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ABSTRACT

Latent Dirichlet Allocation(LDA) is generative probabilistic framework to model

and summarize large document collections in an unsupervised fashion. Documents

in the dataset can be grouped into topics using a three-level hierarchical Bayesian

model of LDA. The focus of this thesis is the classification of a dataset from Enron

containing email messages into significant topics using LDA. We start by explaining

the LDA model. We test LDA with synthetic data and analyze the results based

on square error, Kullback-Leibler divergence and average entropy measures in order

to assess the true number of topics of datasets and observe that LDA returns more

accurate modeling of the dataset if it is clustered into as many number of topics as

true number of topics. We model Enron dataset using LDA and use same parameters

to find true number of topics of this dataset and present the results. Finally, we

conclude that square error is the best measure to find the true number of topics of

collection of documents.
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CHAPTER 1

INTRODUCTION

Classification of text corpora and collections of discrete data has been a challenge for

social network analysis and information retrieval. In the context of text modeling,

one of the common models is to assume that each document is relevant to a topic

with a certain probability. The contents of a document is modeled with respect to

terms that appear in the document. In Latent Dirichlet Allocation, using a three-

level hierarchical Bayesian model, each topic is characterized by a distribution over

these terms. This model finds the relevance of documents to different topics and

cluster text corpora into groups of documents, where each group represents the

set of documents that are relevant to a topic. Document modeling assigns each

document to a topic with some probability and this preserves essential statistical

relationships that are useful for classification, collaborative filtering, summarization

of text corpora and relevance judgements of the corpus.

1.1 Motivation

A corpus is a collection of documents. Our goal is to cluster the documents of

a corpus into disjoint subsets of documents so that each subset represents documents

which are most relevant to a topic. For this purpose, we use Latent Dirichlet Allo-

cation(LDA). Latent Dirichlet Allocation partitions the corpus into groups without

losing the relevance of documents with other topics. On the other hand, LDA model

assumes that the number of major topics in the corpus is known, takes the number

of topics as input and clusters the corpus according to this number. To provide the

correct number of topics to LDA, we investigate its performance with a synthetic

dataset in which the number of topics is known. After running synthetic data in

LDA model with different number of topics, we compare the true number of topics

and LDA number of topics of the corpus using different measures such as square

error, Kullback-Leibler Divergence and average entropy. This gives an idea of how

LDA assigns the topics to the documents of the corpus if the number of topics of

1
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the corpus is overestimated, underestimated or previously known.

1.2 Related Work

Information retrieval researchers have proposed term frequency and inverse

document frequency reductions for partitioning documents of a corpus into groups.

These reductions manage to identify words which discriminates documents, but no

information is extracted from the corpus about intra-document and inter-document

statistical structure. For this purpose, Latent Semantic Indexing(LSI) was proposed.

LSI finds the semantic structure of a document using singular value decomposition

[5]. Then, probabilistic Latent Semantic Indexing(pLSI) was proposed by Hoffmann.

pLSI maps documents as well as terms to topics and therefore, each document is

reduced to a probability distribution on a fixed set of topics [9]. Methods explained

so far uses “bag of words” assumption: the order of words in a document is not con-

sidered. Blei proposes a method, Latent Dirichlet Allocation(LDA)[3] which takes

the order of words into account and uses a mixture model for exchangability of both

words and documents. This generative probabilistic model represents documents

as random mixture over topics and topics are represented by a distribution over

words. Heinrich presents different parameter estimation methods for text modeling

[8]. Dirichlet Multinomial Allocation(DMA) enhances Dirichlet process of LDA by

applying efficient variational inference [17]. The following research on the same field

are also invaluable for understanding the field and its challenges: [1, 2, 6, 15].

1.3 Organization

This thesis is composed of 5 chapters. Chapter 1 presents a brief introduction

to LDA, the motivation for using LDA and the related work. Chapter 2 gives

the details of the underlying probabilistic model of LDA. Chapter 3 explains the

generation of synthetic data, and presents the sensitivity of LDA parameters to the

true number of topics. Chapter 4 presents results of a real data: first, it explains

how real data is reduced to a form which LDA accepts as input, and then results

of LDA are presented. Final chapter concludes with a discussion of the model and

future work.



