
Proving Theorems with Athena

David R. Musser Aytekin Vargun

August 28, 2003, revised January 26, 2005

Contents

1 Introduction 1

2 Proofs about order relations 2

3 Proofs about natural numbers 7
3.1 Term rewriting methods . 8
3.2 Proof by induction . 11
3.3 Steps of a proof of an Nat inductive property. 12
3.4 Basis case proof . 12
3.5 Induction step proof . 12
3.6 The full proof . 13

4 Proofs about lists 15
4.1 Append Nil Property . 15
4.2 Steps of a proof of a List inductive property 17
4.3 Another proof about Append 17

1 Introduction

The Athena language and proof system [1, 2] developed at MIT by K. Ark-
oudas provides a way to present and work with mathematical proofs so that
they are both human-readable and machine-checkable. In this document we
work through several examples showing how one can express axioms and
carry out proofs of theorems using a variety of proof techniques. In sec-
tion 2 we work with a few laws of order relations such as irreflexivity and
transitivity (the axioms of a strict partial-order relation, <) and prove that
additional laws such as asymmetry are logical consequences of the axioms.

1

These proofs illustrate some of Athena’s primitive deduction methods [2],
such as modus ponens, universal specialization, and proof by contradiction.
In Sections 3 and 4 we illustrate reasoning about inductive (recursive) data
structures via examples involving natural numbers and list structures. We
define these types inductively via Athena’s datatype construct, and bring
into play the powerful inference method of proof-by-induction via Athena’s
by-induction construct. Since the properties we are proving, such as the
associative law for appending lists together, are written as equations, we
make extensive use of term rewriting capabilities that we have introduced
as (user-defined) inference methods. These rewriting methods, which are
documented at the beginning of Section 3, should be useful in many other
proofs that involve equations.

2 Proofs about order relations

In this section we illustrate some basic proof methods in Athena with for-
malization of some properties of an order relation.

We first load the rewriting file, which defines auxiliary inference methods
for carrying out term rewriting inferences (described in Section 3 and used
in Sections 3 and 4), plus a method called conclude that allows tracing of
proof attempts as an aid to debugging (illustrated in this section).

(load-file "rewriting.ath")

Unless you have a copy of rewriting.ath in the directory in which you
started Athena, you’ll need to insert in the above directive the directory
path where rewriting.ath resides; e.g., on CSLab machines you would
write

(load-file "/cs/musser/public.html/gsd/athena/rewriting.ath")

We next declare the arity of an operator we call is< in terms of an arbitrary
domain we call D:1

(domain D)

(declare is< (-> (D D) Boolean))

We now assert as axioms the irreflexive and transitive laws for is<:
1There is already a declaration of < on the predefined domain Num.

2

(define Order-Irreflexive
(forall ?x
(not (is< ?x ?x))))

(define Order-Transitive
(forall ?x ?y ?z

(if (and (is< ?x ?y) (is< ?y ?z))
(is< ?x ?z))))

(assert Order-Irreflexive Order-Transitive)

These axioms characterize is< as a strict partial order relation. From these
axioms we can prove another law, asymmetry:

(define Order-Asymmetry
(forall ?x ?y

(if (is< ?x ?y)
(not (is< ?y ?x)))))

The proof is by contradiction, which is expressed in Athena with its primitive
method by-contradiction:

(Order-Asymmetry
BY (pick-any x y

(assume (is< x y)
(!by-contradiction
(assume (is< y x)
(dseq
((is< x x)
BY (!mp (!uspec* Order-Transitive [x y x])

(!both (is< x y)
(is< y x))))

((not (is< x x))
BY (!uspec Order-Irreflexive x))
(!absurd (is< x x) (not (is< x x)))))))))

The result of executing this proof is

Theorem: (forall ?x:D
(forall ?y:D
(if (is< ?x ?y)

(not (is< ?y ?x)))))

The contradiction we get, expressed in the arguments to absurd, is (is<
x x) and (not (is< x x)). The method uspec* used in proving the first

3

of these relations is an extension of the primitive universal specialization
method, uspec:

uspec* P [t1 . . . tn]

replaces the first n quantified variables in P with the terms t1, . . . , tn.

Thus, we’ve shown that the asymmetry law is a theorem when one has
a partial order relation; one does not have to assert it as a separate axiom.

