3.17. Bellman-Ford Algorithm

Section authors: Noboru Obata, Lei Zhang, and Huai Kai Lin.
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Refinement of: Single Source Shortest Path (§3.7), Iterative Algo-
rithm (§1.8).



Prototype:
template <class Graph, class Size,
class P, class T, class R>
bool bellman_ford_shortest_paths
(Graph& g, Size N,
const bgl_named_params<P, T, R>& params)

Input: A graph g, either directed and undirected, with N vertices, and a
named parameter params which may contain the following property
maps.

e An edge weight map w_map.

e A vertex distance map d_map. This must be initialized such
that d_map[u] = oo for all vertices u in the graph, except for
the source vertex s, d_map[s] = 0, by which the source vertex
is identified.

e A predecessor map p_map (optional). This must be initialized
to have p_map[u] = u for all vertices u in the graph.

Output: TRUE if the graph contains no negative-weight cycles that are
reachable from the source; FALSE otherwise.



Effects: For every vertex u in the graph, d_map|u| is the shortest path
weight from the source vertex s. (If a vertex u is not reachable
from the source vertex, d_map[u] = c0.)

If a vertex u is reachable from the source vertex s, then p_map|u] =
v and u # v, where v is the parent node of w in the minimum
spanning tree rooted at s. If either u = s or a vertex u is not
reachable from s, then p_map[u] = wu.

Pseudocode: The implementation in BGL has an important change
from the algorithm presented in CLRS. A flag relazed is turned
TRUE only if an edge is relaxed in the loop of lines 7-12. If no
edges are relaxed, then the outer loop of lines 5-16 is terminated
immediately. This improvement dramatically decreases the number
of outer loop iterations actually executed.



BELLMAN-FORD-BGL(G, w, s)

1: for each vertex v € V|G| do
2. dy] « o0

3: end for

4: d[s] — 0

5. for i — 1 to |V[G]| do

6: relaved < FALSE

7. for each edge (u,v) € F[G] do

8: if d[v] > d[u] + w(u,v) then > Relaxation call
9: d[v] < d]u] +w(u,v) ©> Relaxation step

10: relazed < TRUE

11: end if

12:  end for
13:  if relaxed = FALSE then

14: exit the loop
15:  end if
16: end for

17: for each edge (u,v) € F[G] do
18: if d[v] > d[u] + w(u,v) then

10: return FALSE
20  end if
21: end for

22: return TRUE



Asymptotic complexity:

e Average case (random data): O(|V||E|)
e Worst case: O(|V||E|)

Complexity in terms of operation counts: The complexity of the
Bellman-Ford algorithm depends on the number of edge examina-
tions, or relaxation calls (line 8). (Note this is different from relax-
ation steps which refer to the actual changes performed in line 9.)
As mentioned, the number of relaxation calls can be smaller than
|V||E| with the BGL implementation. In fact, it is much smaller
than |V||E| in the average case.

The first table shows the number of relaxation calls for random
directed graphs with non-negative random edge weights, allowing
self-edges and parallel edges. Vertices, edges, and operation counts
are shown in thousands. For example, the top-left cell indicates
that operation counts are 20 with V' =10 and £ = 10.



Relaxation calls:

Vertices

Edges | 0.01 | 0.1 1 10 100

0.01 | 0.02 | 0.01 | 0.01 0.01 0.01
0.1 0.4 0.3 0.1 0.1 0.1
1 33 6.3 3.6 1.1 1.0
10 33.7 | 647 | 91.0 31.0 10.7
100 | 225.7 | 794.3 | 900.0 | 1238.6 | 371.4

T Directed graph, edge weights [0 : 1000], average of seven at-
tempts.

It is hard to create large random graphs with negative edge weights
because the they tend to have negative-weight cycles. The second
table shows the results with random graphs with some negative
weight edges.

Vertices
Edges | 0.01 | 0.1 1 10 100
0.01 | 0.03 | 0.01 | 001 0.01 | 0.01
0.1 03 02| 01 0.1 0.1
1 4.1 6.0 | 2.4 1.0 1.0
10 — — 1929 | 285 11.4
100 — — | — | 1357.1 357.1
" Directed graph, edge weights [—10 : 1000], average of successful
seven attempts.

Formulas for average case:



E|

1.13|E|
0.95|E|1g | V|

if |l <|V
Relaxation calls: if |E] <[V,

if |E| > |V].
Let L be the number of the outer loop (lines 5-16) executed. Then,
the number of relaxation calls is represented exactly by L|F|. So
the analysis is done in terms of L, which shows interesting variations
as shown in the following contour graph. In the region |E| < |V,
L is very close to 1 because the average size of each connected
component is less than 1 and so few edges are relaxed.

region |E| > |V, however, L grows in proportion to lg |V/|.
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Links to: 3d graph animation and curve fitting animation.


http://www.cs.rpi.edu/~obatan/bellman-ford/L-480.gif
http://www.cs.rpi.edu/~obatan/bellman-ford/Lfit-480.gif

Worst case operation counts: If the graph contains a negative-weight
cycle that is reachable from the source vertex, the algorithm shows
the worst case behavior. Again, vertices, edges, and operation
counts are shown in thousands.

Relaxation calls:

Vertices
Edges | 0.01 0.1 1 10
0.01 | 0.1 1.0 10.0 100.0
0.1 1.0 10.0 100.0 1000.0
1 10.0 | 100.0 | 1000.0 | 10000.0
10 | 100.0 | 1000.0 | 10000.0 | 100000.0
" Directed graph, edge weights [—1000 : —10], maximum of seven
attempts.

Formulas for worst case:
Relaxation calls: 1.00|V|| E]



Iterator trace plot:
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The plot shows the memory access pattern of the Bellman-Ford
algorithm processing a directed graph with 1000 vertices and 4000
edges in the adjacency list representation (vecS, vecS). Only mem-
ory accesses to the graph data structure are drawn, and the ad-
dresses are shown relative to the smallest one. Red dots are dis-
tributed irregularly because edge vectors are allocated dynamically.
The Bellman-Ford algorithm makes references to all edges at every



loop of lines 7-12, which is repeated 9 times in this graph. Since
the last loop (lines 17-21) makes a similar memory access, 10 rep-
etitions of the same access patterns may be found if the plot is
examined carefully. In the worst case, the same access patterns are
repeated |V| times.
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