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Abstract. Given a defined set of communities, modularity is computed
by comparing each existing edge with its probability of occurrence in
a random graph null model. The heuristic has historically garnered a
wealth of attention, and many community detection algorithms have
been designed around maximizing modularity. Despite this, there are
potential issues with the Chung-Lu null graph model that underpins the
heuristic. In this manuscript, we explore the output communities given
by modularity maximization when this null model is subject to change.
We construct two null models using iterated double edge swapping and
maximum likelihood estimation, and we use these models as the basis for
new modularity-like heuristics we call desmod, and mlemod. We compare
the clusters output by standard modularity maximization with those
output by our methods on a test suite of LFR benchmark graphs and
find that changing the null model consistently increases the normalized
mutual information scores when the mixing parameter is high.
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1 Introduction

Community detection, also synonymously referred to as ‘graph clustering’, is one
of the most well-studied problems in the field of network science [13, 21,19, 7, 15].
Generally, the goal of community detection algorithms is to partition a graph into
disjoint or overlapping [31] vertex partitions. While the exact optimization metric
for this partitioning varies, one generally attempts to group vertices with similar
attributes into the same community membership. In the absence of metadata,
labels, or other non-topological attributes, basic network topology is used as the
defining metric for ‘similarity’. In this case, the measure of network modularity
is a natural optimization metric.

Modularity can be loosely defined as to how well a given network topology is
divided into a given set of communities relative to a random network [26]. It is
an important heuristic for community detection, and it has played a significant
role in the literature [15, 10, 18,6]. For a given set of communities, modularity
is defined as the difference between the number of observed and number of
expected intra-community edges in a network. If the modularity is high, the
former is larger than the latter, and the given communities are considered ‘more
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clustered than expected’. For a given graph G = (V| E), and defined labels for
each node {¢; }iev, modularity is explicitly computed as in Equation 1.
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Here A is the adjacency matrix for the graph G, m is the number of edges in
the network, d,,, d,, are the degrees of a nodes u,v € V, and (-, -) is the Kronecker
delta function. Despite how notable modularity maximization is in literature, it
has some known problems such as the ‘resolution limit’ [14,22] in which the
method cannot discern communities under a certain size for a given network
density. A far less discussed issue with the modularity heuristic is its dependence
on the Chung-Lu graph model [8,30], which assumes a random wiring of edges
for a given degree distribution in expectation with self-loops and multi-edges.
In essence, computing modularity is simply evaluating the null hypothesis on a
given community assignment and network topology with one on a random null
model graph provided by Chung-Lu. The contribution of the model comes from
the term % in Equation 1. There are a significant number of ways to define a
null model within a discussion on network topology. An excellent recent review
article by Fosdick et al. [16] discusses the many considerations. Changing the
implicit null model in modularity maximization has also been shown to produce
substantial difference in the obtained communities in the case of geometrically
constrained graphs [20].

In our prior work [17,3,2] and other related work [27,12,4,11], the general
issues with the usage of Chung-Lu probabilities were studied for random graph
generation. These problems include the theoretical reality that Chung-Lu gener-
ation cannot actually produce a vast majority of possible degree distributions [3],
and the considerable error that results when using Chung-Lu probabilities for
simple graph generation [4]. Similar issues arise when using Chung-Lu proba-
bilities as an implicit null model in methods such as modularity maximization®.
Fosdick et al. [16] was the first work we know of in the literature that gave such
considerations more than a cursory glance.

Hence, the primary focus of this work is to experimentally examine the impact
of using proper null graph probabilities in place of the Chung-Lu model for the
specific problem of community detection via modularity maximization. We addi-
tionally utilize methods from our prior work [3, 2], which were in part motivated
by the Fosdick et al. review, to derive vertex pairwise attachment probabilities.
These attachment probabilities are then used in place of Chung-Lu probabilities
within the computation of modularity for a maximization algorithm.

Modularity maximization [26, 10,18, 6] methods generally take two forms —
single or multi-level methods. Single level methods make choices on vertex—
community membership for each individual vertex, while multi-level methods

1 One of the major issues is that a majority of graphs studied in community detection
fall squarely in the simple graph space. We note this applies to LFR and similar
benchmark graphs and a large proportion of the real-world graphs with defined
communities; e.g., those listed in the SNAP repository.
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assign vertices to communities and then iteratively coarsen communities into
single vertices to improve computation time. We will specifically consider the
former category of algorithms in this paper, although we will also discuss how
our methods can be extended to multi-level algorithms such as the popular
Louvain algorithm [1].

Generally, the outputs of community detection algorithms on networks are
evaluated in two primary ways [21,7]. If some ground truth community defini-
tions exists for the network, the output of the algorithm is compared to this
ground truth via computing a metric such as normalized mutual information
(NMI). Absent an explicit ground truth, evaluation can be done by compar-
ing some computed metric derived solely from the community assignments and
network structure. In the latter case, modularity is one such popular measure.
However, in the context of this paper, we are unable to directly use modularity
scores, since our experimental differences are in the way we compute modularity.
Hence, our experimental evaluations focus on comparisons to network ground
truth with the NMI metric. To generate a suitably large number and variety on
test instances, we utilize the common Lancichinetti-Fortunato-Radicchi (LFR)
benchmark generator [23]. We will discuss our experimental setup in more detail
later in this manuscript.

In summary, our contributions are as follows:

1. We are the first work to extensively study the usage of a more appropriate
null graph model within the context of modularity maximization.

2. We detail our approach to computing attachment probabilities and their
effective utilization within a modularity maximization framework.

3. We observe that this change in attachment probabilities can improve com-
puted NMI scores by up to fifty percent on average for some data sets.

4. We discuss how this work might be applied in future efforts, such as with
multi-level community detection algorithms.

2 Methods

Ultimately, including custom probabilities into the computation of modularity
is trivial once one determines these probabilities. All one needs to do is replace
the Chung-Lu term ‘dg—ff’ with a general term for the connection probability
‘Duy’ between nodes v and v as in Equation 2. Algorithmically, however, there
are some unique considerations which have to be made when using custom null
models for modularity maximization.

Q = 7m [Auv - puv] 6(Cua Cv) (2)

When the modularity maximization algorithm does not affect the underly-
ing structure of the network, one can use a straightforward modularity maxi-
mization algorithm such as Clauset-Newman-Moore’s algorithm [9]. As such, we
implemented this algorithm to utilize any arbitrary p,, and validated it against
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NetworkX’s implementation? with Chung-Lu probabilities. However, for multi-
level methods such as the well-established Louvain maximization algorithm [1],
null model discovery would need to be performed at every step. We will discuss
future work intended to address this current drawback. Below, we will describe
two methods for determining the p,, attachment probabilities of the underlying
null model of an arbitrary graph.

Algorithm 1 Computing double edge swap probabilities.

1: procedure DESSAMPLE(G = (V, E), k)
2: P «+ fget_adjacency(G)
E’ + permute(E)
forie[0,--- ,k—1] do
for je€[0,---,|E| —1] do
if valid_swap(G, Ej;, Ej) then
G < perform_swap(G, Ej, EY)
P + P+ fget_adjacency(G)

Our first method, termed desmod, uses double edge swaps to randomly alter
the graph topology while keeping the degree sequence the same. Double edge
swaps take two edges and ‘swap’ the endpoints of each edge, permuting the
edge-list of the graph while keeping the degree distribution consistent. The main
idea behind the desmod method is to randomly sample a large number of realized
instances of graphs with a fixed degree distribution to discern average degree—
degree pairwise connection probabilities. We utilize a sampling method modified
from our prior work [17,28], which is based on established techniques [16, ?].
This method, as outlined in the Algorithm 1, involves first permuting the edge-
list and matching each edge in the permuted list with an edge in the original
list. These will be our potential double edge swap partners. Of course, some of
these swaps will not be feasible (i.e., results in a multi-edge or self loop), so we
check each potential swap for viability using the primitive valid_swap(). For
more details on this method and how valid swaps are chosen, we refer the reader
to Fosdick et al. [16] and our prior work Garbus et al. [17].

