
Heuristics for Proof Development in Athena

David R. Musser

February 4, 2005

Contents

1 Introduction 1

2 Goal-Driven Proof Development 2
2.1 Proof by contradiction . 2
2.2 Proof of an implication . 2
2.3 Proof of an equivalence . 3
2.4 Proof by case-splitting . 3
2.5 Proof of a conjunction . 4
2.6 Proof of a disjunction . 4
2.7 Proof of a universally quantified proposition 5
2.8 Proof of an existentially quantified proposition 5

3 Premise-Driven Proof Development 5
3.1 Using a conjunction . 5
3.2 Using a disjunction . 6
3.3 Using an implication . 6
3.4 Using an equivalence . 6
3.5 Using a universally-quantified premise 6
3.6 Using an existentially-quantified premise 7

4 Example 7

1 Introduction

Proofs can be developed by a goal-driven or top-down strategy — starting with
the desired conclusion (the goal) and reducing it by some deduction to one or
more subgoals, further reducing each of the subgoals, and so on, until subgoals
are generated that are identical to the original premises.

Alternatively, proofs can be developed by a premise-driven or bottom-up
strategy — starting with the premises and deducing from them new premises,
combining those with the original premises to deduce still more new premises,
and so on, until the goal is deduced.

1

In actual practice, it is useful to combine these strategies, working both
top-down and bottom-up during the same proof. The Athena language and
proof-checking system [1, 2] supports both top-down and bottom-up proof de-
velopment with the deduction constructs provided in the language and with its
primitive methods. This document presents both kinds of strategies as “proof
templates” that one can apply to goals or premises to suggest a deduction or
method one can use to further the proof. Proof development using these strate-
gies isn’t an entirely algorithmic process since there is often more than one
template that could be used, and while in some cases either path might ulti-
mately lead to a complete proof, in other cases one would reach a dead end or
go in circles. These templates should therefore be regarded as heuristics that
can aid in proof development and will often lead to success in proofs if applied
with the kind of skill and foresight that come from experience.

In these templates, by a “premise” we mean any proposition in Athena’s
current assumption base, including those that are added to it during the cur-
rent deduction; and by the “goal” we mean the conclusion (another proposi-
tion) one is trying to prove, including (sub)goals produced by deduction steps.
For stating goals we use the conclude method from the auxiliary methods
file rewriting.ath (available from http://www.cs.rpi.edu/~{}musser/gsd/
athena; see also [3]).

(!(conclude 〈proposition〉)
〈deduction〉)

Like Athena’s built-in operator BY, this sets up 〈proposition〉 as a proposition
to be proved by the deduction that follows. The use of conclude instead of
BY, however, helps in developing proofs because one can trace the progress of
the proof (by doing (set! tracing true), which causes each argument of a
conclude call to be printed).

2 Goal-Driven Proof Development

For each syntactic form that a goal proposition can take, we suggest a type of
deduction that can reduce it to one or more subgoals.

2

http://www.cs.rpi.edu/~{}musser/gsd/athena
http://www.cs.rpi.edu/~{}musser/gsd/athena

2.1 Proof by contradiction

(!(conclude (not P))
(!by-contradiction

(assume P
. . .)))

The goal in the proof within
the by-contradiction call is to
show that false follows from P
and any other premises. To use
proof by contradiction, the proof
goal doesn’t have to be in the
form (not P); see the next proof
template.

(!(conclude P)
(!by-contradiction

(assume (not P)
. . .)))

In either of these forms, the
inner deduction usually takes
the form, for some proposition Q,
(dseq
...
(!(conclude Q)

. . .)
...
(!(conclude (not Q))

. . .)
(!absurd Q (not Q)))

2.2 Proof of an implication

(!(conclude (if P Q))
(assume P

(!(conclude Q)
. . .)))

Except when used for a toplevel
goal of the form (if P Q), it’s
often best to omit the goal part
of this template and just write
the (assume . . .) deduction; this
works well (in terms of readabil-
ity) when doing proofs within
equiv, cases or cd deductions
(see below).

2.3 Proof of an equivalence

(!(conclude (iff P Q))
(!equiv

(assume P
(!(conclude Q)

. . .))
(assume Q

(!(conclude P)
. . .))))

We prove each implication (if P
Q) and (if Q P) and combine
them with equiv.

3

2.4 Proof by case-splitting

(!(conclude P)
(!cases

(assume Q
(!(conclude P)

. . .)
(assume (not Q)

(!(conclude P)
. . .)))

For this to work out, Q must be
chosen so that one proof of P
can be found when Q is assumed
and a different proof of P can be
found when (not Q) is assumed.
Note that within one or both of
the subcases there could be fur-
ther case splitting by using this
proof template again (or the next
one, cd) at that level.