CHAPTER 2

LATENT DIRICHLET ALLOCATION(LDA)

Latent Dirichlet Allocation (LDA) is a probabilistic generative model of a corpus

which uses unsupervised learning. Before going further about LDA, we define the

following terms:

• Word: An item from a vocabulary indexed by { 1,..,V }.

• Document: A sequence of N words denoted by d = (w1, w2, .., wn), where wi

is the i − th word.

• Corpus: A collection of M documents denoted by C = (d1, d2, .., dM), where

di is the i − th document.

The basic idea of Latent Dirichlet Allocation is as follows:

1. Each topic is characterized by a distribution over words.

2. Each document is represented as a random mixture over latent topics.

LDA finds the probabilistic model of a corpus. While doing this, LDA assigns

high probability to other similar documents, as well as to the members of the corpus.

Models such as Mixture of Unigrams model assumes that each document exhibits

exactly one topic. However, LDA model lets documents exhibit multiple topics.

2.1 LDA Model

In LDA model, each document d is assumed to be generated from a K-component

mixture model, where the probability θd of each component of this mixture is gov-

erned by a Dirichlet distribution with parameter α. Then, each of the words wdi

in the document (i − th word of document d) is generated by a repetitive process

of sampling a mixture component zdi from θd and then sampling the word itself

from a multinomial distribution over the entire vocabulary βzdi
, associated with the

3
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mixture component. Each of these components is called a topic. Therefore, there

are K topics and the i − th topic is denoted by zi. The generative process of LDA

is as follows:

• For each document d = 1, ...,M in the corpus C:

1. Sample mixing probability θd ˜ Dir(α)

2. For each of V words wdi:

a) Choose a topic zdi ∈ {1, .., K} ˜ Multinomial(θd)

b) Choose a word wdi ∈ {1, .., V } ˜ Multinomial(βzdi
)

In this generative process, V is the vocabulary size and K is the number

of topics. The parameter α, given as input to LDA, is the symmetric Dirichlet

parameter and {β1,..,βK} are the multinomial topic parameters. The other input to

LDA is K, the number of topics. Each of K multinomial distributions βi assigns a

high probability to a specific set of words that are semantically consistent. These

distributions over the vocabulary are referred to as topics.

2.2 Parameter Estimation

All parameters of LDA can be estimated by approximate variational tech-

niques. One of these approximations, Variational EM algorithm, allows efficient

unsupervised parameter estimation. Variational EM algorithm is a deterministic

approximation method which results in a biased estimate, but it is computationally

efficient. In particular, given a corpus of documents C = {d1, d2, .., dM}, we wish to

find parameters α and β that maximize the log likelihood of the data, which is the

following:

l(α, β) =
M

∑

i=1

log P (di | α, β)

The value of l(α, β) can be computed if the value of P (di | α, β) is known for

each document di. However, P (di | α, β) cannot be computed tractably. Instead, we

will use a lower bound on the log likelihood. It can be shown using Jensen’s equality
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that the log likelihood of the observed data, log P (di | α, β) is lower bounded by the

sum of expected log likelihood of the entire corpus with respect to the variational

distribution EQ[log P (w, z, θ | α, β)] and the entropy of the variational distribution

H(Q), as follows:

P (w | α, β) ≥ EQ[log P (w, z, θ | α, β)] + H(Q)

Therefore, we can find approximate empirical estimates for the LDA model via

an alternating variational EM procedure that maximizes a lower bound with respect

to the variational parameters γ and φ. The variational EM algorithm proceeds

iteratively in two steps:

1. E-step: The variational parameters γ and φ are estimated by maximizing log

likelihood using the lower bound described in the formula above. Since γd and

φd for a given document d depend on each other, we estimate them iteratively

until the lower bound on the log likelihood of the document converges to a

local maximum.

2. M-step: The lower bound is maximized with respect to parameters α and β

to obtain their new values. This finds the maximum likelihood estimates with

sufficient statistics for each document.

The complete procedure of E-step and M-step are in Figure 2.1 and Figure 2.2

respectively.

The time complexity of E-step is Θ(MN2

maxK), where M is the number of

documents in the corpus, Nmax is the maximum document length in the corpus and

K is the number of topics. The time complexity of M-step, on the other hand,

is Θ(V K), where V is the observed vocabulary size. Thus, main computational

bottleneck in the variational EM algorithm is the E-step.

To overcome this issue, [11] introduces a parallelized Variational EM algo-

rithm. The variational parameters γd and φd in each document d are independent

of those in other documents and therefore can be computed independently. In other

words, the E-step computations of the documents can be speeded up through par-
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Input: Parameters α, β
foreach document d ∈ 1, ..,M do

foreach topic k ∈ 1, .., K do
initialize γdk = Nd/K

end
repeat until convergence

foreach position i = 1, .., Nd do
foreach topic k = 1, .., K do

φdik = βkwi
· eψ·γdk

end
Normalize φdi

end
foreach topic k ∈ 1, .., K do

γdk = α +
∑Nd

i=1
φdik

end
until;

end
return
Sufficient statistics S where Skv =

∑Nd

d=1

∑Nd

i=1
δvwdiφdik

α-sufficient statistics Sα where Sα =
∑M

d=1

∑K

k=1
ψγdk − Kψ

∑K

k=1
γdk

Figure 2.1: E-step of Variational EM Algorithm

Input: Sufficient statistics matrices S and Sα

Compute α using Newton-Raphson optimization on Sα

Compute β = S − normalized − row − wise
return α, β

Figure 2.2: M-step of Variational EM Algorithm

allelization. The results of parallelization verifies that E-step is the main bottlebeck

of the algorithm.

2.3 LDA Output Evaluation

LDA takes a data as input in Compact Vector form and produces three types

of output files:

• .beta file: This file includes topic × term matrix. It contains the log of the

topic distributions. Each row is a topic and in row k, each entry is the log of

probability of a word given the topic, which is log P (w | z = k). Since each
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topic is defined as a distribution of terms by LDA, .beta files can be used to

find most frequently used words for a topic. This file can also be used to find

the top words for each topic.

• .gamma file: This file includes document × topic matrix. It contains

variational posterior Dirichlets distributions. This file can be used to find

document-based results, such as finding main topics of a document, or finding

the top documents that are most related to a specific topic. In the experiments

of this thesis, .gamma file is used to find out the distribution of documents to

topics.

• .other file: This file includes information about the input. The number of

topics, the number of terms(vocabulary size) and the parameter α are stored

in this file.



CHAPTER 3

SYNTHETIC DATA

LDA distributes a set of documents into topics. LDA accomplishes this distribu-

tion given the number of topics, K, of the corpus. It requires another input, α,

which is the parameter to Dirichlet distribution used in LDA model. Besides these

two parameters, LDA requires a certain data format for input data, which will be

mentioned in Chapter 4.

LDA does not know the number of topics of the corpus beforehand. There

is no way for LDA to know the number of topics, K, as it takes it as input. The

problem is then to determine the correct number of topics from LDA’s output. To

address this problem, we study the LDA output for a set of synthetic datasets with

known properties.

3.1 Setup of Synthetic Data

We define a file in compact vector format that is used by LDA, that is known

to contain n topics as a True-n file. As True-n file is the compact vector format of

a corpus whose documents are distributed into n major topics, we can use this file

as input to LDA and use n as the input to LDA which stands for the number of

topics. To create a random True-n file, we present GenerateCompact algorithm. in

Figure 3.1.

