Greedy Algorithm for Community Detection

Matthew Mohr
11/20/2017
Basics of Community Detection

- Community (aka cluster): dense subgraph in a network, characterized by several connections between nodes
- It is not graph partitioning: “Graph partitioning divides a network into a predefined number of smaller subgraphs. In contrast, community detection aims to uncover the inherent community structure of a network”
- Communities can be of varying size, not explicitly known ahead of time, density can vary
Modularity

- Modularity: a metric to assess the quality of communities generated by partitioning a network
- Compares whether the community is “real” enough; based on concept known as the “Random Hypothesis”:
 - Randomly wired networks lack an inherent community structure.
 - Because of this, modularity is calculated by comparing real network expectation to random wiring expectations
- Analogy: 20 people total, 10 spend time together in one class, 10 people in another class, who will end up being friends?
Basic Modularity Calculation

\[M_c = \frac{1}{2L} \sum_{(i,j) \in C_c} (A_{ij} - p_{ij}) \]

\[p_{ij} = \frac{k_i k_j}{2L} \]

\[M_c = \frac{L_c}{L} - \left(\frac{k_c}{2L} \right)^2 \]

\[M = \sum_{c=1}^{n_c} \left[\frac{L_c}{L} - \left(\frac{k_c}{2L} \right)^2 \right] \]

- \(M_c \) = Modularity of community
- \(M \) = Total modularity of network
- \(A_{ij} \) = Edges between \(ij \)
- \(p_{ij} \) = Expected random wiring of \(ij \)
- \(k_c \) = Total degree of the community
- \(L_c \) = Links in community \(c \)
Maximal Modularity
Hypothesis/Implications

For a given network the partition with maximum modularity corresponds to the optimal community structure.
Greedy Algorithm Steps

- Assign each node to a community of its own, starting with N communities of single nodes.
- Inspect each community pair connected by at least one link and compute the modularity difference ΔM obtained if we merge them. Identify the community pair for which ΔM is the largest and merge them. Note that modularity is always calculated for the full network.
- Repeat Step 2 until all nodes merge into a single community, recording M for each step.
- Select the partition for which M is maximal.
Network Modularity:
All nodes: $L_c = 0$

$$M_A = \frac{0}{3} - \left(\frac{2}{2(3)}\right)^2 = -\frac{1}{9} \quad M = -1/3 = -0.333333$$

Iteration 1:
Merge A and B:

$$M_{AB} = \frac{1}{3} - \left(\frac{4}{2(3)}\right)^2 = -\frac{1}{9} \quad M = 2/9 = -0.222222$$

$$M_c = \frac{0}{3} - \left(\frac{2}{2(3)}\right)^2 = -\frac{1}{9}$$

Iteration 2:

$$M_{ABC} = \frac{3}{3} - \left(\frac{6}{2(3)}\right)^2 = 0 \quad M = 0 \text{ (like we said earlier)}$$
Complexity: Pros/Cons

- Modularity difference is constant time; L checks at each iteration; N updates to adjacency matrix to capture new community; $N-1$ iterations = $O((L+N)N)$ or $O(N^2)$ for sparse graphs
- Pros: Polynomial time is good; guarantees we are moving toward more realistic approximations at each stage
- Cons: Smaller communities are destroyed in the process, resolution limit exists, pure version has “empty hits” on sparse graph
- $O(N\log 2N)$ version: http://cs.unm.edu/~aaron/research/fastmodularity.htm
Resolution Limit

\[\Delta M_{AB} = \frac{l_{AB}}{L} - \frac{k_A k_B}{2L^2} \]

-Advanced topic derivation for modularity change of two communities (A and B) merging

-If A and B are distinct communities, we want them to remain distinct after the merge
 -assume \(k_A \) and \(k_B \) are about equal to \(k \); what happens?
 -modularity change becomes positive

\(l_{AB} = \text{links from nodes in A to nodes in B} \)
Better Approach?

- Link Clustering: Approach that recognizes that links are usually distinct in the network.
- Nodes can be a part of many communities, but the links give a better semantic representation of the community structure.
- Based on the concept of similarity: how many friends do you have in common with someone else?
- In friendship networks, people can be labeled as part of many communities, link clustering helps to determine the best fit based on number of common neighbors.
Link Similarity

\[S((i, k), (j, k)) = \frac{|n_+(i) \cap n_+(j)|}{|n_+(i) \cup n_+(j)|} \]

- **S:** similarity
- **S((i,k), (j,k)):** node \(i \) and node \(j \) have neighbor \(k \) in common

Numerator: numerators \(i \) and \(j \) have in common, including themselves

Denominator: everyone that \(i \) and \(j \) know
Hierarchical Clustering

- Assign each node to a community of its own and evaluate x_{ij} for all node pairs.
- Find the community pair or the node pair with the highest similarity and merge them into a single community.
- Calculate the similarity between the new community and all other communities.
- Repeat Steps 2 and 3 until all nodes form a single community.

Single link Hierarchical Clustering: “nearest neighbor” clustering, combine closest nodes at each step
Basic Flow of the Algorithm

- Compute similarity matrix for all pairs in the network using link similarity for link clustering
- Apply single link hierarchical clustering (use similarity matrix instead of centrality or some other similarity formula)
- Merge communities with high similarity
- Repeat until the whole network is one community
Algorithm Results/Similarity Matrix
Complexity: Pros/Cons

- $O(N^{2/(\gamma - 1)}) + O(L^2)$ for scale free networks (gamma indicates level of attachment, overall complexity bounded by maximum degree).
- $O(N^2)$ for sparse graphs.
- Pros: Community structure is more accurately represented, not affected by resolution limit
- Cons: more memory to keep track of, similarity matrix must be factored into calculations, order of iterations matters
Greedy Algorithm applications

- Collaboration networks: (C.M. indicates condensed matter, H.E.P. high-energy physics, and astro astrophysics. These four large communities coexist with 600 smaller communities, resulting in an overall modularity $M=0.713$.)
- Social Network approximations
- Sub-community Detection
Link Clustering Application
References

- http://barabasi.com/networksciencebook/chapter/9#modularity
- http://barabasi.com/networksciencebook/chapter/9#hierarchical
- http://barabasi.com/networksciencebook/chapter/9#basics
QUESTIONS?