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Abstract—The generation of uniformly-random graphs is
a key analytic tool for hypothesis testing throughout social net-
work analysis. This work specifically optimizes the generation
of large-scale simple uniform random graphs. We consider the
separate but related problems of generating such a graph from
an existing edge list and the problem of generating a graph
from only a degree distribution. To address these problems, we
implement an efficient parallel Markov Chain Monte Carlo
process for double-edge swapping, a fast and parallel method
for edge-skipping edge list generation, and a novel method
to solve for valid inputs to our edge-skipping generator. Our
double-edge swapping procedure is considerably faster than
prior parallel methods, our edge generator uses state-of-the-
art methods, and the algorithmic approach we have to solve
for valid edge-skipping inputs addresses the often significant
shortcomings of current approaches.

Index Terms—graph generation; random graphs; null
graph models

I. Introduction
Uniformly-random null graph models find wide applicabil-
ity within social network analytics and other related fields.
Notable applications include: motif finding for subgraph-
based analytics [23], where a motif is a subgraph that
appears more frequently relative to in uniformly random
graph; modularity maximization as a common approach
for community detection applications [6], where modularity
measures the “clustering” of a network relative to what’s
randomly expected; other measurements such as assorta-
tivity [26] are similarly calculated relative to an assumed
null model.

There exists several different spaces for null graph
models [16]. For this work, we specifically consider the
category of simple graphs with undirected edges that match
a degree distribution, though our results can be extrapolated
to directed graphs with certain considerations [14], [15].
To facilitate graph studies, applications often use a null
model from one space within the analytical context of a
graph in a separate space. E.g., calculations for modularity
and assortativity often use what we’ll refer to as “Chung-

Lu” [11] attachment probabilities1. While these pairwise
probabilities fit analytically for non-simple graphs (graphs
with multiple edges between the same vertex pair and self
loops), they are still often applied in the simple graph space.
We’ll discuss this more in Section II.

A. The Problems with Current Methods: The naı̈ve
application of Chung-Lu probabilities to the simple graph
space can have extreme error in approximating edge
attachment probabilities or realizing a graph of a given
degree distribution. See Figures 1 and 2, where we consider
an autonomous systems interaction network (AS-733 from
SNAP [20]). In Figure 1, we plot the Chung-Lu attach-
ment probabilities of the largest degree vertex versus the
same pairwise probabilities as sampled over 100 generated
uniform random graphs. The given approximation fails
dramatically in capturing the empirical curve. In fact, for a
majority of pairwise degrees, the attachment probability as
calculated exceeds 1. Likewise, using the same probabilities
to generate a simple graph (e.g., via an erased model –
to be discussed), also results in error in the final degree
distribution. We show the error in output distribution versus
degree in Figure 2.

While the probabilities between simple and non-simple
graphs converge under certain assumptions (i.e., the prob-
abilities of multi-edges and self loops approaches zero as
the graph size increases to infinity), we and others have
observed this assumption dramatically fails for real-world
instances [16], [36]. This is especially apparent on small
and relatively dense graphs with skewed degree distribu-
tions, such as tightly clustered social networks, biological
interaction networks, and subgraphs or communities within
larger networks. Researchers have in particular noticed that

1What we refer to as Chung-Lu probabilities show up equivalently in
several other models, such as the configuration model [24]. In this instance,
the Chung-Lu model and configuration model for non-simple graphs are
equivalent in output but generally differentiated in practice by how edges
are generated. We’ll stick to referencing “Chung-Lu graphs” and “Chung-
Lu probabilities” within this paper for simplicity.
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Fig. 1. Approximate (Chung-Lu) and empirical (Uniform
Random) attachment probabilities between the largest de-
gree vertex and all other vertex degrees for a null graph
model generated from the AS-733 degree distribution.
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Fig. 2. Output error in the degree distribution when at-
tempting to generate a null graph model using an erased
configuration-based approach.

careful consideration is required when generating null graph
models for motif finding [22].

B. Our Solutions: This work considers two closely
related but still distinct problems. Here, a uniformly random
simple graph is defined as a graph uniformly and randomly
sampled from all possibly topologies within the simple
graph space of a given degree distribution. The two distinct
problems are as follows:

1) Generating a uniformly random simple graph from an
existing edge list.