We generate disjoint set of words for each topic and each document that is

relevant to that topic contains a subset of words in the topic. We generate equal

number of documents for each topic combination. In the first two nested for loops of

the algorithm, we iterate over 2-subsets of n topics, that is, subsets of n topics which

is of size 2. Therefore, these for loops in the algorithm iterates
(

n

2

)

times. After

each iteration, a documentVector, which is the document vector of a document that

is relevant to two topics i and j, is created. This vector is a compact vector for a

document of the corpus, so it creates one line of compact vector for each document

as output. We will explain how to create compact vector format in Chapter 4.

8
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Input: n: Number of topics
p = 2: Number of topics per document
s: Number of keywords per topic
t: Number of keywords per document that has that topic
k: Number of documents for each configuration

for i ← 1 to n − 1 do
for j ← i + 1 to n do

for l ← 1 to k do
Generate topic i for DocumentVector ;
Generate topic j for DocumentVector ;
for w ← 0 to n ∗ s − 1 do

if DocumentVector [w] == 1 then
Write to file w:1 ;

end

end

end

end

end
return True-n file in compact vector format

Figure 3.1: GenerateCompact algorithm

We pose an assumption on this algorithm and assume that each document

is relevant to 2 major topics. Therefore, rather than being a variable, p = 2 is

a constant. Given the number of topics n, p = 2 and number of documents for

each configuration k, the number of documents in the compact vector generated by

GenerateCompact algorithm, and therefore the number of documents in a True-n

file is
(

n

2

)

· k.

3.2 Sensitivity to α

One of the inputs to LDA model is α, which is the parameter to Dirichlet

distribution in LDA model. If α is set to fixed, then it does not change from iteration

to iteration in the variational EM. If it is set to estimate, then α is estimated along

with the topic distributions. We run LDA using α set to estimate.

We measured the sensitivity of LDA results to initial α. For this purpose, we

used a True-n file as input to LDA, and we ran LDA with k < n, k = n and k > n

topics. We compare the results by considering underestimation and overestimation
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of topics, given the true number of topics. For this purpose, we introduce three

parameters to measure the sensitivity of LDA to α. The parameters are fit to LDA

model as follows:

• Square Error: True-n file is a corpus which is composed of documents that

are relevant to 2 major topics, no matter what the true number of topics is.

This leads us to model Square Error computation to True-n file as follows: The

relevance of a document to 2 major topics, t1 and t2, is 0.5 and the relevance of

this document to other topics is 0, which sums up to 1. After running True-n

file with k topics in LDA, the document will have relevances r1, r2,.., rk to each

of k topics as given in the .gamma file. Figure 3.2 displays the relationship

between true topics and LDA topics. The rest of the computations are as

follows:

1. Sort the relevances of the document to topics in descending order. There-

fore, after sorting, for each document,

ri ≥ rj if i < j

2. For each document, we normalize the relevance of that document to top-

ics. At the end of normalization,

k
∑

i=1

ri = 1

holds. This normalization corresponds to row-wise normalization of a

document × topic matrix.

3. Square Error is computed on sorted and normalized matrix as follows:

2
∑

i=1

(ri − 0.5)2 +
k

∑

i=3

ri
2

• Kullback-Leibler Divergence: Kullback-Leibler Divergence is a measure

which finds the difference between two probability distributions [4]. For two



11

Figure 3.2: Square Error computation for True-n file

probability distributions P and Q, Kullback-Leibler Divergence of Q from P

is calculated as follows:

DKL(P || Q) =
∑

i

P (i) log
2

P (i)

Q(i)

In our experiments, we want to find the divergence of dataset distribution from

uniform distribution for each topic and then average for all topics. Therefore,

P is the probability distribution of the dataset and Q is the uniform distri-

bution for our experiments. K-L Divergence for each topic is calculated and

then average K-L Divergence is found.

• Average Entropy Using Buckets: For each topic, entropy over all doc-

uments is calculated and the average of entropies of each topic is found. Av-

erage Entropy for each topic is calculated using 100 buckets. Given document

× topic matrix M in .gamma file, the following procedure is followed:

1. Normalize M row-wise. This step normalizes the relevance of each docu-

ment to topics.

2. Calculate the entropy for each topic using 100 buckets: [0, 0.01], (0.01,

0.02], (0.02, 0.03],..., (0.99, 1]. If ni is the number of documents which

fall into i-th bucket and if
∑

100

i=1
ni = d is the number of documents in

the corpus, average entropy for each topic is computed as follows:

H =
100
∑

i=1

−
ni

d
· log

2

(ni

d

)
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Figure 3.3: Square Error with changing α

3. Find the average entropy of topics.

Using the parameters explained above, we use them to measure sensitivity of LDA

results to α. We used different files and we present here the results from a True-8

file with 1000 configurations for each document. The file includes
(

8

2

)

·1000 = 28000

documents with average length of 50 distinct words.

3.2.1 Square Error

Square Error is a good measure for finding correct number of topics. Figure

3.3 shows the change in Square Error while α changes. True-8 file is ran with 2, 4, 8,

16, 32, 64 topics in LDA and when true number of topics is equal to number of topics

ran with LDA, Square Error has the minimum value. For the overestimation case

in which LDA guesses the number of topics higher and the underestimation case in

which LDA guesses the number of topics lower, Square Error is clearly higher than

in the right case, where LDA guesses the number of topics correctly. As α changes,

there is no significant pattern between α and square error.

3.2.2 Kullback-Leibler Divergence

Figure 3.4 displays the change in Kullback-Leibler Divergence while α changes.

For small values of α, Kullback-Leibler Divergence of True-8 file is proportional to
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Figure 3.4: Kullback-Leibler Divergence with changing α

Figure 3.5: Average Entropy using Buckets with changing α

the number of topics in LDA. Moreover, for the underestimation case and right

case (True-8 LDA-n where n ≤ 8), Kullback-Leibler Divergence is almost constant

as α changes. This gives an idea about the number of topics: if Kullback-Leibler

Divergence is constant with changing α, then we have to guess a higher number of

topics for the corpus. Instead, if Kullback-Leibler Divergence is not constant with

changing α, then we have to guess a lower number of topics for the corpus. For

larger values of α, Kullback-Leibler Divergence of overestimation cases where LDA

topic is greater than 8 decreases.
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3.2.3 Average Entropy Using Buckets

Change in average entropy using 100 buckets can be seen in Figure 3.5. As

the number of LDA topics increase, average entropy decreases. For small values of

α, the metric average entropy × LDA-topic is constant. For greater values of α,

there is no pattern between Average Entropy and LDA number of topics.

3.3 Sensitivity to Number of Topics

Another input to LDA is the number of topics. LDA model doesn’t have a

prior knowledge about the number of topics and it distributes the documents in the

corpus into the number of topics given as input to LDA. However, using True-n

files, we can measure the correctness of topic distribution of LDA. For this purpose,

we keep the other input, α = 0.1, constant and use the following parameters to

measure the performance of LDA. We used True-8 files with different number of

configurations per document in our tests and we run these files with 2, 4, 8, 16, 32,

64 topics in LDA.

3.3.1 Square Error

Square Error is the best measure for finding correct number of topics. Figure

3.6 displays the Square Error for different number of topics on the True-8 test files

with 10, 100, 1000 documents per configuration. When the LDA number of topics

is equal to true number of topics, Square Error has its minimum value, it is almost 0.

As LDA number of topics diverge from true number of topics in both ways, Square

Error increases drastically, letting underestimation and overestimation cases have

large Square Error values.

3.3.2 Kullback-Leibler Divergence

The change in Kullback-Leibler Divergence with the LDA number of topics is

displayed in Figure 3.7. As the LDA number of topics increase, Kullback-Leibler

Divergence increases, independent of true number of topics.
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Figure 3.6: Square Error with changing number of topics in LDA

Figure 3.7: Kullback-Leibler Divergence with changing number of topics in LDA

3.3.3 Average Entropy Using Buckets

The change in Average Entropy using 100 buckets is displayed in Figure 3.8.

As the number of LDA topics increase, Average Entropy decreases, independent of

true number of topics.
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Figure 3.8: Average Entropy using Buckets with changing number of topics in LDA



CHAPTER 4

REAL DATA

In the previous chapter, we tested LDA with synthetic data, where we knew true

number of topics apriori. We also tested Latent Dirichlet Allocation with a real

dataset, Enron dataset. Enron was one of the leading companies in the world in

the energy industry, until it bankrupted in 2001. After Bankruptcy, the emails

within the company were collected in a dataset and made public by Federal Energy

Regulatory Commission during the investigation. This dataset has been a good

resource for email classification and Machine Learning research. Enron dataset is

presented and analyzed in more depth in [10].

Enron dataset is a very noisy dataset. For this reason, we preprocess the data

using our Text Processor. Text Processor takes a data file and converts it into the

Compact Vector format, which is the only data format LDA accepts as input.

4.1 Text Processor

Text Processor applies six algorithms to the dataset. The data is preprocessed

first, then stop words are removed, then stemming algorithm is applied. In the

meantime, document vector is created and Term frequency, Inverse document fre-

quency and Compact vector are found using this document vector. The algorithms

used in Text Processor are as follows:

1. Preprocess: This step splits the messages in the dataset using an end of

message indicator. It removes punctuation at the beginning or end of words.

It places message number at the beginning of each message and performs non-

standard processing, such as converting all words into lowercase. It also creates

metadata of each message in the file.

2. Stop Words: Using a list of stop words for English, this step removes all the

words that are in stop words list. Stop words are the words so commonly used

17
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in English that they can not be an indicator of a certain topic for a message

including the word.

3. Stemming: Martin Porter’s Stemming algorithm finds the stems of the words.

It is a linguistic method of determining the common stem of morphologic vari-

ants of a word. The algorithm is described by Martin Porter in [12]. This

algorithm is optional, and if it is used, it decreases the number of words to a

big extent. For example, the following three words have the same stem:

plays =⇒ play

player =⇒ play

playing =⇒ play

On the other hand, some words may be distorted after stemming, therefore

this algorithm is not recommended if the results are expected to comprise

meaningful words or if they will be used for semantic analysis of the dataset.

• Document Vector: In this intermediate step, document vector of the

data file is created. The format of the document vector is:

di = (wi1 wi2 ... wik)

where di is document i and wij is the number of times the keyword at

index j = 1, ..., k exists in document di. This document vector will be

used to find Term frequency, Inverse document frequency and Compact

Vector.

4. Term Frequency(TF): This step finds frequencies of the terms based on

the fact that more frequent terms in a message are more important. Term fre-

quency of each term in a document is the frequency of the words normalized by

the maximum frequency of this word in all documents. Since document vector

contains frequencies of words in documents, given that fij is the frequency
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of word wi in document dj, term frequency of this word in this document is

computed as follows:

tfij = fij/ max
i

(fij)

5. Inverse Document Frequency(IDF): This step finds frequencies of the

terms based on the fact that terms that appear in many different messages are

less likely to be indicative of overall topic of each document. Given fij, the

frequency of word wi in document dj, Inverse document frequency of a word

in a document is computed as follows:

idfij = fij ∗ log2(N/ci)

where N is the total number of documents in the corpus and ci is the number

of documents that contain word wi.

In the Text Processor algorithm, if both TF and IDF is found then another

measure is found by combining the results of TF and IDF, which is TF-IDF.

TF-IDF of the data file is computed as follows:

tfidfij = tfij ∗ idfij

where tfij is the term frequency of word wi in document dj and idfij is the

inverse document frequency of word wi in document dj.

