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Real Nework Properties

Examples



ACTOR NETWORK

Nodes: actors
Links: cast jointly

vie Database
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N = 212,250 actors
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Days of Thunder (1990)
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SWEDISH SE-WEB

Nodes: people (Females; Males)
Links: sexual relationships
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Cumulative distribution, P(k_,
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Total number of partners, k

4781 Swedes; 18-74;
59% response rate.

Liljeros et al. Nature 2001




Réka Albert, Hawoong Jeeng, and Alberl-Lizzlé Barabdsi
discover the power-law nature of the WWW 1]
and introduce scale-free netwarks [2, 10].

Michalis. Petros. and Christos Faloutsos
discovar the scale-free nature of the internet [15].

1965

Derek de Solla Price 1922 - 1983

discovers that gitations follow a power-law
digtribution 7], a finding later attributed to the
seole-free noture of the citation notwark (2],
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Not All Networks Are Scale-free

*Networks appearing in material
science, like the network describing the
bonds between the atoms in crystalline
or amorphous materials, where each
node has exactly the same degree.

*The neural network of the C.elegans
worm.

*The power grid, consisting of
generators and switches connected by
transmission lines
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Ultra-small property



DISTANCES IN RANDOM GRAPHS

Random graphs tend to have a tree-like topology with almost constant node degrees.

* number of first neighbors:
* number of second neighbors:
* number of neighbors at distance d:

e estimation of maximum distance:

& \i _logN
1+§<k> =N :> Imax_ Iog<k>



SMALL WORLD BEHAVIOR IN SCALE-FREE NETWORKS

— y—1
Koax = Knin N
( const y = 2 Size of the biggest hub is of order O(N). Most nodes can be connected within two layers
| of it, thus the average path length will be independent of the system size.
Ultra The average path length increases slower than logarithmically. In a random network all
Small lnlnN nodes have comparable degree, thus most paths will have comparable length. In a
World 2< Y < 3 scale-free network the vast majority of the path go through the few high degree hubs,
ln(}’ -1) reducing the distances between nodes.
< l Tt
IIlN Some key models produce y=3, so the result is of particular importance for them. This
S Y = 3 was first derived by Bollobas and collaborators for the network diameter in the context of
InInN a dynamical model, but it holds for the average path length as well.
Small 1 N 3 The second moment of the distribution is finite, thus in many ways the network behaves
World n Y > as a random network. Hence the average path length follows the result that we derived

for the random network model earlier.

Cohen, Havlin Phys. Rev. Lett. 90, 58701(2003); Cohen, Havlin and ben-Avraham, in Handbook of Graphs and Networks, Eds. Bornholdt and
Shuster (Willy-VCH, NY, 2002) Chap. 4; Confirmed also by: Dorogovtsev et al (2002), Chung and Lu (2002); (Bollobas, Riordan, 2002; Bollobas,
1985; Newman, 2001



We Are Always Close to the Hubs

12 1 1 1 1 1 1 1 1 1

10 -

" it's always easier to find someone who 8 b -

knows a famous or popular figure than

some run-the-mill, insignificant person.” :
(Frigyes Karinthy, 1929) a3

0 10 20 30 40 50 60 70 80 90 100
ktarget

Average person is less popular then this person random friend!
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The role of the degree exponent



SUMMARY OF THE BEHAVIOR OF SCALE-FREE NETWORKS



Graphicality: No Large Networks for y<2

a. Graphical b. Not Graphical C.
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In scale-free networks: k£ =k . N7 For y<2: 1/(y-2)>1



Why Don’t We See Networks with Exponents in the Range of y=4,5,6, etc?

In order to document a scale-free networks, we need 2-3 orders of magnitude scaling.

That is, K ,,~ 103

However, that constrains on the system size we require to document it.
For example, to measure an exponent y=5,we need to maximum degree a system size

of the order of

1

Kmax — KmiﬂArE

1
Nz[Km‘”‘] ~10°
K

min

Onella et al. PNAS 2007
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Degree k
Characterizing the large-scale structure and the tie
strengths of the mobile call graph. Vertex degrees
are shown
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ADVANCED TOPICS 4.B

PLOTTING POWER LAWS



HUMAN INTERACTION NETWORK

2,800 Y2H interactions
4,100 binary LC interactions
(HPRD, MINT, BIND, DIP, MIPS)

HO=¥2H
T

Q Data| |
—— —FlL T
TPL | 1

Rual et al. Nature 2005; Stelze et al. Cell 2005
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Avoid Linear Binning

Use Logarithmic Binning

Use Cumulative Distribution



HUMAN INTERACTION DATA BY RUAL ET AL.
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COMMON MISCONCEPTIONS

k k\ . .
pr = a(k + kgqe) " Vexp (— E) Dk = Prexp (@) k=k+ kg p~k™

a. S b.