2) Generating a uniformly random simple graph from a
degree distribution.

Our solution for the first problem involves the development
of an efficient parallel algorithm to perform double-edge
swaps while retaining edge simplicity. To our knowledge,
no prior shared-memory parallel algorithm exists for this
problem. Recent algorithms [5] take hours at the scale we
consider. We engineer an algorithm for this purpose and
experimentally validate its scalability and correctness.

Our solution for the latter problem involves the ad-
ditional step to first generate an initial simple edge list.

This edge list is not uniformly random2, so we perform
subsequent swaps on this edge list to retrieve an appropri-
ately sampled graph. Our challenge here was to come up
with some set of attachment probabilities that, while not
representative of a uniformly random graph, will output
some edge list that empirically matches our target input
degree distribution. We develop a heuristical method to
generate these probabilities, which can be input into a
parallel edge-skipping-based [1], [4], [21] generator.

II. Background
A. Definitions: In this work, simple graphs refer to
graphs containing vertices with no self loops or multiple
edges (multi-edges) between any given vertex pair. Non-
simple graphs can have such self loops or multi-edges.
A random graph is a graph with randomly wired edges,
usually matching some parameters such as a number of
vertices and/or edges, a degree distribution, and/or some
specified generative process. A null graph model is a
random graph selected uniformly from the space of all
possible configurations that could arise from the specified
generative process or the set of parameters. The edge list
of a graph is simply a listing of its edges each defined by
an i, j vertex pair. A graph’s degree distribution is defined
by the number of vertices having a given degree over all
unique degrees within the graph.

B. Related Work: There are many ways described in
the literature to create uniform random graphs with a given
degree distribution [2], [14], [16], [22], [24], [28]. While
the generation of non-simple graphs is straightforward,
simple graph generation is considerably more challenging.
For configuration models, one can simply continue to
re-generate graphs from scratch until a simple graph is
output (repeated configuration model). However, as we’ll
discuss, the expected number of multi-edges for skewed
graphs often exceeds one, which makes the probability of
selecting such a simple graph low. As we demonstrated,
one can also discard any multi-edges and self loops (erased
configuration model [8]) at a cost to accuracy in the output
degree distribution; naı̈velyre-generating or attempting to
re-configure discarded edges introduces inaccuracy in the
output degree distribution, bias in attachment probabilities,
and might not even be feasible under the existing configu-
ration [36].

The only current practical method for generating uni-
formly random simple graphs is by taking an existing
edge list and performing some number of double edge
swaps [2]. Double edge swaps are defined as taking two

2Methods for directly generating such an edge list have no closed-form
solutions for attachment probabilities, and tend to be computationally hard.
We know of no existing implementations.



edges e = {u, v}, f = {x, y} and swapping endpoints to
create g = {u, x}, h = {v, y} or g = {u, y}, h = {v, x}.
Such a swap will retain the existing degree distribution,
and graph simplicity can be maintained if each new edge
is evaluated against the existing edge list. Performing some
number of randomly selected swaps as a Markov Chain
Monte Carlo process produces a uniformly sampled graph
after sufficient mixing. While there currently exist no known
bounds on the number of swaps necessary for uniform mix-
ing in the general case [13], empirical studies [27] and this
work show that mixing time is often not computationally
prohibitive.

C. Generating Simple Chung-Lu-like Graphs: The
goal of this work is to efficiently generate large-scale
uniformly random simple graphs given some existing edge
list or an input degree distribution. We avoid configuration-
based approaches as they are difficult to parallelize. Ran-
dom edge-generative models such as Chung-Lu have ex-
isting and straightforwardly parallel approaches for non-
simple graphs, though don’t exactly match an input degree
distribution. Winlaw et al. [36] has a fairly exhaustive anal-
ysis of some of the computational difficulties encountered
when attempting to use Chung-Lu as a generator for simple
graphs. We summarize the Chung-Lu method and these
difficulties below.

The Chung-Lu model itself considers some list W of
n vertex weights corresponding to n vertices in some target
graph as

W = {w1, w2, . . . , wn}

with the attachment probabilities of an edge between vertex
i with weight wi and vertex j with weight wj as

Pi,j =
wiwj

2m

where 2m is the weight sums

2m =

n∑
i

wi

To generate a uniformly random loopy multi-graph with
some target degree distribution, one can set each weight to
a corresponding vertex degree and make 2m biased draws
with replacement from i = 1 . . . n based on these weights.
The resultant list of draws

E = {r1, r2, . . . r2m}

can be considered as an edge list of m edges when taking
each pair of {ri, ri+1} as a single undirected edge. This
is known to be the O(m) model, and it can be computed
in an embarrassingly parallel fashion. The aforementioned
challenges of creating a simple graph from this approach
apply.

Correspondingly, as with Erdős-Rényi graphs, there
also exists what is termed as a Bernoulli or O(n2) model.
In this model, all n(n−1)

2 undirected edge pairs between
all possible i and j vertices are evaluated based on the
Pi,j given above and a coin flip. As each edge is only
considered once, this model is guaranteed to output a simple
graph. This can also be implemented in an embarrassingly
parallel fashion, though with quadratic work complexity.
However, the technique of edge-skipping [4], [21] allows
the Bernoulli model to be implemented with O(m) work
complexity. We use a recent parallel implementation of
edge-skipping [33] for this purpose and discuss it in Sec-
tion IV-B.

As was demonstrated in Figures 2 and 1, considerable
error in an output degree distribution occurs for dense or
skewed graphs, where wi × wj > 2m for multiple i, j
vertex pairs. As such, Winlaw et al. [36] and numerous
others [8], [30], [35] have looked at making “corrections” to
these probabilities via adjusting the weights. Unfortunately,
even with expensive fixed point methods to compute some
optimal set of corrected weights, the probabilities are
still not representative of a uniformly random or properly
mixed graph. For many degree distributions, there does not
even exist a set of weights that will optimally solve the
problem [36]. Generalized random graphs have a similar
interpretation [29] but, again, solving for a set of valid
weights is deceptively non-trivial.

Luckily, the idea of the Bernoulli model with edge
skipping can be generalized, where we don’t need to
assume the closed form for Pi,j as a function of two
vertex weights. We can simply compute some Pi,j for each
i, j pair. This allows us to use these methods to output a
biased graph that will match the target degree distribution in
expectation. By uniformly mixing the edges of this graph
via double-edge swaps, we can then achieve our desired
end product of a graph randomly selected from the simple
null graph space of the specified degree distribution. We’ll
discuss our approach in detail in the next section.

D. Other Models: The study of null graph models and
random graphs with fixed degree sequences has been a
theoretical research area for many decades. For space
considerations, we are unable to properly summarize the
field here. Instead, we point the interested reader to the
recent and relatively comprehensive review by Fosdick et
al. [16].

III. Generating from an Existing Edge List
We first consider the problem of generation a null graph
model from an existing edge list. We take an existing edge
list and perform some number of parallel double edge swaps
while retaining edge simplicity and ensuring the output is
a suitable random sample. As noted, it is unknown exactly



how many swaps are required to ensure proper mixing of a
MCMC double edge swap process, though in practice we
observe attachment probabilities close to a “steady-state”
once all edges have successfully swapped at least once by
chance. The challenge of creating a parallel double-edge
swapping procedure is primarily an algorithmic engineering
one, and we give our approach below.

A. Parallel Double-edge Swaps: We create a fully paral-
lel double-edge swapping procedure by randomly permut-
ing a given edge list, attempting to swap adjacent edge
pairs in the permuted list, while checking against existing
edges via a hash table which allows thread-safe edge-wise
insertions. We give our double-edge swap algorithm in
Algorithm III.1.
ALGORITHM III.1. Parallel Double-edge Swaps.
1: procedure SWAPEDGES(E)
2: for some number of iterations do
3: T ← ∅ . Hash Table
4: for all e = {u, v} ∈ E do in parallel
5: TestAndSet(T, e) . Thread-safe insertion
6: Permute(E) . Parallel Permutation
7: for i = 1 . . . |E|, i is even do in parallel
8: {u, v} ← e = E(i)
9: {x, y} ← f = E(i+ 1)

10: . Randomly select swap partners
11: if rand(0, 1) < 0.5 then
12: g ← {u, x}
13: h← {v, y}
14: else
15: g ← {u, y}
16: h← {v, x}
17: if TestAndSet(T, g) = false and
18: TestAndSet(T, h) = false and
19: g and h not self loops then
20: E(i), E(i+ 1)← g, h
21: else
22: E(i), E(i+ 1)← e, f . Swap failed
23: clear(T )
24: return E

To permute the edge list, we use an algorithm from
Shun et al. [32]. Their approach allows the extraction of
parallel execution from procedures that are otherwise serial,
with little overhead and high efficiency. We observe an
order-of-magnitude speedup using the approach of Shun
et al. over other existing libraries and implementations for
random permutations on an array, e.g. [3].

In order to track existing edges and check edge sim-
plicity in a scalable way, we require a hash table that
allows fast thread-safe insertions of edges defined by {u, v}
vertex pairs. We adapt a hash table from prior work [33]
for this purpose. The hash table uses an efficient hashing
function combined with linear (or quadratic) probing. Edges
defined by two 32-bit integers are packed into a single
64-bit key, with a paired value of true or false
defining the key’s existence in the table. The table generally
requires only a single atomic operation per insertion, while
threads only require further blocking if there is a “collision”

between two or more threads attempting to insert into the
same index of the key-value array. Though we note that
collisions are rather rare as each key is initially guaranteed
to be unique. The “TestAndSet” function in Algorithm III.1
performs insertions, and returns true if the key is already
in the table and false otherwise.

We have validated that our procedure produces a
minimally-biased uniform sample by repeating several vari-
ations of an experiment from prior work [22]. These exper-
iments demonstrate that a sample of graphs produced from
repeated swaps matches an analytically expected sample.
We further discuss the number of swap iterations versus
empirical mixing in our results.

IV. Generating from a Degree Distribution
The second problem we consider is the generation a
null graph model from only a degree distribution. Al-
gorithm IV.1 gives an overview of our method, where
we take as input a degree distribution {D,N} =
{(d1, n1), . . . , (dmax , nmax)} (d1 is the first degree; n1 is
the number of vertices with degree d1). The graph that we
output will in expectation match this distribution. We have
three primary phases to our algorithm. First, we generate a
set of degree i, j pairwise probabilities P for edge-skipping.
Inputting these probabilities to the second phase, edge-
skipping itself, will output an edge list E with vertices
of degrees that will in expectation match the original
distribution N . We then perform double-edge swaps to get
our final edge list E′.
ALGORITHM IV.1. Overview of Method to Generate Simple Uni-
formly Random Graphs.
1: procedure GENERATEGRAPH({D,N})
2: P ← GenerateProbabilities({D,N}) . Section IV-A
3: E ← GenerateEdges(P, {D,N}) . Section IV-B
4: E′ ← SwapEdges(E) . Section III-A
5: return E′

A. Adaptation of Probabilities: In order for a Bernoulli
Chung-Lu generator to output a graph having in expectation
a given degree distribution, the pairwise probabilities must
solve the following system of equations:

1 = (
∑
i∈D

ni × P1,i)− P1,1

2 = (
∑
i∈D

ni × P2,i)− P2,2

. . .

dmax = (
∑
i∈D

ni × Pdmax ,i)− Pdmax ,dmax

where D is a list of unique degrees within a given distri-
bution and Pi,j is the pairwise edge probability between
degrees i and j (obviously: 0 ≤ Pi,j ≤ 1 and Pi,j = Pj,i).
This system states that for any vertex of degree j, the
sum of the attachment probabilities for all other vertex



degrees (i ∈ D) times the number of vertices with the
other degree (ni) must equal i. We must subtract the final
Pj,j as there are (nj − 1) other vertices of degree j that
the vertex of degree j can match to. This system has |D|
equations and |D|(|D|−1)2 unknowns, making it very under-
determined. There exist many viable methods to calculate
some valid solution to the system, but our aim is to do
so as fast as possible; with subsequent generation and edge
swaps we remove any bias our probability selection creates.

We focus here on a heuristic quadratic work O(|D|2)
algorithm for generating these probabilities. Taking our set
of unique degrees D we separate the nodes of our network
into equivalence classes

[i] = {v ∈ G : |N (v)| = i}

where N (v) denotes the neighbors of v. We then order
these degree classes by expected degree. Each class will
have i × ni stubs connected to it, where a stub is an
edge connected at only one end. We then iterate through
our list conducting preferential inter-class attachment. For
attachment we estimate the number of edges ei,j from
[i] to [j]. Using this estimate we calculate the temporary
probability of a node in [i] connecting to a node in [j] by
taking pi,j to be

pi,j =
ei,j

(2× ni × nj)

where ei,j is the number of stubs being connected between
the communities. Call the number of free-stubs for com-
munity [k] at a given iteration FE (k). Then

ei,j = Min
( FE(i)× FE(j)∑

FE(k)− FE(i)
, ni × nj , FE(j)

)
which respectively correspond to the naive number of
paired stubs based on uniform stub sampling, the max-
imum number of possible connected edges between the
communities for a simple graph, and the total number of
free stubs for class [j] at the current iteration. Choosing
the minimum of these will ensure we do not violate the
simplicity condition of our network. A second component
of pi,j that needs to be addressed is the factor of 1

2 . Note
that we calculate both a pi,j and a pj,i associated to every
pair of classes [i], [j]. This comes from the fact that we
iterate through all classes in D removing stubs at every step.
This implies our final edge probability between classes is:

Pi,j = Pj,i = pi,j + pj,i

This directly implies the necessity for our factor of 1
2 .

Intuitively, this means we are “connecting” half as many
stubs in each step as we intended. To make up for this
discrepancy we also end up doubling all values in our
initial free-stub array FE . This ensures we obtain degrees

approximating our desired distribution as opposed to half
our desired distribution.

As for bounding error we note that the number of free-
stubs a class [j] has at step [i] follows a simple relation:

∀i 6= j + 1 : FE(i, j) = FE(i− 1, j)(1− p(i−1),j)

For the case, i = j + 1 we can express our free stubs at
family [j] as:

FE(j + 1, j) = FE(j, j)(1−
dmax∑
k

pj,k)

Thus we express our number of available stubs in the final
step as:

FE(dmax , j) = FE(1, j)× (1−
dmax∑
k

pj,k)×Πdmax
k=1 (1− pk,j)

One can see that FE (dmax , j) ∈
[
0,FE (1, j)

)
. Unfortu-

nately this upper bound can’t be minimized in general.
Despite this, empirical evidence suggests this error is small
for non-contrived networks.

B. Edge Generation: We use a parallel edge-skipping
implementation adapted from prior work [33] to generate
edges. We give a condensed implementation in Algo-
rithm IV.2. We include a short description of edge-skipping
below, but for a more in-depth discussion of edge-skipping
and its implementation details, we refer the reader to Miller
and Hagberg [21] and Batagelj and Brandes [4].

The basic idea of edge skipping is to consider all
possible undirected edges in some graph as an ordered
space and to iteratively traverse and select from that space
approximately m edges. Consider space X for all possible
edges as u, v pairs as:

X = {e1, e2, . . . , eend}

Instead of, as in the Bernoulli model, flipping a coin
for each possible ei, we iteratively sample some number
of skip lengths, given as l in Algorithm IV.2. We use
these skip lengths to traverse the space X , where we can
determine at each step some u, v pair represented by our
current index x in the space. With a graph having equal
edge probabilities between all vertex pairs (e.g., the Erdős-
Rényi model), we only need to consider one single space
for the entire graph. When probabilities differ (e.g., the
Chung-Lu model), we need to consider a separate space
(X1,1, X1,2, . . . , Xdmax ,dmax

), the size of each space (end
in Algorithm IV.2), and how we get u, v for each differing
probability. We note that the u, v we calculate are offsets
within a given space; global identifiers can be retrieved
based on prefix sums of N if we order vertex identifiers by
degree.



ALGORITHM IV.2. Parallel Edge-Skipping.
1: procedure GENERATEEDGES(P, {D,N})
2: E ← ∅
3: I ← ParallelPrefixSums(N )
4: for k ← 1 . . . |D| × |D| do in parallel
5: i← D( k

|D| ) . First degree
6: j ← D(k mod |D|) . Second degree
7: if j > i then
8: continue
9: p← P (i, j) . Edge probabilities

10: if i = j then
11: end ← N(i)×(N(i)−1)

2
12: else
13: end ← N(i)×N(j)

14: x← 0
15: while x < end do . Can be parallelized
16: r ← Rand(0, 1)
17: l← Floor( log(r)

log(1−p)
)

18: x← x+ (l + 1)
19: if i = j then
20: u← Ceil(−1+

√
1+8∗x
2

)

21: v ← x− (u× u−1
2

)− 1
22: else
23: u← Floor( x−1

N(j)
)

24: v ← (x− 1)

25: E ← {(I(i) + u), (I(j) + v)}
26: return E

Parallelization can be performed over the entirety of
X , where each thread determines some initial start and end
offset pair within the space on which to calculate skip-
lengths and output edges. As with the method in general,
such an approach is provably equivalent to a general
Bernoulli process of flipping a coin on each possible edge.

V. Complexity Discussion
The work complexity of generating probabilities is O(|D|2)
with parallel time of O(|D|), as only the attachment prob-
abilities for a given degree can all be computed naı̈velyin
parallel; carried dependencies prevent full parallelization.
We require O(|D|2) space to hold the probabilities in
memory. We note that for a majority of real-world degree
distributions and all of our test instances |D| � dmax <
|D|2 � m. Edge-skipping has a known optimal work
complexity of O(m) with a parallel time of O(1 + |D|)
using fine-grained parallelism on m processors. We need
O(log(n)) time to compute prefix sums for our vertex
identifiers. Each iteration of double-edge swapping requires
approximately O(m log(m)) work and log(m) parallel
time for permutation and O(m) work and O(1) time for
the actual swaps. For space, we require an additional
O(m) for the hash table to ensure edge simplicity when
swapping and O(m) for the edge list itself. In total, our
full end-to-end procedure for generating a graph from a
degree distribution requires O(|D|2+m log(m)) work and
O(|D| + log(m) + log(n)) parallel time. Our memory
requirements are O(|D|2 +m+ n) in total.

VI. Hierarchical Network Generation
This work can also be utilized for the generation of random
hierarchical networks. A popular benchmark for commu-
nity detection algorithms is the Lancichinetti-Fortunato-
Radicchi benchmark [19], colloquially known as LFR.
An LFR graph is comprised of some number of clusters
(or communities) of various sizes matching some power-
law size distribution. The vertices comprising the global
graph also match some power-law degree distribution. A
given vertex’s degrees are distributed between internal and
external neighbors, with regards to its assigned community,
such that the global average ratio of external to total edges
is equal to some mixing parameter µ. As µ increases,
the performance of some community detection algorithm
is expected to drop, as the communities become less well-
defined. We can directly use our method to create LFR-like
graphs by layering random graphs created from splitting the
degrees for each vertex into distinct internal and external
degrees, relative to its assigned community and the global
µ [34]. We’ve observed that existing Chung-Lu methods
are unable to accurately capture the degree distributions of
the large number of small skewed communities.

This two-level approach can be further generalized to
any number of hierarchical or overlapping levels, similar
to hierarchical random graphs [12] or overlapping com-
munities [37]. Each level in a given hierarchy would have
some number of subgraphs having assigned some subset (or
all) vertices in the graph. For each subgraph, we include
a value λi which is the share of the degree for each
vertex that is assigned to the given subgraph i. The only
restriction is that the λ values in the subgraphs for which
vertex is assigned must sum to 1.0. Under this, arbitrary
hierarchical and overlapping network structures can be
generated in a straightforward manner while retaining a
global degree distribution. We reserve further discussion
of these applications for future work.

VII. Experimental Setup
Our experimental system is the DRP testbed cluster at the
Center for Computational Innovations at RPI. Each node
has 256 GB DDR and two 8-core 2.6 GHz Intel Xeon E5-
2650 processor and 64 nodes are networked via 56 Gb FDR
Infiniband. We parsed degree distributions from well-known
large-scale graph datasets. The graph properties and sources
are listed in Table I. The first four graphs have extremely
skewed distributions, while the latter four are for scalability
testing.

All of our algorithms are written in C++ using OpenMP
for parallelism. We’ve positively validated our outputs ver-
sus serial where applicable. Our code will be released into
the HPCGraphAnalysis repository3, pending copyright

3https://github.com/HPCGraphAnalysis/



TABLE I
TEST GRAPH CHARACTERISTICS. # VERTICES (n), #

EDGES (m), AVERAGE (davg) AND MAX (dmax) VERTEX
DEGREES, # UNIQUE DEGREES |D|, AND SOURCE.

B = ×109 , M = ×106 , K = ×103.

Network n m davg dmax |D| Source

Meso 1.8 K 3.1 K 3.4 401 31 [31]
as20 6.5 K 12.5 K 3.9 1.5 K 83 [20]
WikiTalk 2.4 M 4.7 M 3.9 100 K 1.8 K [20]
DBPedia 6.7 M 193 M 5.8 7.3 M 4.9 K [25]

LiveJournal 4.1 M 27 M 13 2.0 K 945 [20]
Friendster 40 M 1.8 B 90 5.2 K 3.1 K [20]
Twitter 39 M 1.4 B 73 56 K 18 K [10]
uk-2005 30 M 728 M 49 41 K 5.2 K [7]

approvals.

VIII. Results
We focus our results on our method for generating from
a degree distribution, but results for generating from an
edge list can be inferred as they fully utilize the swap
phase of the former’s approach. We compare our method
against a baseline Chung-Lu model (O(m)), an erased
Chung-Lu model (O(m) simple), and a Bernoulli Chung-
Lu model (O(n2) edgeskip). All methods are equivalently
parallelized. Note that while the O(m) model produces
multi-edges, some number of double-edge swap iterations
will result in the graph being “simplified”. We look at
execution time, how closely the output matches the input
degree distribution, and how closely the pairwise edge prob-
abilities match a uniformly random sample. We generate
a uniformly random graph via Havel-Hakimi generation
and 128 full iterations of double-edge swaps for compari-
son [22]. We report parallel timings running on all 16 cores
of a single node of DRP.

A. Quality Comparisons: We first examine output qual-
ity in terms of matching the degree distribution by examin-
ing the error in the number of edges output, the maximum
vertex degree, and degree skew via the Gini coefficient [9].
We plot the averaged percentage error for the different
generators in Figure 3. We note that on average the O(m)
model output most closely matches the input distribution
except for with the Gini coefficient, where we more closely
match the lower degree part of the distribution due to how
we handle our attachment probabilities for lower-degree
vertices. Out of all of the simple graph generators, we
note that our solution to attachment probabilities help us
accurately match the distribution’s maximum degree and
number of total edges while using edge-skipping. This is
the primary advantage of our method relative to existing
approaches.

We also consider how quickly the pairwise edge prob-

Fig. 3. Error comparison in # edges (top), dmax (middle),
and Gini coefficient (bottom).

abilities from each of the models converge towards the
uniform random sample. We plot in Figure 4 the error over
all probabilities as the L1-norm of matrices PGen −PBase ,
defined where Pi,j is the pairwise probability between
degrees i and j, PGen is generator output, and PBase is
the baseline Havel-Hakimi generator with swaps. We plot
this error averaged over several tests and versus the number
of swap iterations.

