Graph Mining, Spring 2020
Class Info
  |  
Resources
  |  
Schedule
  |  
Homeworks
  |  
Project
Class Info:
Syllabus
Meeting times:
Monday and Thursday at 12-1:50pm in 3051 Low
No Class:
Jan 20; Feb 17 =>
Yes class
on Feb 18
Course Instructor:
Prof. George M. Slota
gmslota@gmail.com
Office Hours: Monday/Wednesday at 4-6pm in 317 Lally
Resources:
Texts
Papers
Datasets
NetworkX reference (v2.4)
Networks, Crowds, and Markets - Easly, Kleinburg (EK)
Network Science - Barabasi (B)
Mining of Massive Datasets - Leskovec, Rajaraman, Ullman (LRU)
Thinking Like a Vertex
Graph Structure in the Web
Revisited
Power-law distributions
Personalized PageRank
Link Prediction
Matrix Factorization
Standford Large Network Dataset Collection
SuiteSparse Matrix Collection
Koblenz Network Collection
Laboratory for Web Algorithmics
Mark Newman's Collection
DIMACS Challenge Graphs
Index of Complex Network
Lecture Notes and Readings
Note: Class schedule subject to (and likely will) change.
Week
Class Date
Topic
Readings
Notes
1
13 Jan
What is graph mining?
Thinking Like a Vertex
Lecture 1
  |  
Code
  |  
Data
16 Jan
Graph connectivity and structure
EK ch. 13
  |  
Graph Structure in the Web
Revisited
Lecture 2
2
20 Jan
No class:
MLK Day
23 Jan
Network Measures
EK ch. 18.2
  |  
Power-law distributions
Lecture 3
  |  
Code
  |  
Data
3
27 Jan
Centrality, Diffusion
EK ch. 19, 21
  |  
Centrality
Lecture 4
  |  
Code
30 Jan
PageRank
EK ch. 14
  |  
Personalized PageRank
Lecture 5
  |  
Code
  |  
Data
4
3 Feb
Social Networks Topics
EK ch. 3, 4
Lecture 6
  |  
Code
6 Feb
No class:
Instructor Travel
5
10 Feb
Link Prediction
13 Feb
No class:
Instructor Travel
6
17
18 Feb
Link Prediction
Unsupervised
  |  
Supervised
Lecture 7
  |  
Code
20 Feb
Recommender Systems
Matrix Factorization
  |  
Netflix Prize
  |  
Dataset
Lecture 8
  |  
Code
7
24 Feb
Collaborative Filtering
LRU ch. 9
Lecture 9
  |  
Code
27 Feb
Community Detection
B ch. 9
Lecture 10
  |  
Code
8
2 Mar
Modularity
Newman
  |  
Louvain
  |  
Resolution Limit
Lecture 11
  |  
Code
5 Mar
Project Proposal Presentations
9
9 Mar
No class:
Spring Break
12 Mar
No class:
Spring Break
10
16 Mar
No class:
Spring Break
19 Mar
No class:
Spring Break
11
23 Mar
Spectral Clustering
Implementation
COVID update
  |  
Lecture 12
  |  
Code walkthrough
  |  
Code
26 Mar
Community Evaluation
B ch. 9
  |  
LFR Benchmark
Econ update
  |  
Lecture 13
  |  
Code walkthrough
  |  
Code
12
30 Mar
Contact Network Generation
Modeling Overview
Lecture 14
2 Apr
Epidemiology Simulations
Model Analysis
SIR Analysis
  |  
Expanding our model
13
6 Apr
Constructing a new COVID model
Graph code
  |  
Simulation code
  |  
Experimentation
  |  
Exp. p2
  |  
Code
9 Apr
Project Update Presentations
Upload video via submitty forum
14
13 Apr
Vertex labeling
Node Classification
Lecture 17
16 Apr
Vertex Classification
Description
  |  
Code Walkthrough
  |  
Code
15
20 Apr
Graph Neural Networks
GNN Model
  |  
GNN Types
Lecture
  |  
COVID update 5
23 Apr
Subgraph Mining
Templates
  |  
Motifs
  |  
Graphlets 1
  |  
Graphlets 2
  |  
GRAAL
Lecture
16
27 Apr
Project Final Presentations
30 Apr
Study Days:
No class
4 May
Project Final Submissions
Homeworks
Homeworks due at 11:59pm on the due date. No late homeworks will be accepted.
HW #
Due Date
Homework
Solution
1
29 January 11:59pm
HW 1
TBD
1
26 February 11:59pm
HW 2
TBD
Project Info
Important Dates:
Item
Due Date
Description
Project Proposal
5 March
In class
Update Presentation
9 April
Via Submitty forum
Final Presentation
27 April
Via Submitty forum
Final Report
4 May
Via Submitty