107 F 3 e B ' ' d
. | D |
; 3,‘. 1 ’ Y 3
L i - [ i
FIII; L . : pk : \ o
; HIGH DEGREE |
0% F 3 10 F E
: § CUTOFF 3 07 ¢ LY .
: (s . ] E . .
i |, k)7 [ ]
[ LOW DEGREE - - % ]
10° | SATURATION ) 103 | b 1
[ - 1 [ 7 :
J|D-SI L il R AR TD_I.' L l L |
10° 100 k 102 10 10° 10" k+k = 10? 108



secions |

Generating networks with a pre-
defined p,



Configuration model

=3 k=2 k=2 kS (1) Degree sequence: Assign a degree to each

(a) ’\ * * ’ node, represented as stubs or half-links. The

degree sequence is either generated analytically
from a preselected distribution (Box 4.5), oritis

extracted from the adjacency matrix of a real

(b) network. We must start from an even number of
stubs, otherwise we will be left with unpaired
stubs. (2) Network assembly: Randomly select a

stub pair and connect them. Then randomly
choose another pair from the remaining stubs and

(c) m o ‘ . ‘ connect them. This procedure is repeated until all
stubs are paired up. Depending on the order in
which the stubs were chosen, we obtain different

(d) 0_‘_. networks. Some networks include cycles (2a),

g U others self-edges (2b) or multi-edges (2c). Yet, the
expected number of self- and multi-edges goes to
zero in the limit.

kik;

= l]
2L -1

pij



Degree Preserving randomization
DEGREE-PRESERVING

FULL ORIGINAL NETWORK
RANDOMIZATION

RANDOMIZATION
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Hidden parameter model

(a) pwv3=0.4 p3‘4=0.2

n 1.5 2 0.5
(y=1.25 \l/

(b) (c)
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Hidden parameter model

(a) p,;=0-4 P;,=0-2 . . .
Start with N isolated nodes and assign to each node a

“hidden parameter” n , which can be randomly selected
from a p(n) distribution. We next connect each node

e pair with probability -
i'lj

(MmN

For example, the figure shows the probability to
connect nodes (1,3) and (3,4). After connecting the
(ny=1.25 \l/ nodes, we end up with

p(m,ny) =

(b) (c) the networks shown in (b) or (c), representing two
independent realizations generated by the same hidden
parameter sequence (a). The expected number of links
in the obtained network is

L =

1 nin; 1
— = —(n\N
2; N =7

k l

| €1

e '’ _ )
Pk :J- k' P(n)dn {n]_l nzl i nN} Pk _ﬁ; k! : D, ~




NETWORK OR DEGREE SEQUENCE DEGREE DISTRIBUTION
KoK, K D,
FORBID ALLOW ALLOW FORBID
MULTI-LINKS MULTI-LINKS MULTI-LINKS MULTI-LINKS
DEGREE-PRESERVING CONFIGURATION HIDDEN PARAMETER

RANDOMIZATION MODEL MODEL
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Discrete form:

k—}’
L)
Continuous form:
p(k) = (y =k k7.

Py

N -
2< vy < 3: (k) finite, <k?)
diverges.

y > 3: {k) and {k?) finite.

const. Y=2,
IIr(lInNI) 2<y<3,
n p—
@=1 " L
n
:3’
IninN Y
InN Yy >3.

T

Bounded Networks

We call a network bounded if its degree distribution decrease exponen-
tially or faster for high k. As a consequence <k2> is smaller than <k>, im-
plying that we lack significant degree variations. Examples of p, in this
class include the Poisson, Gaussian, or the simple exponential distribu-
tion (Table 4.2). The Erdés-Rényi and the Watts-Strogatz networks are the
best known network models belonging to this class. Bounded networks
lack outliers, consequently most nodes have comparable degrees. Real
networks in this class include highway networks and the power grid.

Unbounded Networks

We call a network unbounded if its degree distribution has a fat tailin the
high-k region. As a consequence <k?> is much larger than <k>, resulting
in considerable degree variations. Scale-free networks with a power-law
degree distribution (4.1) offer the best known example of networks be-
longing to this class. Outliers, or exceptionally high-degree nodes, are

not only allowed but are expected in these networks. Networks in this
class include the WWW, the Internet, the protein interaction networks,

and most social and online networks.



Random Distributions Important for Network Science

(a) Paisson (b) Exponential
Lin-lin plot Log-log plot Lin-lin plot Log-log plot
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Introduction
to BA Model
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Hubs represent the most striking difference between a random and a
scale-free network. Their emergence in many real systems raises
several fundamental questions:

*\Why does the random network model of Erdés and Reényi fail to
reproduce the hubs and the power laws observed in many real
networks?

* Why do so different systems as the WWW or the cell converge to a
similar scale-free architecture?



