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Real Nework Properties 



Nodes: actors      
Links: cast jointly 

N = 212,250 actors     
〈k〉 = 28.78 

P(k) ~k-γ 

Days of Thunder (1990)  
Far and Away     (1992)   
Eyes Wide Shut  (1999) 

γ=2.3 

ACTOR NETWORK 



Nodes: people (Females; Males) 
Links:  sexual relationships 

Liljeros et al. Nature 2001 

4781 Swedes; 18-74;  
59% response rate. 

SWEDISH SE-WEB 

Network Science: Scale-Free Networks 



Network Science: Scale-Free Networks 



Not All Networks Are Scale-free 
 
 

•Networks appearing in material 
science, like the network describing the 
bonds between the atoms in crystalline 
or amorphous materials, where each 
node has exactly the same degree. 
 

•The neural network of the C.elegans 
worm.  
 

•The power grid, consisting of 
generators and switches connected by 
transmission lines 
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Ultra-small property 
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DISTANCES IN RANDOM GRAPHS 

Random graphs tend to have a tree-like topology with almost constant node degrees. 

 

• number of first neighbors: 

• number of second neighbors: 

• number of neighbors at distance d:  

• estimation of  maximum distance: 
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Distances in scale-free networks 

Size of the biggest hub is of order O(N). Most nodes can be connected within two layers 
of it, thus the average path length will be independent of the system size.  
 
The average path length increases slower than logarithmically. In a random network all 
nodes have comparable degree, thus most paths will have comparable length. In a 
scale-free network the vast majority of the path go through the few high degree hubs, 
reducing the distances between nodes.  
 
 
Some key models produce γ=3, so the result is of particular importance for them. This 
was first derived by Bollobas and collaborators for the network diameter in the context of  
a dynamical model, but it holds for the average path length as well. 
 
 
The second moment of the distribution is finite, thus in many ways the network behaves 
as a random network. Hence the average path length follows the result that we derived 
for the random network model earlier. 
  
 

Cohen, Havlin   Phys. Rev. Lett. 90, 58701(2003); Cohen, Havlin and ben-Avraham, in Handbook of Graphs and Networks, Eds. Bornholdt and 
Shuster (Willy-VCH, NY, 2002) Chap. 4; Confirmed also by: Dorogovtsev et al (2002), Chung and Lu (2002); (Bollobas, Riordan, 2002; Bollobas, 
1985; Newman, 2001 

 

 

 

Ultra 
Small 
World 

Small 
World 

SMALL WORLD BEHAVIOR IN SCALE-FREE NETWORKS 



We Are Always Close to the Hubs 
 
 

" it's always easier to find someone who 
knows a famous or popular figure than 
some run-the-mill, insignificant person.” 
  (Frigyes Karinthy, 1929)  
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Average person is less popular then this person random friend! 



The role of the degree exponent 
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SUMMARY OF THE BEHAVIOR OF SCALE-FREE NETWORKS 
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Distances in scale-free networks Graphicality: No Large Networks for γ<2 

In scale-free networks: For γ<2:   1/(γ-2)>1 
Network Science: Scale-Free Networks 



In order to document a scale-free networks, we need 2-3 orders of magnitude scaling. 
That is, Kmax~ 103 
 

However, that constrains on the system size we require to document it.  
For example, to measure an exponent γ=5,we need to maximum degree a system size 
of the order of 

Onella et al. PNAS 2007 

N=4.6x106 

γ=8.4 
 

Mobile Call 
Network 

Why Don’t We See Networks with Exponents in the Range of γ=4,5,6,  etc?  

Network Science: Scale-Free Property 

Characterizing the large-scale structure and the tie 
strengths of the mobile call graph. Vertex degrees 
are shown 



PLOTTING POWER LAWS 
 

ADVANCED TOPICS 4.B     
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2,800 Y2H interactions 
4,100 binary LC interactions 

(HPRD, MINT, BIND, DIP, MIPS) 

Rual et al. Nature 2005; Stelze et al. Cell 2005 

HUMAN INTERACTION NETWORK 
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(linear scale) 
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(linear scale) 

P(k) ~ (k+k0)-γ 
k0 = 1.4, γ=2.6. 

HUMAN INTERACTION DATA BY RUAL ET AL. 
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COMMON MISCONCEPTIONS 

Network Science: Scale-Free Property 

𝑝𝑝𝑘𝑘 = 𝑎𝑎(𝑘𝑘 + 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠)−𝛾𝛾exp −
𝑘𝑘
𝑘𝑘𝐶𝐶𝐶𝐶

  �̅�𝑝𝑘𝑘 = 𝑝𝑝𝑘𝑘exp
𝑘𝑘
𝑘𝑘𝐶𝐶𝐶𝐶

  𝑘𝑘� = 𝑘𝑘 + 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝~𝑘𝑘�−𝛾𝛾 



Generating networks with a pre-
defined pk 
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Configuration model 
 
 

