Political Polarization in Legislative Branches II

Presenter: Boleslaw Szymanski
Xiaoyan Lu, Jianxi Gao

NeST Center & SCNARC
Department of Computer Science
Department of Physics, Applied Physics and Astronomy
Rensselaer Polytechnic Institute, Troy, NY 12180
Dynamic Social Competition Model[1]

\[x \in [0, 1] \] measures the current polarization, so the collaboration is measured by the complementary fraction of \(x \), i.e. \(y = 1 - x \)

\[
\frac{dx}{dt} = yP_{yx}(x, u_x) - xP_{xy}(x, u_x)
\]

simple symmetric transition functions:

\[P_{yx}(x, u_x) = P_{xy}(1 - x, 1 - u_x) \]

\[= c \cdot x^a \cdot u_x \]

\(= \) Evolution speed \(\times \) Impact of population belief on the change of polarization \(\times \) Perceived utility of competition, (the benefit fighting against the other party on certain bills)

We assume a social system dominated by two parties. In such a system polarization and collaboration can convert into each other but they maintain their sum constant at 1.

\[\frac{dx}{dt} = yP_{yx}(x, u_x) - xP_{xy}(x, u_x) \]
Dynamical Model for Polarization Evolution

Stable system:

Unstable system:
When the initial polarization level (green cycles) is smaller than the stable polarization level predicted by our model (solid black curve), we observe an increase of polarization within one Congress. The direction of such change in 28 out of all 30 Congresses are explained by the model (green arrows).

![Diagram of polarization change](image.png)
6 of 14 Presidential election Congresses started with the polarization utilities at least 0.5 while only 1 of 15 midterm election Congresses achieved such high polarization utility.

The highest polarization utility growth (57.1%) occurs in the 112th Congress (2011-2013).

Super PACs arose following the July 2010 federal court decision.
Structural Change of Competition among States

The pairwise disagreements are at similar level while the structure of competition changes significantly. The order of states is ranked by their one-dimensional PCA projection.

The three rules of social flocks movement in latent space \mathbf{Z}:

1. **Separation**: steer to the opposite direction of competitors
2. **Cohesion**: steer to move toward the average position of local flockmates
3. **Gravity**: steer towards the most neural position (origin)

The Euclidean distance matrix A_{ij} follows Gaussian with mean $|\mathbf{Z}_i - \mathbf{Z}_j|$
Competition Structure Matters

The network structure of competitors impacts the final polarization level. We simulate the evolution of polarization using a competition graph generated by planted partition model with intra-group edge probability q and inter-group edge probability p.

$q=0.2, p=0.7$
$q=0.8, p=0.3$
Contributions

Theory: We define a dynamical model **quantifying the evolution of polarization** in the U.S. Congresses elected in the past six decades. The hidden model parameter, polarization utility, correlates well with significant political or legislative changes happening at the same time.

Algorithm: We implemented a predictor based on the model that successfully predicts the direction of polarization changes in 28 out of 30 elected U.S. Congresses. The hidden model parameter, polarization utility, correlates well with significant political or legislative changes happening at the same time.
Thanks

Questions?

This work was supported by Army Research Office grant #WNF-15-0254 under the Program Manager Dr. Lisa Troyer

Reference: