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Abstract. Finding coarse representations of large graphs which preserve particular features is important in many fields of3
study, including clustering, numerical approximation, and the creation of reduced order models. Likewise, preserving spectral4
properties of the original graph during coarsening is also of particular interest for several domains of study. Our contributions5
are two fold. First, we generalize previous work on coarsening graphs while preserving eigenvalues of the normalized Laplacian6
by merging nodes with similar adjacencies, and we show that a similar analysis can be done in the case of the combinatorial7
Laplacian. We additionally show that when the lifted graph of a coarsening spectrally approximates the original graph, the8
difference between the edge weights of the graph and the edge weights of the lift depend only on the quality of spectral9
approximation and the strength of connectivity of the graph. It is then shown that in the case of weighted regular graphs the10
difference between the edge weights of the graph and the edge weights of the lift are bounded purely by the quality of spectral11
approximation.12
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1. Introduction. Graph coarsening has been a long standing field of study since Gabriel Kron’s 193915

work [11] creating reduced order models of electrical networks. While this original work was focused mainly16

on coarsening for applications to electrical networks, it has spurred a great deal of study in several different17

disciplines, such as machine learning and scientific computing [3]. In machine learning and scientific com-18

puting, graph coarsening is often used as a pre-processing step for clustering or partitioning. An example19

of this is the METIS algorithm which partitions a coarsened graph before performing a series of refinement20

steps [10]. Recently, some work [12, 8] has put forward methods for coarsening graphs while preserving21

portions of the eigenspace relating to the graph Laplacian and normalized graph Laplacian [4]. There are22

many benefits to this sort of analysis for preserving broader functional behavior of a network. As opposed to23

preserving another metric, such as approximate cut values, preserving a portion of the Laplacian eigenspace24

also preserves a portion of the behavior of the discrete heat and wave equations on the graph.25

It is well known in the continuous case that the Laplacian operator can confer a significant amount26

of information about geometry [21, 9, 6]. While not all information can be retrieved [6], one may wonder27

what similar methods may reveal in the discrete case. Fortunately, a great deal of geometric information28

is conveyed through the spectrum of graphs as well [18, 19, 15, 13, 4]. One may ideally wish for there29

to be a way to uniquely determine a graph and its automorphisms [5] by its spectrum. Unfortunately, a30

complete characterization of which graphs can be determined by their spectrum is an open problem, and31

most classes of graphs that are known to be classified by their spectrum are either small or rather simple in32

their structure. However, some geometric quantities can be found. For instance, we can “hear” the volume33

of a graph, defined to be the sum of it’s degrees, simply by adding together each eigenvalue of the graph34

Laplacian. Additionally, we can “hear” an approximation of the optimal conductance cut in a graph by35

considering the first nontrivial eigenvalue [4].36

The aim of this manuscript is to formalize and prove a statement similar to the following. If the spectrum37

of a graph G is close to that of its coarsened representation Gc, then the edge weights of G can be closely38

determined from those of Gc. The utility of such a statement is perhaps best explored through the geometry39

of data. Assume there exists a set of k points {ai}i∈[1..k], ai ∈ Rn. Form a graph from these points using a40
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2 C. BRISSETTE, A. HUANG, AND G. M. SLOTA

concave or convex weighting function wij = f(∥ai − aj∥2). Given the ability to approximate these weights41

within some bound given a coarsening Gc, it follows that the pairwise distances between nodes are also42

approximated within some bound given the same coarsening. For such a weighting scheme, this implies that43

coarsenings which closely preserve eigenvalues also closely preserve nodal embeddings in Rn to within some44

perturbation of a rigid transformation. This is discussed further in the final discussion section. For now, we45

begin towards this goal by defining the coarsening of a graph with respect to a nodal partition.46

Definition 1.1. Consider a weighted graph G = (V,W ) and a partition of its nodes into k disjoint sets,47

P = {V1, · · · , Vk}, V = V1 ∪ V2 ∪ · · · ∪ Vk. The coarsened graph of G with respect to P , Gc, is the48

loopy weighted graph given by collapsing each of these partitions to a single node {ν1, · · · , νk}. The adjacency49

matrix elements are given by W c
νiνj

=
∑

u∈Vi

∑
v∈Vj

Wuv. For brevity, we will often leave out the explicit50

partition P , and instead we refer to Gc simply as the coarsening of G.51

This is the interpretation provided in Loukas [12] and Jin et al. [8] and allows for coarsening can be52

expressed as a product of matrices Wc = SWST for a coarsening matrix S. This definition retains the sum53

of weighted degrees within and between partitions, as well as the total sum of weighted degrees of the graph.54

One should note that the coarsened graph will have fewer eigenvalues than in the original graph. Comparing55

the spectra becomes difficult in this instance. For this reason, Loukas considers a truncated spectrum that56

is cut to the dimension of the coarsened graph. We instead follow Jin et al.’s later work, where the original57

and coarsened graphs are compared through a structure called the lift, which extends the spectrum of the58

coarsened graph to the correct dimension.59

G G Gc
^

Fig. 1: Coarsening and lifting: A visualization of the coarsening and lifting process. In the figure, the
relative thickness of an edge positively correlates with the edge weight. Note how in the shift from G to Gc

the graph gains self-loops. Additionally, after lifting the coarsened graph Gc to Ĝ, the weights within and
between partitions become evenly distributed.

Definition 1.2. Consider a coarsening Gc of graph G = (V,W ) with respect to nodal partition P =60

{V1, · · · , Vk}. We call Ĝ = (V̂ , Ŵ ) the lift of G with respect to P , where |V̂ | = |V |. The adjacency61

matrix elements are given by Ŵuv = W c
νiνj

/(|Vi||Vj |) where u ∈ Vi and v ∈ Vj. For brevity, we will often62

assume a partition P with associated coarsening Gc and simply refer to Ĝ as the lift of G.63

As previously mentioned, the lift is useful because the sorted eigenvalues of the lift Ĝ align with those of64

the original graph G. Before continuing we define the graph Laplacian as L = D −W , and the normalized65

Laplacian as L = D−1/2LD−1/2, where D is the diagonal degree matrix of G, and W is the weighted66

adjacency matrix. We now define notions which will be useful when comparing the structure of the original67

graph G with that of the lift Ĝ. This begins with the notion of σ-connectedness.68

Definition 1.3. Consider a graph G = (V,W ) and a nodal partition P = {V1, · · · , Vk}. The weighted69

adjacency of G can be written as W = W (C)+W (R). Here W (C) is a block-diagonal matrix of k disconnected70

weighted adjacencies corresponding to the k induced subgraphs of G given by the entries in P . The matrix71
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W (R) is the adjacency of a weighted k-partite graph on the same partitions. Then for ∥W (R)∥1 ≤ σ
2 , we72

call the graph σ-connected.73

L =


L11 L12 · · · L1k

L21 L22 · · · L2k

...
...

. . .
...

Lk1 Lk2 · · · Lkk

 =


C1 0 · · · 0
0 C2 · · · 0
...

...
. . .

...
0 0 · · · Ck

+


R11 R12 · · · R1k

R21 R22 · · · R2k

...
...

. . .
...

Rk1 Rk2 · · · Rkk

74

We will also refer to Laplcian C associated with W (C) as the core Laplacian, and the Laplcian R75

associated with W (R) as the ambient Laplacian. The associated graphs for these matrices will be referred76

to as the core structure C, and ambient structureR respectively. There are several noteworthy properties77

of the core and ambient structures of a graph G given the nodal partition P . First, the adjacency matrix78

Wc for a coarsening of G with respect to partition P is equal to W (C)c +W (R)c, where W (C)c and W (R)c79

are the coarsened adjacency matrices of the core and ambient structures with respect to the same partition.80

Additionally, the lift Ŵ is equal to Ŵ (C)+ Ŵ (R), where Ŵ (C) and Ŵ (R) are the lifted adjacency matrices81

of the core and ambient structures with respect to the partition P . Note that all graphs are σ-connected82

for some value σ. Because of this, all graphs can be broken into a core and ambient structure, where the83

ambient structure defines perturbations in the Laplacian of the core structure C. This is largely how this84

definition is used as the paper progresses.85

Definition 1.4. We call a weighted graph G = (V,W ) δ-complete if all the weights in the graph are86

Wuv = δ
N .87

The definition of a δ-complete graph generalizes the concept of the complete graph in the unweighted case88

to one in the weighted case. It is worth noting that δ-complete graphs have the same normalized Laplacian89

spectrum as complete graphs. Additionally, the nontrivial eigenvalues of the combinatorial Laplacian for90

δ-complete graphs are all equal to δ. Graphs which are δ-complete form the natural building blocks of the91

lift of the core structure Ĉ. With this, all the requisite language is defined.92

1.1. Notation. Graph G = (V,W ) is assumed to be weighted, and |V | = N , |W | = M . The variable ϵ93

will refer to a real number such that ϵ > 0. Additionally we will be discussing many eigenvalues of different94

matrices. The ordered eigenvalues of the Laplacians of G and Ĝ will be denoted as λi and λ̂i respectively.95

Similarly the ordered eigenvalues of the adjacency matrices W and Ŵ associated with G and Ĝ will be96

denoted ωi and ω̂i respectively. Additionally we will concern ourselves with the normalized Laplacians L97

and L̂. The eigenvalues of these will be denoted ηi and η̂i respectively. The eigenvalues of the core Laplacian98

C with k connected components will be denoted µi(k), where (k) denotes membership within the assumed99

partition P = {V1, · · · , Vk}. the associated eigenvalues of the lifted core Laplacian Ĉ will be denoted by100

µ̂i(k).101

Weighted adjacency matrices will be denoted by W and Ŵ respectively. Individual adjacencies between102

nodes u, v ∈ V will be denoted by Wuv, and Ŵuv will denote the adjacency between u, v ∈ V̂ . Additionally103

Mi: and M:i represent the ith and column respectively for an arbitrary matrix M . The degree of any node104

u ∈ V will be denoted by du. Similarly, d̂u will denote the same for u ∈ V̂ . These degrees show up in105

the diagonal degree matrices D and D̂. Additionally, when considering eigenvalues of induced subgraphs106

with respect to some partition P = {V1, · · · , Vk}, they will be expressed as λi(j) where j ∈ [1..k] denotes107

set membership within an element of P . This notation extends to degrees, as well as all other associated108

eigenvalues. Finally vol(H), for some subgraph H, denotes the sum of weighted degrees within the subgraph.109

2. Spectrum Consistent Coarsening. We first present a method for spectrum consistent coarsening110

of a graph G with respect to the combinatorial Laplacian. This is in contrast to the work in Jin et al. [8]111

using normalized Laplacians; however, the proof method is incredibly similar. The idea behind this method112

is simple. Two nodes may be merged if their rows in the adjacency matrix are approximately linearly113

dependent. This linear dependence is evaluated by computing the 1-norm of the difference between rows in114

the adjacency matrix, and merging the rows with the smallest 1-norm difference. This is then iterated to115

the users desired level of coarsening. The proof follows the same format as Proposition 4.2 in Jin et al.116

Theorem 2.1 (Spectrum consistent coarsening). For a graph G with all self-loops having the same117

weight, if it is coarsened by combining nodes u, v ∈ V , then |λi − λ̂i| ≤ 3ϵ
2 if ∥Wu: −Wv:∥1 ≤ ϵ.118
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4 C. BRISSETTE, A. HUANG, AND G. M. SLOTA

Proof. The proof follows similarly to that in Jin et al. We consider entries of the lifted adjacency matrix.119

Ŵij =


Wuu+Wuv+Wvu+Wvv

4 if i, j ∈ {u, v}
Wuj+Wvj

2 if i ∈ {u, v} and j ̸∈ {u, v}
Wiu+Wiv

2 if i ̸∈ {u, v} and j ∈ {u, v}
Wij else

120

121

As noted in the original citation, this then means that the degrees of the lifted nodes will be as follows.122

d̂i =

{
du+dv

2 if i ∈ {u, v}
di else

123

There are now a Laplacian L = D−W and a lifted Laplacian L̂ = D̂−Ŵ , and we wish to know the difference124

between these E = L− L̂ = D − D̂ + Ŵ −W as to apply Weyl’s inequality.125

Ŵij −Wij =


Wuu+Wuv+Wvu+Wvv

4 −Wij if i, j ∈ {u, v}
Wuj+Wvj

2 −Wij if i ∈ {u, v} and j ̸∈ {u, v}
Wiu+Wiv

2 −Wij if i ̸∈ {u, v} and j ∈ {u, v}
0 else

126

Dii − D̂ii =

{
di − du+dv

2 if i ∈ {u, v}
0 else

127

128

Because ∥Wu:−Wv:∥1 ≤ ϵ, it is also true that |du−dv| ≤ ϵ by the triangle inequality. Therefore, without loss129

of generality, du+dv

2 ≤ du+
ϵ
2 meaning |du− du+dv

2 | ≤ ϵ
2 . Therefore, to prove the lemma, only considerations130

for the difference in the adjacency matrices remain. For this, two cases need to be analyzed, including the131

case where i ∈ {u, v} and the case where i ̸∈ {u, v}. Without loss of generality, take i = u, then in the132

former case above the following is true.133

∥Ŵi: −Wi:∥1 =
∑
j∈V

|Ŵuj −Wuj |134

=

∣∣∣∣Wuu +Wuv +Wvu +Wvv − 4Wuu

4

∣∣∣∣+ ∣∣∣∣Wuu +Wuv +Wvu +Wvv − 4Wuv

4

∣∣∣∣135

+
∑

j ̸∈{u,v}

∣∣∣∣Wuj +Wvj − 2Wuj

2

∣∣∣∣136

=
1

4
|Wuv +Wvu +Wvv − 3Wuu|+

1

4
|Wuu +Wvv − 2Wuv|+

1

2

∑
j ̸∈{u,v}

|Wvj −Wuj |137

≤ 3

4
|Wuu −Wuv|+

3

4
|Wvv −Wuv|+

1

4
|Wuu −Wvv|+

1

2

∑
j ̸∈{u,v}

|Wvj −Wuj |138

≤ |Wuu −Wuv|+ |Wvv −Wuv|+
1

2

∑
j ̸∈{u,v}

|Wvj −Wuj |139

≤ ∥Wu: −Wv:∥1 ≤ ϵ140

141142

Now we prove a similar result when i ̸∈ {u, v}.143

∥Ŵi: −Wi:∥1 =
∑
j∈V

|Ŵij −Wij |144

=
1

2
|Wiu −Wiv|+

1

2
|Wiv −Wiu|145

= |Wui −Wvi|146

≤ ∥Wu: −Wv:∥1 ≤ ϵ147148
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SPECTRUM CONSISTENT COARSENING APPROXIMATES EDGE WEIGHTS 5

Then ∥E∥1 = ∥L̂ − L∥1 = ∥D̂ − D + W − Ŵ∥1 ≤ ϵ
2 + ϵ = 3ϵ

2 . Our lemma then follows immediately from149

Weyl’s inequality.150 □151

2.1. Discussion. We note that this bound can be repeated in succession m times, and if each successive152

coarsening has an L1 difference less than or equal to ϵ, then the spectral gap we obtain at the end between153

our graphs is less than or equal to 3mϵ
2 . We show an example of this coarsening performed on a σ-connected154

graph according to the criteria of theorem 2.1 in figure 2.155

0 5 10 15 20 25
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1.00
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ge

nv
al

ue

prop error 0.024819981548931946

normalized Laplacian comparison
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0

2

4
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8

ei
ge

nv
al

ue

prop error 0.049140917598092

Laplacian comparison

Fig. 2: A coarsening example: An example of σ-connected graph is pictured in the top right of the figure
and a greedily coarsened representation is shown beneath it. This graph was coarsened according to the
criteria in Theorem 2.1, using ϵ ≤ 0.1 as a maximum threshold. The red-dots denote eigenvalues of the
original graph, and the blue crosses denote the eigenvalues of the lift after coarsening. Both the spectrum
of the normalized Laplacian and the spectrum of the combinatorial Laplacian are shown along with the
proportional L1 error for each of them as ∥Λ− Λ̂∥1/∥Λ∥1, where Λ and Λ̂ are vectors containing the sorted
eigenvalues of G and Ĝ respectively.

When coarsening with respect to the normalized Laplacian, the eigenvalues of the coarsened graph are all156

eigenvalues of the lifted graph. This makes comparisons between the lift and the original graph meaningful,157

because they bound the spectral behavior of the coarse graph. This is not true in the case of the combinatorial158

Laplacian. However, coarsening with respect to the combinatorial Laplacian achieves multiple objectives.159

Theorem 2.2. Given a graph G = (V,W ), if two nodes u, v ∈ V are such that ∥Wu: −Wv:∥1 ≤ ϵ, then160

∥Wu:/du −Wv:/dv∥1 ≤ 2ϵ/max{du, dv}.161

Proof. First note that ∥Wu: −Wv:∥1 ≤ ϵ implies |du − dv| ≤ ϵ. Then without loss of generality the following162

is true.163 ∥∥∥∥Wu:

du
− Wv:

dv

∥∥∥∥
1

=

∥∥∥∥dvWu: − duWv:

dudv

∥∥∥∥
1

164

≤
∥∥∥∥Wu: −Wv:

dv

∥∥∥∥
1

+
ϵ

dv
≤ 2ϵ

dv
165

166

Because dv was chosen without loss of generality, ∥Wu:/du − Wv:/dv∥1 ≤ 2ϵ/max{du, dv} is true, proving167

the theorem.168 □169
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6 C. BRISSETTE, A. HUANG, AND G. M. SLOTA

As shown in Theorem 2.2, the bound ϵ given in combinatorial Laplacian coarsening enforces a related bound170

with regards to normalized Laplacian coarsening. That is, combinatorial Laplacian coarsening coarsens171

with respect to both objectives at once. This is not guaranteed with normalized Laplacian coarsening.172

Furthermore, as is discussed throughout this manuscript, relations between nodes in the fine graph are173

preserved when coasening with respect to the combinatorial Laplacian. This has potential applications to174

data mining and clustering tasks.175

We now present a comparison between the normalized objective and algebraic distance. AMG methods176

are extensions of classical multigrid methods [16] in scientific computing, which rely on successive coarsenings177

of a linear operator to efficiently solve a linear system. The algebraic distances used in relaxation based AMG178

methods rely on sampling a set of test vectors [14] {xi}i∈[1..k] and computing χi = Lrwx
i, where Lrw is the179

random walk normalized Laplacian [4]. A distance metric between nodes is computed using the output of180

these vectors. One such metric is the following.181

(2.1) αuv = max
i∈[1..k]

|χi
u − χi

v|182

Intuitively, this quantifies the linear dependence between rows of the random walk Laplacian Lrw. In Jin et183

al. the linear dependence between rows of the random walk Laplacian is also considered. In the former case,184

linear dependence is probed by test vectors, whereas it is quantified by the 1-norm difference in the latter185

case. Using the bound in Jin et al. one can also bound the distance metric αuv. Assuming ∥xi∥2 = 1 for all186

i ∈ [1..k], then the following is true.187

∥∥∥∥Wu:

du
− Wv:

dv

∥∥∥∥
1

≤ ϵ188

⇒
∣∣∣∣(Wu:

du
− Wv:

dv

)
xi

∣∣∣∣ ≤ ϵ∥xi∥2 ≤ ϵ189

⇒ αuv ≤ ϵ190191

One may construct a similar algebraic distance using the combinatorial Laplacian. In this case, the same192

argument can be made using the bound given in Theorem 2.1. A very similar bounding argument may be193

made for another algebraic distance metric used in AMG methods.194

βuv =
∑

i∈[1..k]

(
χk
u − χk

v

)2
195

If the bound from Jin et al. is assumed, one knows βuv ≤ kϵ2 due to a similar argument as before. An196

identical argument can be made for an algebraic distance using the combinatorial Laplacian when the bound197

given in Theorem 2.1 is used. In this sense, the bound from Theorem 2.1 can be interpreted as a stronger198

criteria than those of relaxation based algebraic multigrid. To achieve the same spectral bound using an199

algebraic metric such as αuv or βuv, one requires k = N linearly independent test vectors at minimum. This200

implies the work complexity of relaxation based AMG needs to be O(MN) to achieve a similar spectral201

bound to Theorem 2.1. Alternatively, computing a sparse norm between adjacency vectors for every edge in202

the graph requires only O(N
〈
d2
〉
) where

〈
d2
〉
is the second moment of the graph’s degree distribution [2].203

While it may be possible to define a spectral bound given algebraic distances between nodes, to the authors’204

knowledge no such bound exists [3]. Figure 3 compares coarsening heuristics on three different graphs from205

the Koblenz Network Collection1. In Figure 3 one can see that, despite not having the same guarantees206

as the criteria in Theorem 2.1, coarsening with respect to algebraic distance does perform well for spectral207

approximation. Both methods perform better than heavy weight matching, which is a popular coarsening208

method attempting to maximize wij
didj

for each merge [3].209

3. Edge Weight Approximation for General Graphs. We now proceed with the proof of the main210

result of the manuscript. The details behind the main result of this paper are that every graph is σ-connected211

1http://konect.cc/networks/
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SPECTRUM CONSISTENT COARSENING APPROXIMATES EDGE WEIGHTS 7

Fig. 3: Coarsening method comparison: Three graphs were coarsened using three different heuristics to
half-size and then the spectra of their lifts were compared with the original. From left to right, the graphs
are Euroroad, Jazz Musicians, and the Zachary Karate Club. All of these were collected from the Koblenz
Network Collection. The bottom row of the figure displays the original graphs. For heavy weight matching
the edge (u, v) corresponding to the highest value of Wuv

dudv
was contracted at each step. For algebraic distance,

the edge corresponding to the minimum of Equation 2.1 was contracted. Finally for the L1 method, the edge
minimizing the criteria in Theorem 2.1 was contracted. It should additionally be noted that 20 test vectors
were used for computing algebraic distances.

for some value σ and the Laplacian can be expressed as the sum of two independent graph Laplacians. These212

Laplacians are defined by the core Laplacian C and the ambient Laplacian R. Comparisons can then be213

made between the core structures of the original graph and the lift, viewing R and R̂ as perturbation214

matrices. In this way the degrees of individual nodes may be bounded according to the difference in spectra,215

and the parameter σ. This allows for the application of discrepancy bounds [4] to various subgraphs and,216

most importantly, pairs of nodes. These bounds are then used to bound weight differences accordingly. A217

visualization of the dependencies between results can be seen in Figure 4.218

Fig. 4: Result dependencies: The dependencies between results in this section are shown. The boxes are
numbered with their respective results, and any boxes nested within them represent sub-results which are
used to prove the larger corollary, lemma, or theorem.

Lemma 3.1. Given a σ-connected graph G = (V,W ) and its approximated lifted graph Ĝ = (V̂ , Ŵ ), say219

|λi − λ̂i| ≤ ϵ for all i ∈ [1..N ]. Then |µi − λ̂i| ≤ ϵ+ σ for all i ∈ [1..N ].220

This manuscript is for review purposes only.



8 C. BRISSETTE, A. HUANG, AND G. M. SLOTA

Proof. Since G is σ-connected, its Laplacian structure can be written as the sum of two separate Laplacians,221

L = C +R. Note ∥R∥2 ≤ ∥R∥1 ≤ σ. Using this, we directly apply Weyl’s inequality [1] to get |λi − µi| ≤ σ.222

Then, because |λi − λ̂i| ≤ ϵ, |µi − λ̂i| ≤ ϵ+ σ.223 □224

In simplifying language, Lemma 3.1 states that the eigenvalues of the core Laplacian C closely approxi-225

mate eigenvalues of the lift Ĝ when the eigenvalues of Ĝ closely approximate the eigenvalues of G.226

Lemma 3.2. If G = (V,W ) is a σ-connected graph, then its lift Ĝ = (V̂ , Ŵ ) is also σ-connected.227

Proof. Note that lifting preserves the sum of edge weights within partitions and the sum of edge weights228

between partitions. Therefore, if L is expressed in terms of its core and ambient structures, the lifts of both of229

these structures may be independently considered. For any node u ∈ Vi in R̂, the degree d̂u = 1
|Vi|

∑
v∈Vi

dv.230

The following relationship then holds true.231

max
v∈V

|d̂v| ≤ max
u∈V

|du|232

This implies ∥R̂∥1 ≤ ∥R∥1 ≤ σ proving our lemma.233 □234

Lemma 3.2 in conjunction with Lemma 3.1 allows for direct comparison between the spectra of the core235

Laplacians C and Ĉ.236

Corollary 3.3. Given a σ-connected graph G = (V,W ) and its approximated lifted graph Ĝ = (V̂ , Ŵ ),237

respectively, say |λi − λ̂i| ≤ ϵ for all i ∈ [1..N ]. Then |µi − µ̂i| ≤ ϵ+ 2σ.238

Proof. This follows immediately from the fact that Ĝ is σ-connected from Lemma 3.2, and then applying239

Lemma 3.1.240 □241

Corollary 3.3 states that the core-structure of a graph and its lift have similar eigenvalues when G and242

Ĝ have similar eigenvalues. Each independent core sub-Laplacian Ĉ(i) of our lift Ĝ is δi-complete, where243

δi is the average degree within C(i). This implies µ̂j(i) = δi for all nontrivial eigenvalues. Therefore, full244

information of the degrees and spectra of every Ĉ(i) are known. In conjunction with Corollary 3.3, this will245

allow for comparison between the degrees of partitions of the core structures C(i) and Ĉ(i).246

Lemma 3.4. If all the nontrivial eigenvalues of the Laplacian L of a connected graph G = (V,W ) lie247

within the bounds δ − ϵ ≤ λi ≤ δ + ϵ, with δ = V ol(G)
N , then |di − δ| ≤ 4ϵ for all i ∈ [1..N ]. Here248

di =
∑

j∈[1..N ] Wij is the degree of the node i ∈ V .249

Proof. Consider the vector eij =
1√
2
(ei − ej), where ei, ej are the unit vectors with value zero everywhere250

except for a one in the ith and jth element, respectively. Note that eTij⊥1, meaning ∥Leij∥2 cannot be251

arbitrarily small. Instead, it is bounded below and above by λ2 ≤ ∥Leij∥2 ≤ λN . By assumption, δ − ϵ ≤252

λi ≤ δ + ϵ for all nontrivial eigenvalues. This means δ − ϵ ≤ eTijLeij ≤ δ + ϵ must be true due to eij having253

unit length ∥eij∥2 = 1. By writing out eTijLeij explicitly, one gets that 2(δ−ϵ) ≤ (di + dj + 2Wij) ≤ 2(δ+ϵ).254

From this, the following must be true.255

2N(N − 1)(δ − ϵ) ≤
N∑
i=1

N∑
j=1,j ̸=i

di + dj + 2Wij ≤ 2N(N − 1)(δ + ϵ)256

2N(N − 1)(δ − ϵ) ≤
N∑
i=1

(N − 1)di + (V ol(G)− di) + 2di ≤ 2N(N − 1)(δ + ϵ)257

2N(N − 1)(δ − ϵ) ≤ 2NV ol(G) ≤ 2N(N − 1)(δ + ϵ)258

⇒ 1−N

N
ϵ ≤ δ +

1−N

N
δ ≤ N − 1

N
ϵ259

⇒ (1−N)ϵ ≤ δ ≤ (N − 1)ϵ260261
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The inequality δ ≤ (N−1)ϵ can now be used to prove our lemma. The proof follows similarly to the previous262

inequalities, however now the outer sum is removed.263

2(N − 1)(δ − ϵ) ≤
N∑

j=1,j ̸=i

di + dj + 2Wij ≤ 2(N − 1)(δ + ϵ)264

2(N − 1)(δ − ϵ) ≤ (N − 1)di + (V ol(G)− di) + 2di ≤ 2(N − 1)(δ + ϵ)265

2(N − 1)(δ − ϵ) ≤ Ndi + V ol(G) ≤ 2(N − 1)(δ + ϵ)266

⇒ 2
(N − 1)

N
(δ − ϵ) ≤ di + δ ≤ 2

(N − 1)

N
(δ + ϵ)267

⇒ 1−N

N
ϵ ≤ di − δ +

2δ

N
≤ 2

N − 1

N
ϵ268

⇒ −2ϵ− 2(δ − ϵ)

N
≤ di − δ ≤ 2ϵ− 2(ϵ+ δ)

N
269

⇒ −2ϵ− 2ϵ ≤ di − δ ≤ 2ϵ270

⇒ |di − δ| ≤ 4ϵ271272

The second to last line comes as an immediate consequence of the previous inequality δ ≤ (N − 1)ϵ, and273

proves our lemma.274 □275

Lemma 3.4 allows for statements to be made about the degrees of nodes in G based on the average degrees276

of partitions. This completes one of two major building blocks for the final edge approximation theorem.277

Before proving the next lemma we state a weighted version of Theorem 5.1 in Chung and Graham [4], noting278

that the original proof provided does not change in the case of weights.279

Lemma 3.5 (Chung. 5.1). Suppose X,Y are two subsets of the vertex set V of a graph G. Then,280 ∣∣∣∣∣∣
∑

x∈X,y∈Y

Wxy −
vol(X)vol(Y )

vol(G)

∣∣∣∣∣∣ ≤ λ̄
√
vol(X)vol(Y )281

where λ̄ = max
i ̸=1

|1−ηi|. Here {ηi}i∈[2..N ] are eigenvalues of the normalized Laplacian L(G) = D− 1
2L(G)D− 1

2 .282

283

Ideally, this theorem could be applied directly to a σ-connected graph G to bound the difference between284

the edge weights of G and Ĝ. In order to apply lemma 3.5, an approximation of λ̄ is required.285

Lemma 3.6. Assume graph G is coarsened to a single node and then lifted to Ĝ. If |λi − λ̂i| ≤ ϵ then286

|ηi − η̂i| ≤ min{hp, 1} where hp = 5p
1−2p and p = ϵ

δ < 1
4 .287

Proof. Begin by noting that the random-walk normalized Laplacian Lrw = D− 1
2LD 1

2 = D−1L has the same288

eigenvalues as the normalized Laplacian. It is true from Lemma 3.4 that |dv − δ| ≤ 4ϵ. This implies the289

following bounds on the eigenvalues of D−1.290

1

δ + 4ϵ
≤ λi(D

−1) ≤ 1

δ − 4ϵ
291

This implies that the nontrivial eigenvalues {ηi}i∈[2..N ] of D
−1L lie in the following bounds.292

δ − ϵ

δ + 4ϵ
≤ ηi ≤

δ + ϵ

δ − 4ϵ
293

⇒ 1− p

1 + 4p
≤ ηi ≤

1 + p

1− 4p
294

⇒ (1− p)− (1 + 4p)

(1 + 4p)
≤ ηi − 1 ≤ (1 + p)− (1− 4p)

(1− 4p)
295

⇒ −5p

(1 + 4p)
≤ ηi − 1 ≤ 5p

(1− 4p)
296
297

This manuscript is for review purposes only.



10 C. BRISSETTE, A. HUANG, AND G. M. SLOTA

For 0 ≤ p < 1
4 ,

5p
(1−4p) >

5p
(1+4p) . Additionally, η̂i = 1 implying the following and completing the proof.298

|ηi − η̂i| ≤ min

{
5p

1− 4p
, 1

}
299 □300

Lemma 3.6 provides a bound on λ̄ which, in conjunction with Lemma 3.5, may be used to prove that the301

differences between edge weights in G and Ĝ remain bounded within partitions. This bound does require302

p = ϵ
δ to be rather small, however, since 5p

1−4p → ∞ as p → 1
4 . In fact, p = 1

9 is where this bound becomes303

devoid of useful information, since |ηi − η̂i| ≤ 1 by virtue of this being a difference of normalized Laplacian304

eigenvalues. We can now prove a useful discrepancy bound for the case p < 1
9 .305

Lemma 3.7. Let there be a weighted graph G = (V,W ). Additionally, consider the lift of the graph306

Ĝ = (V̂ , Ŵ ), which comes from first coarsening G to a single node. This implies Ĝ is δ-complete with307

δ = V ol(G)
N . If |λj − λ̂j | ≤ ϵ for all j ∈ [1..N ], then |Wuv − Ŵuv| ≤ min{hp, 1}(δ + 4ϵ) + 4ϵ

N (p + 1) where308

hp = 5p
1−4p and p = ϵ

δ < 1
9 .309

Proof. We directly apply Lemma 3.5 by considering X = u to be a single node and Y = v to be a single310

node.311 ∣∣∣∣Wuv −
dudv
vol(G)

∣∣∣∣ ≤ λ̄
√

dudv312

≤ 5p

1− 4p
(δ + 2ϵ)313

314

The right hand side follows from Lemma 3.4 and Lemma 3.6. Going forward, 3p
1−2p will be denoted by hp.315

Note that vol(G) = vol(Ĝ) = Nδ.316

δ2 − 4δϵ+ 4ϵ2

Nδ
≤ dudv

Nδ
≤ δ2 + 4δϵ+ 8ϵ2

Nδ
317

⇒ 4pϵ− 4ϵ

N
≤ dudv

Nδ
− δ

N
≤ 4pϵ+ 4ϵ

N
318

⇒ −4pϵ+ 4ϵ

N
≤ dudv

Nδ
− δ

N
≤ 4pϵ+ 4ϵ

N
319

⇒
∣∣∣∣dudvNδ

− δ

N

∣∣∣∣ ≤ 4ϵ

N
(p+ 1)320

321322

Using this, we can refine our statement further, thus proving our lemma.323 ∣∣∣∣Wuv −
δ

N

∣∣∣∣ = ∣∣∣Wuv − Ŵuv

∣∣∣ ≤ min{hp, 1}(δ + 2ϵ) +
4ϵ

N
(p+ 1)324 □325

Using Lemma 3.7, the main theorem is ready to be proven.326

Theorem 3.8 (Edge Approximation). Let G be a σ-connected graph with respect to the partition P =327

{V1, · · · , Vk}, and let Ĝ be the lift of G with respect to that partition. Additionally, assume |Vi| is large for328

each i ∈ [1..k]. If |λi − λ̂i| ≤ ϵ, the difference between in-partition weights is bounded by |Wuv − Ŵuv| ≤329

min{hq(j), 1} (δ(j) + 2(ϵ+ 2σ)) + 4(ϵ+2σ)
N (q(j) + 1) for u, v ∈ Vj. Additionally, between-cluster weights are330

bounded by |Wuv − Ŵuv| ≤ σ where u ∈ Vi and v ∈ Vj where i ̸= j. Here, hq(j) =
5q(j)

1−4q(j) and q(j) = ϵ+2σ
δj

.331

Proof. From the definition of σ-connected, the Laplacian R is such that ∥R∥1 ≤ σ. This bounds the332

maximum value of the matrix, implying that |Wuv − Ŵuv| ≤ σ for u ∈ Vi and v ∈ Vj where i ̸= j. For333

in-partition weights, first note that from Corollary 3.3, the eigenvalues of C(j) and the eigenvalues of Ĉ(j)334

are bounded such that |µi(j)− µ̂i(j)| ≤ ϵ+ 2σ. By using this as the error term in Lemma 3.7, one obtains335

the following bound: |Wuv − Ŵuv| ≤ min{hq(j), 1} (δ(j) + 2(ϵ+ 2σ)) + 4(ϵ+2σ)
N (q(j) + 1), which proves the336

theorem.337 □338
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3.1. Discussion. Theorem 3.8 states that as the difference in spectrum |λi − λ̂i| approaches zero for339

all i ∈ [1..N ], the difference in the weights of all edges depends only on the connectivity between subgraphs340

in the partition P . As a consequence of this, one can in a sense “hear” the shape of the original graph,341

given a coarsened graph Gc whose lift Ĝ spectrally approximates it. In practice, this bound is only practical342

for graphs which do not occur in general applications. To observe why, assume that a simple graph G343

is coarsened to Gc with respect to some partitioning P = {V1, · · · , Vk}. Further assume that within any344

partition Vi there are two nodes which are not adjacent. Because all nodes within the same partition are345

adjacent in the lift, the maximum edge-weight difference is bounded below by δi
N . This minimum upper346

bound exists regardless of the spectral properties of G and Ĝ. Furthermore, in most real world graphs, σ347

is relatively large and the resulting bound in Theorem 3.8 is dominated by the σ term in the expression,348

often leading to bounds larger than the largest degree in the graph. This implies that meaningful uses of the349

upper bound in Theorem 3.8 may generally be restricted to weighted graphs where every node is adjacent350

to every other, and there are small weights between partitions. While not generally found in social-science,351

or scientific computing applications, such graphs are used in practice for image segmentation [17, 22, 7], and352

data mining tasks [20]. These methods use weighting schemes based on the distance between nodes to define353

similarities in arbitrary data. One common weight function is wuv = exp{∥ru−rv∥22/Θ} where ru, rv are the354

embeddings of u, v in RN , and Θ is a positive constant. Given this, or other similar weighting schemes, one355

can bound the distance between ru and rv. This implies that by bounding edge weights between the graph G356

and it’s lift Ĝ, one is simultaneously preserving the distances between these nodal embeddings. However, the357

bound in theorem 3.8 is only usable in the most well clustered of test cases, and requires further refinement358

before being usable in application.359

4. Edge Weight Approximation for Weighted Regular Graphs. We briefly turn our attention360

to a special case where the spectrum fully determines the properties of graph connectivity. This is in the361

case of weighted regular graphs where di = d for all nodes i ∈ V and some positive real number d. For this362

purpose we will instead examine the adjacency matrices W and Ŵ . Coarsening as defined in definition 1.1363

may be expressed as a matrix product W = SWST for a coarsening matrix S discussed in further detail364

in Loukas [12]. Additionally the lifting operation can be expressed as the pseudo-inverse of this operation,365

given by Ŵ = P †PW (P †P )T . The matrix PP † = Π has a simple form given in both Loukas [12] and Jin366

et al. [8]. Given a partition P = {V1, · · · , Vk} each element Πij = 1
|Vr| for i, j ∈ Vr, otherwise Πij = 0. One367

can easily check that this coincides with our definition of coarsening.368

This matrix relation between the original and lifted adjacencies allows for a powerful theorem to be369

proven.370

Theorem 4.1. For a weighted adjacency matrix W and lifted adjacency matrix Ŵ = ΠWΠ, if |ωi−ω̂i| ≤371

γ for all i ∈ [1..N ], then ∥W − Ŵ∥2F ≤ Nγ (2∥W∥2 + γ) where ∥ · ∥F is the Frobenius norm.372

Proof. We begin by breaking the Frobenius norm into individual traces.373

∥W −ΠWΠ∥2F = Tr((W −ΠWΠ)2) = Tr(W 2) + Tr(Ŵ 2)− 2Tr(WŴ ) = Tr(W 2)− Tr(Ŵ 2)374375

Additionally note the following.376

|ωi − ω̂i| ≤ γ377

⇒ |ωi + ω̂i| ≤ γ + 2|ωi|378

⇒ |ω2
i − ω̂2

i | ≤ γ2 + 2γ|ωi|379380

From here, each trace is considered independently, with the intent of upper bounding ∥W −ΠWΠ∥2F .381

Tr(Ŵ )− Tr(Ŵ 2) =
∑
i∈V

(ω2
i − ω̂2

i )382

≤
∑
i∈V

(γ2 + 2γ|ωi|)383

⇒ ∥W − Ŵ∥2F ≤ Nγ(γ + 2∥W∥2)384385
□386
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Theorem 4.1 states that, preserving the spectrum of the adjacency matrix while coarsening is sufficient to387

preserve all edge weight information. This is a far stronger statement than the one proposed in Theorem 3.8.388

However, this is only applicable when the adjacency spectrum is preserved, not necessarily the Laplacian389

since the two spectra are not directly related for general graphs. In the case of weighted regular graphs it is390

easy to check that these are one in the same since, for a weighted regular graph with degree d, λi = d− ωi.391

Unfortunately this is not true for most graphs. Using this theorem 4.1 in the general case will require392

bounding |ωi − ω̂i| ≤ f(ϵ) for some function f(·) where |λi − λ| ≤ ϵ for all i ∈ [1..N ]. This remains an open393

problem.394

5. Closing remarks. The contributions of this manuscript have been twofold. A result originally395

derived by Jin et al. [8] was generalized to the case of the combinatorial Laplacian. We showed that, by396

using this result, one can closely preserve the spectrum of the graph Laplacian while performing graph397

coarsening. Additionally it was shown that the suggested coarsening criteria implies bounds on algebraic398

distances between nodes of the same graph. A comparison between coarsening methods was also presented.399

The latter half of the manuscript studied how closely the edge weights of a graph’s lift approximate those400

of the original graph under an assumption that their Laplacian spectra are close. A sufficiently tight bound401

would guarantee that arbitrary data sets in Rn imbued with a graph structure could be coarsened while402

preserving their relative embeddings in Rn. This is a novel question with potential applications to image403

segmentation and data mining. Unfortunately the bound proven relies on the connectivity of the graph and404

is unlikely to be useful in real world applications. It was then shown that, in the case of weighted regular405

graphs the connectivity of the graph does not require consideration, and a spectral approximation provides406

an edge weight approximation. Various avenues for extensions and branching research exist.407

One obvious path for future research is to diminish the bound provided in Theorem 3.8. The proof408

for the theorem relies heavily on a discrepancy bound which is particularly loose. By circumventing this,409

perhaps with a more sophisticated extension to Lemma 3.4, one may be able to significantly tighten this410

bound. As an extension of this, removing the dependency on σ is important for applicability. In practice411

σ will be too large for this bound to be useful to practitioners. One avenue for exploring this may be412

to relate spectral differences between the adjacency and coarsened adjacency with those of the Laplacian413

and coarsened Laplacian, and then apply Theorem 4.1. Additionally, there are several interesting questions414

one may ask about the effects of coarsening arbitrary data sets. For instance, if the spectrum between a415

graph G and it’s lift are close, how close are their edge weights on average? This is answered in a special416

case by Theorem 4.1, but is not known in general. This question is significantly less restrictive than the one417

presented in this paper, however it still provides insight into the effects of coarsening on node embeddings. As418

for extending the results discussed in section 2, while it was shown that the coarsening criteria in Theorem 2.1419

implies a bound on algebraic distances, a result in the opposite direction would be preferable. Algebraic420

distances are cheap to compute for small numbers of test vectors, and if there were a reasonable guarantee421

on the accuracy of the spectrum, they would be preferable to the criteria presented in this paper. Such a422

bound would likely be probabilistic for k < N due to the fact that ensuring linear dependence between nodes423

using the algebraic distance requires the test vectors to span RN .424

425
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