
CHAPTER

FORTYFIVE

LECTURE 24 — ADVANCED PYTHON TOPICS AND
FUNCTIONAL PROGRAMMING

45.1 Problems We’d Like to Solve

Some of these are toy problems, but they illustrate use of tools we’d like to develop and use:

1. How many values are in a list of lists?

2. What is the maximum distance from the origin of the points in a list?

3. What is the sum of squares of the first n integers?

4. Can you sum the positive values in a list?

5. Can you sort a list of points by y value (2nd coordinate) and then by x value?

45.2 Solution Techniques

• We can solve most of these with a for loop, but they can be solved even more effectively / efficiently /
compactly using advanced Python methods.

• Leads to notions of:

• map and filter

• functions as parameters

• lambda functions

• stable sort

• list comprehensions

• Most are examples of functional programmming

45.3 Map: Apply a function to each element of a list

• Suppose we want to count the number of values in a list of lists. We can use map to apply the len function to
each sublist.

>>> v = [[2, 3, 5, 7], [11,13,17,19], [23, 29], [31,37]]
>>> print(list(map(len, v)))
[4, 4, 2, 2]

201

CSCI-1100 Course Notes, Release

• map is an iterator class:

– It produces values in a sequence, one after another, by applying the function (1st argument) to the
values of the second argument.

– Technically, an iterator class is one that has the __next__ method implemented (correctly).

– Using list gives us the list of lengths of the sublists explicitly.

• To complete the solution we need to just apply sum:

>>> print sum(map(len,v))
12

Notice that this does not explicitly form an intermediate list.

45.4 Passing Functions as Parameters

• The above example passes the len function as an argument!

– We also passed functions as arguments to our callbacks in our GUI programs

• This illustrates the concept that Python treats function as “first-class” objects - in other words functions can
be used just like variables and other data.

– What’s passed as an argument to map() is the location of the function code.

• Now suppose we want to find the maximum distance of a list of points from the origin. Here we’ll have to
write a function

def dist2D(p):
return (p[0]**2 + p[1]**2)**0.5

pts = [(4.5, 3), (2.1,-1), (6.8,-3), (1.4, 2.9)]
print(max(map(dist2D,pts)))

45.5 Lambda functions: Anonymous functions

• We can avoid the need to write a separate function here by writing an anonymous function called a lambda
function.

• Our first example is just squaring the values of a list

>>> list(map(lambda x: x**2, [1, 2, 3, 4]))
[1, 4, 9, 16]

• Now, we can sum the squares from 1 to n

>>> n = 100
>>> sum(map(lambda x: x**2, range(1,n+1)))

• We can also implement the dist2D function anonymously:

>>> max(map(lambda p: (p[0]**2 + p[1]**2)**0.5, pts))
7.432361670424818

202 Chapter 45. Lecture 24 — Advanced Python Topics and Functional Programming

CSCI-1100 Course Notes, Release

• Notice that we did not need to explicitly form a list in each of the preceeding examples. This leads to sub-
stantial savings when the list is large!

• Aside: the notion of a lambda function goes all the way back to the origin of computer science

45.6 In-Class Practice Problem:

1. Starting with the following list of x,y point coordinate types, we will use map(), a lambda function, and max()
to find the maximum x coordinate (the 0-th coordinate) in a list of points.

pts = [(6,-1), (8,4), (7.5,-3), (4.4,12), (7,2)]

45.7 Filter: Extract / eliminate values from a list

• Consider a different problem: how to eliminate all of the negative values from a list. Based on what we know
so far, this requires a for loop with append.

• We can simplify this using the built-in Python construct called filter

>>> v = [1, 9, -4, -8, 10, -3]
>>> list(filter(lambda x: x>0, v))
[1, 9, 10]

• Here,

– The lambda function must produce a boolean value and if that value is True the list item is kept; oth-
erwise it is eliminated.

– The result of filter is an iterator object, just like the result of map is. We convert to a list in order to
display the answer.

• If we want to sum up the non-negative values, then we don’t need to explicitly generate a list:

>>> sum(filter(lambda x: x>0, v))
20

45.8 Lecture Exercises, Problems 1 and 2:

• At this point students will be given the chance to work on the first two lecture exercises.

45.9 Passing Functions to Sort

• Consider the problem of sorting a list of (x,y) points by their y values first and their x values for tied y values,
both in decreasing order. For example, given

pts = [(2,5), (12,3), (12,1), (6,5), (14, 10), (12, 10), \
(8,12), (5,3)]

we’d like the sorted order to be

45.6. In-Class Practice Problem: 203

CSCI-1100 Course Notes, Release

[(8, 12), (14, 10), (12, 10), (6, 5), (2, 5), (12, 3), \
(5, 3), (12, 1)]

• The Python sort function

>>> sorted(pts, reverse=True)
[(14, 10), (12, 10), (12, 3), (12, 1), (8, 12), (6, 5), \

(5, 3), (2, 5)]

gives the ordering by x value and then by y value. This is not what we want.

• The first step to a solution is to provide a key function to sorted() to pull out the information (the y value
in this case) from each tuple to use as the basis for sorting:

>>> sorted(pts, key = lambda p: p[1], reverse=True)
[(8, 12), (14, 10), (12, 10), (2, 5), (6, 5), (12, 3), \

(5, 3), (12, 1)]

This is close but not quite right because the two points with y=5 are out of order.

• The trick is to sort by x first and then sort by y!