In the above proof we used Athena’s BY method, which has the syntax2

(〈proposition〉
BY 〈deduction〉)

which sets up proposition as the one to be proved by the deduction that
follows BY. That is, Athena checks that the result proved by the deduction
is the same proposition as 〈proposition〉; if it is different, Athena reports an
error. Using BY at intermediate steps within the proof helps document the
subgoals into which the deduction divides the overall proof. If something is
wrong at any stage of the deduction, however, it can be difficult to tell where
the problem is. For this reason, we have devised a method called conclude
that provides for tracing of the progress of the proof. The conclude method
is called with the syntax

(!(conclude 〈proposition〉)
〈deduction〉)

which, like BY, sets up 〈proposition〉 as a proposition to be proved by the
deduction that follows. With conclude, however, we can turn proof tracing
on with3

(set! tracing true)

Now if we redo the above proof using conclude,
2This is Athena’s only infix operator.
3Note that the exclamation point follows set rather than preceding it; this is not a

method call but simply a call of a function named set!. The inclusion of an exclamation
point in the name of an Athena function means that it is an imperative procedure executed
for its effect rather than for computing value, a convention borrowed from the Scheme
language.

4

(!(conclude Order-Asymmetry)
(pick-any x y

(assume (is< x y)
(!by-contradiction
(assume (is< y x)
(dseq
(!(conclude (is< x x))
(!mp (!uspec* Order-Transitive [x y x])

(!both (is< x y)
(is< y x))))

(!(conclude (not (is< x x)))
(!uspec Order-Irreflexive x))

(!absurd (is< x x) (not (is< x x)))))))))

the output is

Proving at level 1:
(forall ?x:D

(forall ?y:D
(if (is< ?x ?y)

(not (is< ?y ?x)))))
Proving at level 2:
(is< ?v318 ?v318)
Done at level 2
Proving at level 2:
(not (is< ?v318 ?v318))
Done at level 2

Done at level 1

Theorem: (forall ?x:D
(forall ?y:D
(if (is< ?x ?y)

(not (is< ?y ?x)))))

With such tracing, if there is an error at any step of the proof, it is easier to
see where the problem is. In all subsequent proofs we will use the conclude
method. However, in showing output we will assume tracing is turned off:

(set! tracing false)

Now suppose we define a binary relation E as follows:

5

(declare E (-> (D D) Boolean))

(define E-Definition
(forall ?x ?y

(iff (E ?x ?y)
(and (not (is< ?x ?y))

(not (is< ?y ?x))))))

The name E for this relation is motivated by fact that we can show that
if E is assumed to be transitive then in combination with the partial order
axioms for is< we can prove that E is in fact an equivalence relation; i.e.,
that it also obeys the other two axioms of an equivalence relation besides
the transitive law, namely the reflexive and symmetric laws.

(define E-Transitive
(forall ?x ?y ?z

(if (and (E ?x ?y) (E ?y ?z))
(E ?x ?z))))

(assert E-Definition E-Transitive)

(define E-Reflexive
(forall ?x
(E ?x ?x)))

(!(conclude E-Reflexive)
(pick-any x
(dseq
(!(conclude (not (is< x x)))
(!uspec Order-Irreflexive x))

(!(conclude (E x x))
(!mp (!right-iff (!uspec* E-Definition [x x]))

(!both (not (is< x x))
(not (is< x x))))))))

(define E-Symmetric
(forall ?x ?y
(if (E ?x ?y)

(E ?y ?x))))

(!(conclude E-Symmetric)
(pick-any x y

(assume (E x y)
(dlet ((both-not

6

(and (not (is< x y))
(not (is< y x)))))

(dseq
(!(conclude both-not)
(!mp (!left-iff (!uspec* E-Definition [x y]))

(E x y)))
(!(conclude (E y x))
(!mp (!right-iff (!uspec* E-Definition [y x]))

(!both (!right-and both-not)
(!left-and both-not)))))))))

(define E-Equivalent
(and E-Reflexive

(and E-Symmetric
E-Transitive)))

(!(conclude E-Equivalent)
(!both E-Reflexive

(!both E-Symmetric
E-Transitive)))

The output from this last deduction is

Theorem: (and (forall ?x:D
(E ?x ?x))

(and (forall ?x:D
(forall ?y:D
(if (E ?x ?y)

(E ?y ?x))))
(forall ?x:D

(forall ?y:D
(forall ?z:D
(if (and (E ?x ?y)

(E ?y ?z))
(E ?x ?z)))))))

3 Proofs about natural numbers

Now we turn to some simple proofs by induction. We first declare a natural
numbers type as an inductive datatype.

(datatype Nat zero (succ Nat))

We next define a Plus function, except that instead of actually defining it as
a function, we specify its behavior axiomatically in terms of a Plus symbol.

7

The Plus function will take two Nat values as parameters and return
their sum as a Nat value.

(declare Plus (-> (Nat Nat) Nat))

We next define the propositions we intend to use to define the meaning of
Plus axiomatically.

(define Plus-zero-axiom
(forall ?n (= (Plus ?n zero) ?n)))

(define Plus-succ-axiom
(forall ?n ?m

(= (Plus ?n (succ ?m))
(succ (Plus ?n ?m)))))

After defining these propositions, we add them as axioms to Athena’s as-
sumption base. We can only use the axioms in the assumption base to prove
new propositions.

(assert Plus-zero-axiom Plus-succ-axiom)

3.1 Term rewriting methods

Note that these axioms are stated using equations. When working with
equations, one often structures a proof as sequence of rewriting steps, in
which a term is shown to be equal to another term by means of a substitu-
tion that is justified by an universally quantified equation (or just a simple
unquantified equation) in the assumption base. For example, we can rewrite
the term

t =(succ (Plus zero (succ (succ zero))))
(representing (0 + 2) + 1)

to

u =(succ (succ (Plus zero (succ zero))))
(representing (0 + 1) + 2)

using our universally quantified equation

(define Plus-succ-axiom
(forall ?n ?m

(= (Plus ?n (succ ?m))
(succ (Plus ?n ?m)))))

8

This can be done by substituting zero for ?n and (succ (succ zero)) for
?m, producing the specialized equation

(= (Plus zero (succ (succ zero))) (succ (Plus zero (succ
zero))))

and then replacing the occurrence of the left hand side of this equation

(Plus zero (succ (succ zero)))

within t with the right hand side

(succ (Plus zero (succ zero)))

to produce u. We say that the equation is being used “left-to-right” or
as a “left-to-right rewriting rule.” (If the equation has no quantifiers, no
substitution need be computed; the identity substitution is used.)

Athena does not currently have such rewriting methods built in, so we
have created the following rewriting methods (implemented in the rewriting.ath
file).

setup c t

initializes cell c to hold term t. Actually it internally holds the equation
(= t t), and the reduce and expand methods transform the right hand side
of this equation. There are two predefined cells named left and right.

reduce c u E

attempts to transform the term t in cell c to be identical with the given
term u by using equation E left-to-right.

expand c u E

attempts to transform the term u to the term t in cell c by using equa-
tion E left-to-right.

combine left right

attempts to combine the equation internally stored in cell left, say (= t t′),
with the equation internally stored in cell right, say (= u u′), to deduce
(= t u) (which succeeds if t′ and u′ are identical).

9

As a simple example consider the following deduction in which we prove
an equality by reducing both its left and its right hand side term to the same
term, (succ (succ (succ zero))).

(!(conclude (= (Plus zero (succ (succ (succ zero))))
(succ (succ (succ (Plus zero zero))))))

(dseq
(!setup left (Plus zero (succ (succ (succ zero)))))
(!setup right (succ (succ (succ (Plus zero zero)))))
(!reduce left (succ (Plus zero (succ (succ zero))))

Plus-succ-axiom)
(!reduce left (succ (succ (Plus zero (succ zero))))

Plus-succ-axiom)
(!reduce left (succ (succ (succ (Plus zero zero))))

Plus-succ-axiom)
(!reduce left (succ (succ (succ zero))) Plus-zero-axiom)
(!reduce right (succ (succ (succ zero))) Plus-zero-axiom)
(!combine left right)))

This produces

Theorem: (= (Plus zero
(succ (succ (succ zero))))

(succ (succ (succ (Plus zero zero)))))

It’s possible to trace the execution of rewriting methods with

(set! tracing-rewrites true)