Our second method, termed mlemod, is based on our recent prior work [2],
which shows that degree distributions can be better approximated by Chung-Lu
like methods with connection probabilities determined by maximum likelihood
estimation. For detailed explanations of how the probabilities are computed,
please see the referenced manuscript. The overarching idea behind the algo-
rithm is that a degree sequence can be seen as a probability distribution, and
the degrees of nodes with common weights will be distributed as Poisson distri-
butions. To match this probability distribution, and hence the degree sequence
we want, we can use maximum likelihood estimation to express this distribution
as a sum of Poisson distributions from which nodal weights can be discerned
for a Chung-Lu-like graph model. The mlemod method has some unique issues
to be considered when compared with desmod. With desmod, each probability

2 Implemented via the greedy modularity_communities(-) function.
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Algorithm 2 Computing maximum likelihood probabilities.

1: procedure MLEPROBS(G = (V, E))
2: D < degrees(G)

3: w < mle_weights(D)

4: D + sort(D)

5: w < sort(w)

6: P + zeros(|V],|V])

T m < Ssum(w)

8: for u e V do

9: for v € V do

10: Py e
cev Wa

is assigned explicitly to an edge, meaning that the probabilities output can be
directly applied to perform modularity maximization using Equation 2. In mle-
mod we only obtain a list of weights, from which probabilities can be derived
once they are assigned to explicit nodes. This means that mlemod requires us to
assign each node the ‘most probable’ label.

For a given graph G = (V, E), with |V| = n, and weights returned from
a process such as MLE w = {wy, -+ ,w,}, the labeling problem amounts to
finding a bijection ¢ : V' — w such that the probability of observing the given
edge set P(E|p(V)) is maximized. If we call the sum of weights > ., ¢(z) = S
we get Equation 5.

PElp(WV) = | [1 P(ewlaﬁ(U),cb(v))] [T (= Plesylé(@). em)) | (3)
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Broadly speaking, the above equation states the following. The optimal way
to match weights with nodes is to maximize the product of weights across existing
edges, while minimizing the product of weights among non-existent edges. In
general, this is a difficult optimization problem. However, we can heuristically
come up with an easy approximate solution by only considering the leftmost
term, which corresponds to maximizing the likelihood of existing edges.

OBJ = max l 11 ¢(u)¢(v)1 = max [H ¢(u)du] (6)

uveE ueV

In this case, we have the objective outlined in Equation 6. Fortunately, this
is a very easy to maximize objective, as it only requires sorting the degrees of
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our graph in descending order and matching them with the associated weights,
also sorted in descending order. This process can be observed in Algorithm 2.

3 Results

Our experiments were run on the server Bella at RPI. Bella has 2x AMD Epyc
7742 processors with 64 cores at 2.25 GHz and 2 TB DDR4 at 2666 MHz, and
it is running Ubuntu 20.04.6 with Python version 3.8.10 and NetworkX version
3.1

We ran four sets of tests with various topological differences. For these exper-
iments, all graphs were generated using the LFR_benchmark graph(-) function
available in Python’s NetworkX library. A range of parameters were input, and
instances in which the generator failed regarding combinations of those parame-
ters were skipped. The definitions for the various adjusted input parameters are
given in Table 1. We compare community outputs using NMI values as well as
the number of communities generated in comparison to the ground truth. We
performed two primary experiments, which we will define below.

Table 1. Variable Definitions for Experimental LFR Generation.

Variable Definition
N Number of nodes in the network.
(k)  Average degree of nodes in the network.
kmaz ~ Maximum degree of nodes in the network.
Kmin, ~ Minimum degree of nodes in the network.
Smin.  Minimum community size in the network.
71 Power-law exponent of node degree distribution.
7o Power-law exponent of community size distribution.
i Average proportion of edges that are external to communities.

3.1 General Experimental Set of Networks

We tested the results for a general set of graphs with a lower bound on commu-
nity size. For these tests, we generated LFR’s with the following parameters: N €
{4000, 8000, 16000}, 7 € {2,2.5}, 2 € {1.1,1.25,1.5}, u € {0.1,0.15,0.2,0.25,
0.3,0.35,0.4,0.45,0.5}, Smin = 6, kmin = 5, and kua, € {25, S5, 106, 356 90 Y.
The NMI comparison between modularity maximization via the probabilities of
Chung-Lu (chung), desmod (samp), and mlemod (mle) can be observed in Fig-
ure 1. We also show the number of communities obtained by each of these three
methods plus the ground truths for this dataset in Figure 2. We show this due
to possible ‘NMI hacking’ which can occur for randomly chosen communities as
described in work by Vinh et. al. [29] where higher numbers of communities may
sometimes yield higher NMI values without necessarily being better at matching
the ground truth communities.

As Figure 1 demonstrates, our proposed null model choices both improve
upon the NMI computed on outputs using baseline Chung-Lu probabilities, on
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Fig. 1. NMI for general test set: NMI results for standard modularity maximiza-
tion, desmod, and mlemod varying the p parameter on LFR graphs with minimum
degree 5, and minimum community size 6. We can see a sharp improvement in cluster
quality near the u = 0.4 bound, implying that desmod and mlemod may perform better
than standard modularity maximization in these test instances.

community number versus Chung Lu

mmbix Ko

Method community humber

150 200 250 300 350
Ground truth community number

Fig. 2. Community numbers for general tests : The number of communities
output by various methods in comparison to the ground truth communities. Each
point is a specific graph, and the marker denotes the method used to obtain that
graphs clustering. We can see that in most cases the number of communities is near,
or below the expected number.

average. This difference is most notable at p values approaching p = 0.5, the
point at which communities become difficult to discern for all methods. This is
expected, as p = 0.5 implies that the each node on average has as many edges
external to their ground truth community as they have internal edges. We also
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average NMI increases
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Fig. 3. NMI for 72=1.1 : NMI results for a narrow band of LFR graphs with 7 = 1.1.
Note that both mlemod and desmod have varying behavior in their NMI-difference plots
in comparison to Figure 1. Regardless, we can still see that both mlemod and desmod
outperform standard modularity maximization for every test instance, on average.

note that our outputs closely match the ground truth in terms of the number of
communities, as shown in Figure 2. Generally, our proposed null models either
closely match the ground truth, or it results in fewer communities output. This
is possibly a consequence of the resolution limit, where multi-level methods,
described later, would be able to improve upon these results in future work.

3.2 Fixed Community Size Distribution Experimental Set

Additionally, we explored the quality of clusters for LFR graphs with a fixed m
parameter. This can be seen in Figure 3. We generated LFR’s with the following
parameters: N € {1000, 2000, 4000, 8000}, 1 € {0.2,0.25,0.3,0.35,0.4,0.45, 0.5},
m € {2,2.5}, m» € {1.1}3, (k) € {20,25,30,35}, and k., € {100,150, 200, 250,
300}. The goal for these experiments was to observe how the methods perform as
the distribution of clusters remains close to linear, which we noticed made com-
munity detection much more ‘difficult’ for our modularity maximization meth-
ods. This makes these graphs topologically unique among the generated LFR
graphs, since their largest and smallest communities vary far less drastically.
We give the results of this experimental set in Figure 3, again as a comparison
between output NMI values. As shown in Figure 3, we once more observe that

8 We chose 12 = 1.1, as NetworkX failed to generate graphs using 72 = 1.0.
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desmod (samp) and mlemod (mle) result in consistently higher NMI scores than
standard Chung-Lu (chung) probabilities. However, in these tests, we find that
the output NMI takes a different form to the general case. Here, the difference
in NMI can be seen to peak at p = 0.35, and only for desmod. This implies that
sampling may perform better under certain topological features. Meanwhile,
mlemod under-performs in comparison to desmod for many p values, implying
that it too may suffer as a consequence of certain topological properties.

4 Discussion

The results in this manuscript indicate that the choice of null model has a signif-
icant impact on the observed cluster quality for many graphs. We find that the
results for Chung-Lu, sampled (desmod), and MLE probabilities (mlemod) are
consistently better for general LFR graphs with broadly-varying parameters and
size. On average, across a wide range of tests, sampled and MLE probabilities
achieve better NMI results than those of standard modularity maximization. In
the particular cases of larger LFR graphs and LFR graphs with smaller 75 values,
both methods consistently out-perform Chung-Lu based modularity maximiza-
tion. The differences are particularly notable near the p = 0.4 boundary.

The observed results suggest that mlemod and desmod outperform standard
modularity maximization in general, particularly when the connectivity between
communities is relatively high. This implies these null models are more robust to
network density than the Chung-Lu random graph model. The primary question
the reader might have is: Why?

The explanation can actually be summarized quite succinctly. In our prior
work [17], we have observed that Chung-Lu probabilities can over-estimate real
attachment probabilities* between pairs of average degree nodes and pairs of
high degree nodes within graphs with skewed degree distributions; low degree
probabilities are otherwise similar. As a consequence, the baseline modularity
maximization biases against assortativity, while most real networks and bench-
mark networks actually exhibit a considerable amount of assortative degree mix-
ing within communities [24, 25, 5]. The use of appropriate null model probabili-
ties ‘re-biases’ towards assortative mixing within communities when performing
modularity maximization.

We finally note one specific concern that may arise to the reader, in that our
modularity maximization method used for experimentation is relatively naive
compared to more modern modularity maximization algorithms. In the following
subsection, we provide a theoretical justification for how one may extend a multi-
level Louvain-type algorithm for use with our proposed null models.

4.1 Extension to Explicit multi-level Methods

One issue that arises when using bespoke null models defined by methods such as
maximum likelihood estimation or sampling is that it excludes simple implemen-
tations of explicit multi-level schemes or approaches that otherwise modify the

4 Here, ‘real attachment probabilities’ are those determined for an appropriate simple
graph null model under an appropriate sampling methodology.
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underlying network structure before maximizing modularity. E.g., in standard
Louvain methods for modularity maximization, small communities are found
on the original graph according to a greedy approach such as the one that we
use in this paper. These communities are then coarsened into a single vertex in
a weighted graph or multigraph, where modularity maximization is again per-
formed. This allows for information from multiple scales to be considered, and
it leads to generally better results. Louvain and many other more modern algo-
rithms using this, and related approaches appear throughout the literature [7,
19].

Regardless, multi-level schemes may be implemented using custom graph-
specific null models if we allow for extra computational overhead. Consider
maximizing modularity the same way it is currently done in this paper. Then, a
coarsened multi-graph may still be obtained, as in Louvain. Because we are not
using Chung-Lu probabilities in this case, we do not have straightforward access
to a null model for the coarsened graph. However, we can consider the proba-
bility of connection between the communities given by our initial clustering. In
this case, the probability of connection between two clustered ‘supernodes’ can
be thought of as the sum of connection probabilities between their comprising
nodes. This can be seen in Equation 7, where C; is a community of nodes given
by the first round of modularity maximization.

We check that this is consistent with the behavior we expect from the Chung-
Lu random graph model. This is shown in Equation 8, where we show that
using Chung-Lu probabilities in accordance to the prior Equation 7 yields the
associated Chung-Lu probabilities of the coarsened graph.

pc,c; = Z Z Duv (7)

ueC; veC;
1 |C}] de,dc
- — dudy = 52N d(de,) = “9Cr
Ly S aa -y g -t
ueC; UECJ' ueC

While this suggests the proposed method may be consistent with that of
Chung-Lu, experimental validation should be performed to ensure that this pro-
vides meaningful communities. This is a primary topic of investigation for our
ongoing and future work.

5 Conclusion

In this manuscript, we investigated the effects of null model choice on modularity
maximization. We did this through a series of experiments using the LFR bench-
mark with varying parameters. We developed two different methods for altering
modularity maximization for custom graph null models. One method, which we
call desmod, uses double edge swaps on the input graph to generate probabilities.
The other method, which we call mlemod, uses a maximum likelihood method
along-side a greedy labeling to determine attachment probabilities. By replacing
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standard modularity maximization with desmod and mlemod, we found that the
normalized mutual information of output communities relative to the ground
truth was better in many cases. In particular, both miemod and desmod yield
better results than Chung-Lu methods when inter-community connections are
dense. We additionally suggest that this technique may be extended to the case
of multi-level schemes such as Louvain, and we provide some theoretical justifi-
cation for how that may be done. Despite this, such studies are left for future
work and remain an open problem. This work represents a ‘first foray’ into the
practical use of null model choice for community detection on general graphs,
and it is the authors’ hope that this spurs an interest in the topic for the broader
community.
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