>>> by_x = sorted(pts,reverse=True)
>>> by_x
[(14, 10), (12, 10), (12, 3), (12, 1), (8, 12), (6, 5), \

(5, 3), (2, 5)]
>>> sorted(by_x, key = lambda p: p[1], reverse=True)
[(8, 12), (14, 10), (12, 10), (6, 5), (2, 5), (12, 3), \

(5, 3), (12, 1)]

• This works because sorted() uses what’s known as a stable sort: when two values are “tied” according the
sorting criteria (y value in the second sort) their relative ordering (by x value from the first sort) in the final
list is preserved.

– Therefore, (6,5) comes earlier than (2,5), while (12,3) comes earlier than (5,3)

• A number of variations on sorting use this “stable sort” property, but not all fast sorting algorithms are stable.

• Of course, we can also extend our lambda to reverse the tuple provided to sort()

>> sorted(pts, key = lambda p: (p[1], p[0]), reverse=True)
[(8, 12), (14, 10), (12, 10), (6, 5), (2, 5), (12, 3), \

(5, 3), (12, 1)]

45.10 Practice Problem

1. Use filter to eliminate all words that are shorter than 4 letters from a list of words

45.11 List Comprehensions

• Instead of map and filter some people prefer another example of functional programming in Python called
list comprehensions

• Here is an example to generate a list of the squares of the first n integers:

204 Chapter 45. Lecture 24 — Advanced Python Topics and Functional Programming

CSCI-1100 Course Notes, Release

>>> n = 8
>>> [i*i for i in range(1,n+1)]
[1, 4, 9, 16, 25, 36, 49, 64]

• The form of this is an expression followed by a for loop statement.

• We can get the effect of filter by adding a conditional at the end:

>>> v = [1, 9, -4, -8, 10, -3]
>>> [x for x in v if x>0]
[1, 9, 10]

• Here, the values are only generated in the resultant list when the if condition passes.

• We can combine these as well. As a slightly silly example, we can eliminate the negative values and square
the positive values

>>> v = [1, 9, -4, -8, 10, -3]
>>> [x*x for x in v if x>0]
[1, 81, 100]

• We can get even more sophisticated by nesting for loops. Here is an example where we generate all pairs of
numbers between 1 and 4, except for the pairs where the numbers are equal

>>> [(i,j) for i in range(1,5) for j in range(1,5) if i != j]
[(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2),

(3, 4), (4, 1), (4, 2), (4, 3)]

45.12 Exercises

1. Write a list comprehension statement to generate a list of all pairs of odd positive integer values less than 10
where the first value is less than the second value.

45.13 Summary and Discussion

• We’ve explored programming that is more compact and at a higher level of abstraction. It can be used to
effectively interact with data.

• map and filter each take a function and a sequence (an “iterable”) as arguments and produce an iterator
as a result:

– map produces the result of applying the function to each element of the iterable

– filter produces each element of the iterable for which the function returns True

• Both map and filter are made more compact by using lambda functions

• lambda functions can also be used to change the result of sorting

• A stable sort preserves the relative order of “tied” values

• List comprehensions can be used in place of map and filter:

– Some people prefer list comprehensions because they often do not require lambda functions, but...

– List comprehensions explicitly construct the list of results rather than generating them one-by-one,
which is what map and filter do. This makes them less efficient for large data sets.

45.12. Exercises 205

CSCI-1100 Course Notes, Release

• These are all examples of functional programming.

• We’ve also used the other major programming paradigms this semester

– imperative programming

– object oriented programming

• Many modern languages like Python provide tools that allow programming using a combination of
paradigms

206 Chapter 45. Lecture 24 — Advanced Python Topics and Functional Programming

	Lecture 1 — Introduction
	Lecture 2 — Python as a Calculator
	Lecture 2 — Exercises
	Lecture 3 — Python Strings
	Lecture 3 — Exercises
	Lecture 4 — Using functions and modules
	Lecture 4 — Exercises
	Lecture 5 — Python Functions
	Lecture 5 — Exercises
	Lecture 6 — Decisions
	Lecture 6 — Exercises
	Lecture 7 — Lists Part 1
	Lecture 7 — Exercises
	Lecture 8 — Tuples, Modules, Images
	Lecture 8 — Exercises
	Lecture 9 — While Loops
	Lecture 9 — Exercises
	Lecture 10 — Lists Part 2
	Lecture 10 — Exercises
	Lecture 11 — Decisions Part 2
	Lecture 11 — Exercises
	Lecture 12 — Controlling Loops
	Lecture 12 — Exercises
	Lecture 13 — Data from Files and Web Pages
	Lecture 13 — Exercises
	Lecture 14 — Problem Solving and Design, Part 1
	Lecture 15 — Sets
	Lecture 15 — Exercises
	Lecture 16 — Dictionaries, Part 1
	Lecture 16 — Exercises
	Lecture 17 — Dictionaries, Part 2
	Lecture 17 — Exercises
	Lecture 18 — Classes, Part 1
	Lecture 18 — Exercises
	Lecture 19 — Classes, Part 2
	Lecture 19 — Exercises
	Lecture 20 — Searching
	Lecture 20 — Exercises
	Lecture 21 — Sorting
	Lecture 21 — Exercises
	Lecture 22 — TKInter
	Lecture 22 — Exercises
	Lecture 23 — Recursion
	Lecture 23 — Exercises
	Lecture 24 — Advanced Python Topics and Functional Programming
	Lecture 24 — Exercises