(1) Degree sequence: Assign a degree to each 
node, represented as stubs or half-links. The 
degree sequence is either generated analytically 
from a preselected  distribution (Box 4.5), or it is 
extracted from the adjacency matrix of a real 
network. We must start from an even number of 
stubs, otherwise we will be left with unpaired 
stubs. (2) Network assembly: Randomly select a 
stub pair and connect them. Then randomly 
choose another pair from the remaining  stubs and 
connect them. This procedure is repeated until all 
stubs are paired up. Depending on the order in 
which the stubs were chosen, we obtain different 
networks. Some networks include cycles (2a), 
others self-edges (2b) or multi-edges (2c). Yet, the 
expected number of self- and multi-edges goes to 
zero in the  limit. 
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Degree Preserving randomization 
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Hidden parameter model 
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Hidden parameter model 
 
 Start with N  isolated nodes and assign to each node a 

“hidden parameter” η , which can be randomly selected 
from a  ρ(η) distribution. We next connect each node 
pair with probability 
 
 
 For example, the figure shows the probability to 
connect nodes (1,3) and (3,4). After connecting the 
nodes, we end up with 
 
 the networks shown in (b) or (c), representing two 
independent realizations generated by the same hidden 
parameter sequence (a). The expected number of links 
in the obtained network is  
 
 



Decision tree 
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summary 
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Random Distributions Important for Network Science 



Introduction 
to BA Model 
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Hubs represent the most striking difference between a random and a 
scale-free network. Their emergence in many real systems raises 
several fundamental questions: 
 
•Why does the random network model of Erdős and Rényi fail to 
reproduce the hubs and the power laws observed in many real 
networks?  
 

• Why do so different systems as the WWW or the cell converge to a 
similar scale-free architecture?  



klog
Nloglrand =

Empirical findings for real networks 

N
k

Crand = P(k)  ~ k-γ 

Small World: 
distances scale 
logarithmically with the 
network size 

Clustered:  
clustering coefficient does 
not depend on network 
size. 

Scale-free:  
The degrees follow a 
power-laws distribution. 

Network Science: Evolving Network Models  
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The average path-length varies as  
Constant degree        P(k)=δ(k-kd) 
Constant clustering coefficient     C=Cd   

Two-dimensional lattice:  

D-dimensional lattice:  

Average path-length:  

Degree distribution:   P(k)=δ(k-6) excluding corners 
                                                                                and boundaries  

Clustering coefficient:  

BENCHMARK 1: Regular Lattices 

Network Science: Evolving Network Models February 2015 

6 neighbors, each 
with 2 edges = 12/30 



Erdös-Rényi Model- Publ. Math. Debrecen 6, 290 (1959) 

• fixed node number N 
• connecting pairs of nodes with 
  probability p 

Clustering coefficient:  

Path length: klog
Nloglrand ≈

N
k

pCrand ==

k1Nkk
1Nrand )p1(pC)k(P −−

− −≅
Degree distribution: 

BENCHMARK 2: Random Network Model 
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Watts-Strogatz algorithm – Nature 2008 

• For fixed node number N, first connect them 
into even number, k,  degree ring in which k/2 
nearest neighbors on each side of each node 
are connected to it 
• Then, with probability p re-wire ring edges of 
each node to nodes not currently connected to 
and different from it  

Clustering coefficient:  

Path length: 
klog
Nloglrand ≈

Degree distribution: Exponential 

BENCHMARK 3: Small World Model 
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Growth and preferential attachment 
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 Real networks continuously expand by the addition of new 
nodes 

Barabási & Albert, Science 286, 509 (1999) 

Growth  

ER, WS models: the number of nodes, N, is fixed (static models) 
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networks expand through the addition 
of new nodes 

Barabási & Albert, Science 286, 509 (1999) 

Growth  

ER model:  
the number of nodes, N, is fixed (static models) 



WWW 

Barabási & Albert, Science 286, 509 (1999) 

Growth (www/Pubs)  

Scientific Publications 

http://website101.com/define-ecommerce-web-terms-definitions/ http://www.kk.org/thetechnium/archives/2008/10/the_expansion_o.php 
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P(k)  ~ k-γ 

Regular 
network 

Erdos- 
Renyi 

Watts- 
Strogatz 

Pathlenght Clustering Degree Distr. 

klog
Nloglrand ≈

klog
Nloglrand ≈

N
k

pCrand ==

P(k)=δ(k-kd) 

Exponential 

EMPIRICAL DATA FOR REAL NETWORKS 
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New nodes prefer to connect to  the more connected nodes 

Barabási & Albert, Science 286, 509 (1999) Network Science: Evolving Network Models  

Preferential attachment 

ER model: links are added randomly to the network 



The Barabási-Albert model 
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Barabási & Albert, Science 286, 509 (1999) Network Science: Evolving Network Models  

Section 2: Growth and Preferential Sttachment 

The random network model differs from real networks in two important 
characteristics:  
 
Growth: While the random network model assumes that the number of 
nodes is fixed (time invariant), real networks are the result of a growth 
process that continuously increases. 
 
Preferential Attachment: While nodes in random networks randomly choose 
their interaction partner, in real networks new nodes prefer to link to the more 
connected nodes. 



Barabási & Albert, Science 286, 509 (1999) 

P(k) ~k-3 

(1) Networks continuously expand by the 
addition of new nodes 

WWW :  addition of new documents 

GROWTH:   

add a new node with m links 
PREFERENTIAL ATTACHMENT:  

the probability that a node connects to a node 
with k links is proportional to k. 

(2) New nodes prefer to link to highly 
connected nodes. 

WWW :  linking to well known sites 

Origin of SF networks: Growth and preferential attachment 
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