(!(conclude P)
(!cd

(or Q R)
(assume Q

(!(conclude P)
. . .)

(assume R
(!(conclude P)

. . .)))

This form of case-splitting is the
method of choice when one has
a disjunction (or Q R) as a
premise or can deduce it, and
when one proof of P can be found
when Q is assumed and a differ-
ent proof of P can be found when
R is assumed. Note that within
one or both of the subcases there
could be further case splitting by
using this proof template again
(or by using cases) at that level.

2.5 Proof of a conjunction

(!(conclude (and P Q))
(dseq
(!(conclude P)

. . .)
(!(conclude Q)

. . .)
(!both P Q)))

The top level statement of the
goal (and P Q) might be omitted
if the inner deductions are not
too long, since (!both P Q)
makes it clear the conjunction is
the goal. One can also put the
both call at the top with the form

(!both
(!(conclude P)

. . .)
(!(conclude Q)

. . .))
which avoids having to repeat
P and Q. However, if the proof
of Q depends on P , this won’t
work since P will not be in
the assumption base during the
proof of Q, so one must use the
sequential form in that situation.

4

2.6 Proof of a disjunction

(!(conclude (or P Q))
(!either
(!(conclude P)

. . .)
Q))

Alternatively, prove Q. Usually
though such a proof using either
will be a subcase of a larger proof;
see the next proof template.

(!(conclude (or P Q))
(!cases

(assume P
(!either P Q))

(assume (not P)
(!either

P
(!(conclude Q)

. . .)))))

In both of the subcases, (or P
Q) is proved, but under differ-
ent assumptions, which are then
taken into account by the cases
method. Note that in the P
case, Q is not necessarily in the
assumption base, but it doesn’t
have to be since the other argu-
ment of either, P , is in the as-
sumption base. Similarly, in the
(not P) case, P doesn’t have
to be in the assumption base (in
fact, it shouldn’t be, since (not
P) is). Alternatively, the proof
could be broken into cases Q and
(not Q), or R and (not R) for
some other proposition R.

2.7 Proof of a universally quantified proposition

(!(conclude (forall ?x P))
(pick-any v

(!(conclude P ′)
. . .)))

Here P ′ should be the proposition
that results from replacing all free
occurrences of ?x in P with v.
The identifier v that is chosen to
use in the pick-any must not oc-
cur free within P . In some cases
it may be better to omit the inner
use of conclude.

2.8 Proof of an existentially quantified proposition

(!(conclude (exists ?x P))
(dseq

(!(conclude P ′)
. . .)

(!egen (exists ?x P) t)))

Here P ′ should be the proposi-
tion that results from replacing
all free occurrences of ?x in P
with some term t (t can be any
term for which it is possible to
prove the resulting P ′). If the
proof of P ′ is successful, egen
generalizes it to the existentially
quantified proposition.

5

3 Premise-Driven Proof Development

For each syntactic form of premise we suggest a type of deduction that can take
advantage of it. Keep in mind that by a “premise” we mean any proposition in
Athena’s current assumption base, including those that are added to it during
the current deduction.

3.1 Using a conjunction

If there is a premise P of the form

(and Q R)

consider using

(!left-and P) and (!right-and P)

Use these as needed to bring the
conjuncts Q and R into the as-
sumption base.

3.2 Using a disjunction

If there is a premise P of the form

(or Q R)

consider using

(!cd (or Q R) . . .)

See “proof by case-splitting”
(Section 2.4).

3.3 Using an implication

If there is a premise P of the form

(if Q R)

and Q is also a premise, consider using

(!mp P Q)

This is “modus ponens,” which
puts R into the assumption base.
The implication P might also
be useful as an argument to cd,
cases, or equiv.

3.4 Using an equivalence

If there is a premise P of the form

(iff Q R)

consider using

(!left-iff P) and (!right-iff P)

Use these as needed to bring the
implications (if Q R) and (if
R Q) into the assumption base,
respectively.

6

3.5 Using a universally-quantified premise

If there is a premise P of the form

(for ?x Q)

consider using

(!uspec P t)

This puts Q′ in the assumption
base, where Q′ is the result of
substituting the term t for all
free occurrences of ?x in Q. Here
t is a term chosen so that the
resulting Q′ will be useful in
further steps of the proof. If P
has the form (for ?x1 ?x2 . . . ?xn

Q), one can specialize some or
all of the variables at once with
(!uspec* P [t1 t2 . . . tm])

where m ≤ n; terms t1, t2, . . . , tm
will be substituted for
?x1, ?x2, . . . , ?xm, respectively.

3.6 Using an existentially-quantified premise

If there is a premise P of the form

(exists ?x Q)

consider using

(pick-witness v P
(dlet ((n Q′))

. . .)))

Within the enclosed deduction
the proposition Q′ will be in
the assumption base, where Q′

is the result of substituting the
identifier v for all free occur-
rences of ?x in Q. The use of
dlet as shown to introduce a
name n for Q′ is not strictly
necessary but writing out Q′

explicitly can make it easier to
see how to proceed with the
proof (and for others to read it),
and naming it makes it easier to
refer to. Note that v must not be
allowed to “escape” the enclosed
deduction, since there is no way
to express in a proposition the
constraint that it was chosen to
represent some value for which
Q holds. It is usually eliminated
by using it in an egen method
application to conclude another
existentially quantified propo-
sition, or by using it within a
(!by-contradiction

(assume R . . .))
deduction in which R is indepen-
dent of v.

7

4 Example

Suppose we want to prove that for an arbitrary binary relation R,

∃y∀R(x, y) ⊃ ∀x∃yR(x, y).

In Athena we set up this goal with

(domain D)

(declare R (-> (D D) Boolean))

(define exists-forall

(exists ?y

(forall ?x (R ?x ?y))))

(define forall-exists

(forall ?x

(exists ?y (R ?x ?y))))

(define goal (if exists-forall forall-exists))

(!(conclude goal)

...)

We begin working on the proof top-down (goal driven). Since the goal is of the
form (if P Q), we apply template 2.2 (Proof of an implication):

(!(conclude goal

(assume

exists-forall

(!(conclude forall-exists)

...)))

Now the new (sub)goal is of the form (forall ?v P1), so we apply template 2.7
(Proof of a universally quantified proposition):

(!(conclude goal)

(assume

exists-forall

(!(conclude forall-exists)

(pick-any x

...))))

Within the pick-any we have a new goal P1 = (exists ?y (R x ?y)), which
suggests applying template 2.8 (Proof of an existentially quantified proposition).
However, the recommended method is egen, which will require having a “wit-
ness,” and to obtain such a witness we need to make use of our existentially
quantified premise, (exists ?y (forall ?x (R ?x ?y)))). This bottom-up
(premise-driven) step is done with template 3.6 (Using an existentially quanti-
fied premise):

8

(!(conclude goal)

(assume

exists-forall

(!(conclude forall-exists)

(pick-any x

(pick-witness z exists-forall

(dlet ((z-for-all (forall ?x (R ?x z))))

...))))))

Now we have a premise of the form (forall ?x (R ?x z)), which suggests con-
tinuing bottom-up and making use of it with template 3.5 (Using a universally-
quantified premise):

(!(conclude goal)

(assume

exists-forall

(!(conclude forall-exists)

(pick-any x

(pick-witness z exists-forall

(dlet ((z-for-all (forall ?x (R ?x z))))

(dseq

(!(conclude (R x z))

(!uspec z-for-all x))

...)))))))

This works, because it shows that z can serve as the witness we need for using
egen:

(!(conclude goal)

(assume

exists-forall

(!(conclude forall-exists)

(pick-any x

(pick-witness z exists-forall

(dlet ((z-forall (forall ?x (R ?x z))))

(dseq

(!(conclude (R x z))

(!uspec z-forall x))

(!egen (exists ?y (R x ?y))

z))))))))

That completes the proof; Athena’s response is:

Theorem: (if (exists ?y:D

(forall ?x:D

(R ?x ?y)))

(forall ?x:D

(exists ?y:D

(R ?x ?y))))

9

References

[1] Konstantine Arkoudas. Denotational Proof Languages. PhD thesis, MIT,
2000. 1

[2] Konstantine Arkoudas. An Athena tutorial, 2004. http://www.cag.csail.
mit.edu/~kostas/dpls/athena. 1

[3] David R. Musser and Aytekin Vargun. Proving theorems with Athena,
September 2003, revised January 2005. http://www.cs.rpi.edu/~musser/
gsd/athena/. 1

10

http://www.cag.csail.mit.edu/~kostas/dpls/athena
http://www.cag.csail.mit.edu/~kostas/dpls/athena
http://www.cs.rpi.edu/~musser/gsd/athena/
http://www.cs.rpi.edu/~musser/gsd/athena/

	Introduction
	Goal-Driven Proof Development
	Proof by contradiction
	Proof of an implication
	Proof of an equivalence
	Proof by case-splitting
	Proof of a conjunction
	Proof of a disjunction
	Proof of a universally quantified proposition
	Proof of an existentially quantified proposition

	Premise-Driven Proof Development
	Using a conjunction
	Using a disjunction
	Using an implication
	Using an equivalence
	Using a universally-quantified premise
	Using an existentially-quantified premise

	Example