Empirical findings for real networks
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BENCHMARK 1: Regular Lattices

Two-dimensional lattice:

NN
NNA

D-dimensional lattice:

The average path-length varies as ] ~ NVP

Constant degree

Constant clustering coefficient C=C,

Average path-length: | ~ L~ N2
Degree distribution: P(k)=0(k-6) excluding corners
and boundaries
Clustering coefficient: C = 2 6 neighbors, each

5 with 2 edges = 12/30

P(k)=0d(k-ky)

ou g



BENCHMARK 2: Random Network Model

Erdds-Rényi Model- Publ. Math. Debrecen 6, 290 (1959)

e e e /’
® ° ‘/ ® . fixed node number N
] e ® ® . connecting pairs of nodes with
* < * *— probability p
p=0 p=0.1 p=0.15
. . . P k ~ C k k 1 _ N -1—-k
Degree distribution: rana (K) v PR (1=P) g]
I _ log N
Path length: 4 Jog(k) é

Clustering coefficient: C.y=p="+

N



BENCHMARK 3: Small World Model

Watts-Strogatz algorithm — nature 2008

e For fixed node number N, first connect them

et e e into even number, k, degree ring in which k/2
oy e Y —tA nearest neighbors on each side of each node
= Lo B <t are connected to it

! ‘.,u' "oy Ve « Then, with probability p re-wire ring edges of
- -
each node to nodes not currently connected to
and different from it
Degree distribution: Exponential g;
Path length: | g = Iog N é
Iog<k>

Clustering coefficient: C(p=COY1-7 é
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Growth and preferential attachment



ER, WS models: the number of nodes, N, is fixed (static models)

Real networks continuously expand by the addition of new
nodes

Barabasi & Albert, Science 286, 509 (1999)



Growth

14107 ' '
9+10° - WORLD WIDE WEB
8e10% -

7410% +

64108

54108 L

4.108 L

3.108 L

24108 -

1410% L
0410° s

—
[
~

ER model:
the number of nodes, N, is fixed (static models)
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Growth (www/Pubs)
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EMPIRICAL DATA FOR REAL NETWORKS
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Preferential attachment

ER model: links are added randomly to the network

New nodes prefer to connect to the more connected nodes

Barabasi & Albert, Science 286, 509 (1999)
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The Barabasi-Albert model



Section 2: Growth and Preferential Sttachment

The random network model differs from real networks in two important
characteristics:

Growth: While the random network model assumes that the number of
nodes is fixed (time invariant), real networks are the result of a growth
process that continuously increases.

Preferential Attachment: While nodes in random networks randomly choose

their interaction partner, in real networks new nodes prefer to link to the more
connected nodes.

Barabasi & Albert, Science 286, 509 (1999)



Origin of SF networks: Growth and preferential attachment

(1) Networks continuously expand by the
addition of new nodes

WWW : addition of new documents

(2) New nodes prefer to link to highly
connected nodes.

WWW : linking to well known sites

Barabasi & Albert, Science 286, 509 (1999)

GROWTH:

add a new node with m links
PREFERENTIAL ATTACHMENT:

the probability that a node connects to a node
with k links is proportional to k.

K;

M(k,) =

10°

10



Gydrgy Polya
POLYA PROCESS

MATHEMATICIAN 9 @ POLITICAL SCIENTIST o SOCICLOGIST

Robert Gibrat

PROPORTIONAL GROWTH
ECOMNOMIST

George Udmy Yule
YULE PROCESS
STATISTICIAN

MILESTONES

FUBLICATION
DATE

George Kinsley Zipf
WEALTH DISTRIBUTION
ECONOMIST

Herbert Alexander Simaon
MASTER EQUATION

Robert Merton
MATTHEW EFFECT

Derek de Solla Price
CUMULATIVE ADVANTAGE
PHYSICIST

20

Albert-Laszlo Barabasi & Réka Albert

PREFERENTIAL ATTACHMENT
NETWORK SCIENTISTS

XXI
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1923 1925 1931 1935 1941

[ ]

Gydrgy Polya [1887-1985)
Preferential attachment made its
first appearance in 1923 in the
celebrated urn model of the
Hungarian mathematician Gydrgy
Pélya [2]. Hence, in mathematics
preferential attachment is often
called a Pélya process.

George Udmy Yule [1871-1951]

used preferential attachment to
explain the power-law distribution of
the number of species per genus of
flowering plants [3]. Hence, in
statistics preferential attachment is
often called a Yule process.

950 1955 1960

L ]

Robert Gibrat [1904-1980]
proposed that the size and the
growth rate of a firm are indepen-
dent. Hence, larger firms grow

faster [4]. Called proportional growth,

this is a form of preferential
attachment.

George Kinsley Zipf [1902-1950]
used preferential attachment to
explain the fat tailed distribution of
wealth in the society [5].

1968

1970 1976

Herbert Alexander Simon (1916-2001)
used preferential attachment to
explain the fat-tailed nature of the
distributions describing city sizes,
word frequencies, or the number of
papers published by scientists [6].

Derek de Solla Price (1922-1983]

used preferential attachment to
explain the citation statistics of
scientific publications, referring to it
as cumulative advantage (7).

2000

Robert Merton [1910-2003]

In sociology preferential attachment
is often called the Matthew effect,
named by Merton (8] after a passage
in the Gospel of Matthew.

Barabasi [1967] & Albert [1972]
introduce the term preferential
attachment in the context of networks
[1] to explain the erigin of their
power-law degree distribution.

+._._
1965 1999 2005 2010

£
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