6. Compact Vector: Document vector is a sparse vector. For this reason, we

create a compact version of this vector by displaying a word and its number

of occurrences in the document only if this word appears in the document

at least once. This step creates another representation of document vector,

which has the format LDA requires. The format of compact vector for each

document is as follows:

[M ] [word1] : [count1] [word2] : [count2] ... [wordn] : [countn]
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Figure 4.1: Steps of Text Processor

where M is the number of unique terms in the document. wordi is an integer

which indexes a word in the document and counti is the number of occurrences

of wordi in this document. The first occurrence of the word at index wordi in

the document is before the first occurrence of the word at index wordj, given

that i < j. counti is greater than 0 for each wordi, as compact vector only

displays the words that occur at least once in the document.

Steps of Text Processor are shown in Figure 4.1. After data is processed in Text

Processor algorithm, compact vector of the data file is created and the file is ready

to be used as an input to LDA.

4.2 Results

The experiments on Enron dataset is designed as follows: We first perform

the Principal Component Analysis of Enron dataset to give an idea of the clustering

of documents to topics. Then we use parameters Square Error, Kullback-Leibler

Divergence and Average Entropy Using Buckets measures to find the exact number

of topics in the Enron dataset.

4.2.1 Principal Component Analysis

The goal of Principal Component Analysis (PCA) is to find a new set of

dimensions that captures the variability of the data best [7]. For this purpose, we
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Figure 4.2: Percentage of Variance captured by topics with LDA runs on Enron
dataset with 2 topics and 6 topics

used Enron dataset as input to LDA and ran with 2 topics and 6 topics respectively.

The percentage of variance captured by topics for LDA runs with 2 topics and 6

topics are displayed in Figure 4.2.

PCA of these two tests show that the percentage of variance captured by topics

when LDA is ran with 2 topics are the same and both 50 %. PCA of Enron dataset

ran with 6 topics in LDA show that some topics, namely topics 4 and 1, captures

the variance of the data most.

4.2.2 Parameters

We tested Enron dataset with the same parameters we used for testing syn-

thetic data. Square Error remains an indicator of the correct number of topics.

Kullback-Leibler Divergence and Average Entropy changes directly and inversely

proportional to LDA number of topics, respectively.

4.2.2.1 Square Error

We ran Enron dataset with 2, 4, 8, 16, 32, 64 topics in LDA with α = 0.1 and

the result is shown in Figure 4.3. Square Error is minimum when LDA number of

topics is 8. This information from Square Error measure does not imply that true

number of topics of Enron dataset is 8. However, it implies that true number of

topics of Enron dataset is in the range (4, 16), assuming each document contains 2

topics with equal proportions. This is because, the optimum value of Square Error

can be anywhere in this range, including 8 as a candidate for true number of topics.
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Figure 4.3: Square Error of Enron dataset ran with different LDA number of topics

Figure 4.4: Square Error of Enron dataset ran with different LDA number of topics
of smaller range

For this reason, we tested Enron dataset with K ∈ [4, 16] number of topics to find

the exact number of topics of Enron dataset. Figure 4.4 shows the change in Square

Error while the number of topics changes in the interval [4,16]. As the figure shows,

Square Error reaches its minimum when LDA number of topics is 9. Therefore, we

conclude that true number of topics of Enron dataset is 9, not 8. This observation

gives us a good choice for number of topics which is feeded to LDA as its input. As

a result, classification of emails in the Enron dataset will be most accurate when

the documents of the dataset are classified into 9 distinct topics.
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Figure 4.5: Kullback-Leibler Divergence of Enron dataset with changing α

4.2.2.2 Kullback-Leibler Divergence

Kullback-Leibler Divergence of Enron dataset for LDA runs with different

number of topics are displayed in Figure 4.5. As we concluded for synthetic data,

Kullback-Leibler Divergence of Enron dataset is almost constant for 2, 4, 8 topics.

Starting with 16 topics, Kullback-Leibler divergence is not constant for different

values of α. Therefore, we conclude that true number of topics of Enron dataset is

in the range [8,16). This result justifies our previous result concluded from Square

Error that true number of topics of Enron dataset is 9. However, the difference is

not significant.