We note that the probabilities for the O(m) model
are initially the worst but eventually converge. This is due
to the large number of multi-edges and the subsequent
number of swaps which “fail” on each iteration . For all
graphs, about two dozen or so swap iterations is sufficient
to eliminate all multi-edges with the O(m) approach.
We also observe that 10 or so swap iterations is also
sufficient to ensure that all edges are randomly swapped
with all methods. As swapping is the most expensive part
of generating from a degree distribution, we state that our
described method is preferable to naı̈ve O(m) edge list
generation for performance reasons. The exact number of
iterations depends on the degree distribution and is related
to the average probability of creating multi-edges, which is
proportional to the “heaviness” of the distribution tail. All
of the simple methods converge quite quickly, with about
5 iterations resulting in under 1% error on most tests. This
is despite the fact that none of the edge generators used
exactly match the input degree sequence. We note slightly
slower convergence for our method relative to the other



Fig. 4. Error comparison in pairwise attachment probabilities
relative to a uniformly random sample.

two simple approaches due to bias introduced with our
probability generation; however, as per Figure 3, we better
match in expectation the input degree distribution.

B. Timing Comparisons: We also compare the end-to-
end times for generation from a degree distribution with
the various methods in Figure 5. We consider only a single
iteration of double-edge swaps for consistency, as we’ve
noted that mixing time is graph-dependent. We observe
that at the smaller scale most methods are approximately
the same. Our additional probability calculation step results
in slower execution times in certain instances. However,
as the test sizes scale up, as with DBPedia, we observe
a considerable benefit of edge-skipping, as sampling for
the O(m) and erased model are done on a weighted list,
requiring O(log(n)) time for a binary search for each
sampled vertex. For the larger instances, the O(m) methods
are approximately twice as slow.

We next consider the per-phase time costs for our
method. We plot in Figure 6 the average time required
for probability computation, edge generation, and edge
swapping over all eight test instances. We observe that
while probability generation has quadratic complexity and
linear time, in practice the small relative size of |D| versus
dmax makes its computation proportionally quick. Even
for our largest instances, our end-to-end generation time
takes less than two minutes to complete, giving us an edge
generation rate of about 1 billion edges per second on only
16 cores.

Fig. 5. Shared-memory end-to-end times for the various
generators.

C. Comparisons to Related Work: Little other prior
work seeks to optimize the end-to-end generation procedure
for unbiased uniformly-random simple graphs. Recent work
has looked at parallel algorithms for edge swaps [5], though
they consider the problem in distributed memory. They
report in serial a time of about 300 seconds to successfully
swap all edges in LiveJournal and about 20 seconds on 64
processors. We report a time of 15 seconds in serial and 3
seconds on 16 cores processors to achieve the same (3 swap



Fig. 6. Per-phase execution time.

iterations). We can do a single swap iteration in 1 second
in parallel, which we observe to swap 99.9% of edges. We
add the disclaimer that these results again aren’t directly
comparable, as we currently only consider the problem in
shared memory. Other work has sought to optimize the
generation of various types of random graphs, including
community detection benchmarking graphs [33], edge-
skipping generation for Chung-Lu and similar graphs [1],
and massive-scale generation for a variety of other network
models [17]. We note that the parallel performance of these
generators can be quite impressive, scaling to trillion-edge
graph generation, though the graph models they consider
aren’t directly comparable to what’s considered in this

current work.

IX. Discussion and Future Work
Ideally, there would exist a direct solution for some set
of Pi,j edge probabilities that, when run with a Bernoulli
Chung-Lu edge generator, would output a simple uniform
random graph. However, such a solution is not known to
exist. In our research, we have derived a combinatorial
approximation for some set of probabilities. However, the
expected complexity is O(n2d2max) and implementation at
even a modest scale poses numerical challenges due to
the combinatorially large numbers involved. In addition,
we note that Chung-Lu generators in general have error in
matching the low degree of the distribution. This work and
others [18], [33] only utilize heuristics to address this issue.
We reserve for future work an analytical or algorithmic
solution using both probabilities and degree distribution
modifications that would allow us to minimize this error.

We make one final note that a more formal validation of
uniform randomness per mixing time is required, as current
analytical bounds appear rather loose relative to empirical
observations. We make the assumption that, in practice,
the number of swap iterations required is proportional
to the chance of an unsuccessful swap; this chance is
relatable to graph density and degree skew. Similarly, we
also observe that uniform mixing appears to be achieved
after a sufficient number of iterations where each edge has
been successfully swapped, regardless of graph scale. A
more in-depth empirical and analytical study might help
reinforce these notions and give more practical bounds.
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