Then reentering the above deduction produces

Rewriting
(Plus zero
(succ (succ (succ zero))))

-->
(succ (Plus zero

(succ (succ zero))))
-->
(succ (succ (Plus zero

(succ zero))))
-->
(succ (succ (succ (Plus zero zero))))
-->
(succ (succ (succ zero)))

10

Rewriting
(succ (succ (succ (Plus zero zero))))
-->
(succ (succ (succ zero)))

Theorem: (= (Plus zero
(succ (succ (succ zero))))

(succ (succ (succ (Plus zero zero)))))

When we show output in subsequent examples we assume tracing of rewrites
is turned off:

(set! tracing-rewrites false)

It should be noted that these rewriting methods, although not in the base
Athena system, are guaranteed to be logically sound (relative to the sound-
ness of Athena’s logical system) because they are programmed in terms of
Athena’s primitive methods and all of the means that Athena provides for
composing methods preserve soundness.

3.2 Proof by induction

The proof of the equational property above would be much simpler if had
as a general property of Plus,

(define Plus-zero-property
(forall ?n (= (Plus zero ?n) ?n)))

Whereas Plus-zero-axiom states that zero serves as a right-identity el-
ement for the Plus operator, this proposition states that it is also a left-
identity element. The validity of this property is, however, not a consequence
simply of the equational axioms we’ve stated about Plus and zero; it de-
pends on the fact that Nat is inductively defined by the datatype declaration
(datatype Nat zero (succ Nat)). According to the built-in semantics of
datatype, the only values of type Nat are those that can be expressed with
syntatically-correct and type-correct combinations of zero and succ terms:

zero
(succ zero)
(succ (succ zero))
(succ (succ (succ zero)))
...

For such inductively-defined types, we can prove propositions using the
method of proof by induction.

11

3.3 Steps of a proof of an Nat inductive property.

There are two main steps in a proof by induction.

• The basis case. In our Nat datatype example, this is a special case in
which the proposition to be proved is instantiated with zero.

• The induction step. In our Nat datatype example, we instantiate the
proposition with (succ n) and attempt to prove it, assuming the propo-
sition is true for n.

These separate proofs can be combined using Athena’s by-induction con-
struct to conclude the proposition is true for all n.

3.4 Basis case proof

Before doing the full proof, let’s just check the basis case first.

(!(conclude (= (Plus zero zero) zero))
(dseq
(!setup left (Plus zero zero))
(!setup right zero)
(!reduce left zero Plus-zero-axiom)
(!combine left right)))

In the proof itself, the setup calls set up left and right to hold the left
and right hand sides of the equation to be proved. In this simple case
only one application of reduce, applied to left, is sufficient to produce the
same term, zero, as we have placed in right. Note that reduce has to
specialize the quantified variable ?n in Plus-zero-axiom to zero in order to
use the result (= (Plus zero zero) zero) to substitute zero for (Plus
zero zero).

3.5 Induction step proof

We next proceed with the induction step of the proof:

12

(!(conclude (forall ?n (if (= (Plus zero ?n) ?n)
(= (Plus zero (succ ?n))

(succ ?n)))))
(pick-any n
(assume (= (Plus zero n) n)
(dseq
(!setup left (Plus zero (succ n)))
(!setup right (succ n))
(!reduce left (succ (Plus zero n)) Plus-succ-axiom)
(!reduce left (succ n) (= (Plus zero n) n))
(!combine left right)))))

Note that in the last call of reduce we used an unquantified equation to do
the reduction; we could do that since the left hand side, Plus zero n, is an
exact match for a subterm of (succ (Plus zero n)).

3.6 The full proof

After the basis case and inductive step proofs given above have been exe-
cuted, the assumption base will contain the necessary ingredients for com-
pletion of the proof using Athena’s by-induction deduction:

(by-induction
Plus-zero-property
(zero
(!claim (= (Plus zero zero) zero)))

((succ n)
(!mp (!uspec (forall ?n (if (= (Plus zero ?n) ?n)

(= (Plus zero (succ ?n))
(succ ?n))))

n)
(= (Plus zero n) n))))

This produces

Theorem: (forall ?n:Nat
(= (Plus zero ?n) ?n))

While this approach — successively doing the basis case, the induction step,
and then applying by-induction — works, it seems a bit awkward. Why is
it necessary to apply uspec and mp in the succ clause of the by-induction
application? It’s because by-induction actually sets up the induction hy-
pothesis and puts it into the assumption base automatically, so one doesn’t
really to need to do it manually the way we did in proving the induction step
as a separate proof. We can simply package the full proof into an application
of by-induction, as follows:

13

(by-induction
Plus-zero-property
(zero
(!(conclude (= (Plus zero zero) zero))
(dseq
(!setup left (Plus zero zero))
(!setup right zero)
(!reduce left zero Plus-zero-axiom)
(!combine left right))))

((succ n)
(!(conclude (= (Plus zero (succ n)) (succ n)))
(dlet ((induction-hypothesis

(= (Plus zero n) n)))
(dseq
(!setup left (Plus zero (succ n)))
(!setup right (succ n))
(!reduce left (succ (Plus zero n)) Plus-succ-axiom)
(!reduce left (succ n) induction-hypothesis)
(!combine left right))))))

Again, this produces:

Theorem: (forall ?n:Nat
(= (Plus zero ?n) ?n))

In this proof, we defined and used the induction hypothesis, but we didn’t
have to assume it. Again, this is because by-induction automatically adds
induction hypotheses to the assumption base according to the inductive
structure of the type.

The possible drawback of packaging the full proof into a call of by-induction
is that if there is an error somewhere, it can be harder to pinpoint it than
if the basis case and inductive step proofs are done separately. However, we
can avoid this problem by using conclude method calls as in the above proof
(rather than BY) so that we can turn tracing on to show progress through
the proofs of the individual subgoals.

In developing a proof within by-induction, we may want to test out the
basis case proof before starting on the induction step proof. This is possible;
we just have to include the inductive step clause with correct syntax. For
example,

14

(by-induction
Plus-zero-property
(zero
(!(conclude (= (Plus zero zero) zero))
(dseq
(!setup left (Plus zero zero))
(!setup right zero)
(!reduce left zero Plus-zero-axiom)
(!combine left right))))

((succ n)
(!claim true)))

parses and executes; it produces an error

Error, top level, 11.3: A Inductive subdeduction failed to establish
the right conclusion. The required conclusion was:
(= (Plus zero

(succ ?v296))
(succ ?v296))

but the derived one was:
true
(where the fresh variable ?v296 has replaced the pattern variable n).

but the error is just with the inductive step part, indicating that the basis
case proof went through.

4 Proofs about lists

In this section we axiomatize list datatypes and prove a couple of useful
properties based on the axioms using proof by induction. Although this
example exhibits strong similarities to the inductive structure and proof we
introduced in the previous section about natural numbers, there are some
additional twists that reveal a few more of the capabilities of Athena.

4.1 Append Nil Property

Athena’s type system allows polymorphism: we can declare polymorphic
lists as a datatype. In fact, the following declaration is predefined:

(datatype (List-Of T) Nil (Cons T (List-Of T)))

Here T is a type variable that can be instantiated with any type, so that,
for example,

15

• (Cons zero (Cons (succ zero) Nil)) is a term of type (List Nat)
(if Nat has been introduced as a datatype as in the previous section);

• (Cons true Nil) is a term of type (List Boolean);

• however, (Cons zero (Cons true Nil)) is an error (“Ill-sorted term”)
since all elements of a List must have the same type.

We define an Append function on Lists, except that instead of actually
defining it as a function, we specify its behavior axiomatically in terms of
an Append symbol. Append takes two Lists as parameters and returns a
single list.

(declare Append ((T) -> ((List-Of T) (List-Of T)) (List-Of T)))

Note that Athena allows a list of type parameters to precede the function
arrow; in this case there is only one, T.

The semantics we want for (Append p q) is it contains all of the elements
of p followed by all of the elements of q. We next define the propositions we
intend to use to define the meaning of Append axiomatically.

(define Append-Nil-axiom
(forall ?q
(= (Append Nil ?q) ?q)))

(define Append-Cons-axiom
(forall ?x ?r ?q

(= (Append (Cons ?x ?r) ?q)
(Cons ?x (Append ?r ?q)))))))

After defining these propositions, we add them as axioms to Athena’s as-
sumption base.

(assert Append-Nil-axiom Append-Cons-axiom)

There are of course other properties of Append that could be stated and
asserted as axioms. For example, the Append-Nil-axiom above says that
the Nil list acts as a left-identity element for the Append operator. As in
the case of zero in the Nat example in the previous section, it is natural to
ask, is Nil also a right-identity element? I.e., is it also true that

(define Append-Nil-property
(forall ?q (= (Append ?q Nil) ?q)))

16

In fact, we can prove that this proposition is a consequence of the two axioms
for Append, using proof by induction. In Athena such proofs are supported
by by-induction, which works just as well with the List datatype as we
saw it did with Nat in the previous section.

4.2 Steps of a proof of a List inductive property

Again, there are two main parts of such a proof by induction.

• The basis case. In our List datatype example, this is a special case
in which the proposition is instantiated with Nil.

• The induction step. In our List datatype example, we instantiate the
proposition with (Cons x q) and attempt to prove it, assuming the
proposition is true for q.

These proofs can be combined using Athena’s by-induction construct to
conclude the proposition is true for all q.

(by-induction
Append-Nil-property
(Nil
(!(conclude (= (Append Nil Nil) Nil))
(dseq
(!setup left (Append Nil Nil))
(!setup right Nil)
(!reduce left Nil Append-Nil-axiom)
(!combine left right))))

((Cons x p)
(!(conclude (= (Append (Cons x p) Nil) (Cons x p)))
(dlet ((induction-hypothesis

(= (Append p Nil) p)))
(dseq
(!setup left (Append (Cons x p) Nil))
(!setup right (Cons x p))
(!reduce left (Cons x (Append p Nil)) Append-Cons-axiom)
(!reduce left (Cons x p) induction-hypothesis)
(!combine left right))))))

4.3 Another proof about Append

The final example is the proof of another property of Append, again by
induction.

17

(define Append-Associative
(forall ?p ?q ?r

(= (Append (Append ?p ?q) ?r)
(Append ?p (Append ?q ?r)))))

The new twist here is that we have two additional quantified variables (?q
and ?r) besides the one (?p) on which we do the induction. These quantified
variables must be dealt with in the proof. The Athena deduction that allows
us to deal with them properly is pick-any.

(by-induction
Append-Associative
(Nil
(!(conclude (forall ?q ?r (= (Append (Append Nil ?q) ?r)

(Append Nil (Append ?q ?r)))))
(pick-any q r

(dseq
(!setup left (Append (Append Nil q) r))
(!setup right (Append Nil (Append q r)))
(!reduce left (Append q r) Append-Nil-axiom)
(!reduce right (Append q r) Append-Nil-axiom)
(!combine left right)))))

((Cons x p)
(!(conclude (forall ?q ?r (= (Append (Append (Cons x p) ?q) ?r)

(Append (Cons x p) (Append ?q ?r)))))
(dlet ((induction-hypothesis

(forall ?q ?r (= (Append (Append p ?q) ?r)
(Append p (Append ?q ?r))))))

(pick-any q r
(dseq
(!setup left (Append (Append (Cons x p) q) r))
(!setup right (Append (Cons x p) (Append q r)))
(!reduce left (Append (Cons x (Append p q)) r)

Append-Cons-axiom)
(!reduce left (Cons x (Append (Append p q) r))

Append-Cons-axiom)
(!reduce left (Cons x (Append p (Append q r)))

induction-hypothesis)
(!reduce right (Cons x (Append p (Append q r)))

Append-Cons-axiom)
(!combine left right)))))))

18

References

[1] Konstantine Arkoudas. Denotational Proof Languages. PhD thesis, MIT,
2000. 1

[2] Konstantine Arkoudas. An athena tutorial, 2004. http://www.cag.
csail.mit.edu/~kostas/dpls/athena. 1

19

http://www.cag.csail.mit.edu/~kostas/dpls/athena
http://www.cag.csail.mit.edu/~kostas/dpls/athena

	Introduction
	Proofs about order relations
	Proofs about natural numbers
	Term rewriting methods
	Proof by induction
	Steps of a proof of an Nat inductive property.
	Basis case proof
	Induction step proof
	The full proof

	Proofs about lists
	Append Nil Property
	Steps of a proof of a List inductive property
	Another proof about Append