4.2.2.3 Average Entropy using Buckets

Another measure we used to test Enron dataset is Average Entropy using 100

buckets. Figure 4.6 proves for this real dataset that Average Entropy is inversely

proportional to number of topics used for LDA. The same figure also displays the

change in Kullback-Leibler Divergence which is directly proportional to number of

topics, in contrast to Average Entropy. Table 4.1 summarizes the results of LDA

runs with α = 0.1 and different number of topics on Enron dataset.
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Figure 4.6: Average Entropy using Buckets and Kullback-Leibler Divergence of En-
ron dataset for different number of Topics in LDA

Number of Topics Square Error Kullback-Leibler Divergence Average Entropy
2 294.6098 0.763 4.1391
4 259.7715 1.5844 3.1985
8 230.7499 2.451 1.9707
16 248.003 3.4669 0.9906
32 264.8856 4.4571 0.4609
64 276.6158 5.3131 0.2448

Table 4.1: Square Error, Kullback-Leibler Divergence and Average Entropy of En-
ron dataset after LDA runs with α = 0.1 and different number of topics

4.2.3 Top Words of Topics

Among the output files of LDA, .beta file includes topic×word matrix which

is relevance matrix of terms to topics. Using this matrix, we can find top keywords

of each topic and see if these words can be “named” as in a single topic. For this

purpose, we used Text Processor on Enron dataset and cleaned the data to a big

extent. We did not use Stemming algorithm of Text Processor for finding top words,

because we need to find meaningful English words to collect them in a single topic.

After processing on Enron dataset, we obtained 11549 distinct keywords. We ran
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Figure 4.7: Top-20 keywords of 2 topics in Enron dataset

LDA on Enron dataset using 6 topics, and found top-20 keywords of these topics by

mapping the highest word frequencies of each topic to corresponding words. Among

these topics, top-20 keywords of 2 topics could be collected in a single topic. Figure

4.7 shows these top words. The first topic is collected under the topic of “Energy”

and the second topic is collected under the topic of “Business”.



CHAPTER 5

CONCLUSION

5.1 Conclusion and Discussion

Classification of large datasets into groups can be achieved using Latent Dirich-

let Allocation. We modeled and tested both synthetic and real textual data and

clustered the documents of these datasets into groups called topics. We found good

measures, Square Error and Kullback-Leibler Divergence, for finding the true num-

ber of topics of a dataset before using this dataset as an input to LDA. Given this

true number of topic for the dataset, LDA produces more accurate results when the

dataset is classified into this number of topics using LDA. As a result, the minimum

value of Square Error is the point where LDA is ran with true number of topics.

Moreover, Kullback-Leibler Divergence is constant if LDA is run with number of

topics less than true number of topics. Using these parameters, we found out that

Enron dataset has exactly 9 topics.

5.2 Future Work

Latent Dirichlet Allocation relates each document of the dataset with each

topic with some frequency value. Therefore, each document is related to each topic

to some extent. Clustering the dataset partitions the documents into disjoint group

such that each group represents documents that are most relevant to a topic. This

maximizes the number of intra-cluster documents, that is, the number of documents

in the cluster. Topics are not that strictly grouped though, some documents may be

relevant to more than one topic, and some documents may not be even relevant to

any topic when the dataset is partitioned into topics with LDA. For this purpose,

we can define hubs and outliers. Hubs are the documents that bridge two or more

topics. Outliers are documents that are marginally connected to topics. Identifying

hubs are useful to find out documents which are relevant to more than one topic.

Identifying outliers are useful, because they are irrelevant to all topic and can be

treated as noise in the data [16].

26



27

Mining social networks from a corpus of email messages is another interesting

topic. For this purpose, the best idea to start with is to make use of “From”

and “To” fields of email messages to construct the network of email messages as a

digraph. In this digraph, nodes are the people and for each email message, there

exists a directed edge form the sender of the email to the recipients of the email [13].

After differentiating all edges from a person to any other person in the network by

unique identifiers of email messages, we can keep track of activities in the community

and mine hidden communities by finding pattern in this directed email network

[14]. These patterns which are extracted from information flow of email messages

identifies closed groups in large communities.
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