
real-life situations.
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