
3.17. Bellman-Ford Algorithm

Section authors: Noboru Obata, Lei Zhang, and Huai Kai Lin.

Iterative 1.8

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Bellman-Ford Algorithm

Edge Comparison
Based 3.2

Single Source
Shortest Paths 3.7

Strategy
Specialized 1.4

�
�

�
�

Refinement of: Single Source Shortest Path (§3.7), Iterative Algo-
rithm (§1.8).

Prototype:
template <class Graph, class Size,

class P, class T, class R>
bool bellman_ford_shortest_paths
(Graph& g, Size N,
const bgl_named_params<P, T, R>& params)

Input: A graph g, either directed and undirected, with N vertices, and a
named parameter params which may contain the following property
maps.

• An edge weight map w map.

• A vertex distance map d map. This must be initialized such
that d map[u] =∞ for all vertices u in the graph, except for
the source vertex s, d map[s] = 0, by which the source vertex
is identified.

• A predecessor map p map (optional). This must be initialized
to have p map[u] = u for all vertices u in the graph.

Output: True if the graph contains no negative-weight cycles that are
reachable from the source; False otherwise.

Effects: For every vertex u in the graph, d map[u] is the shortest path
weight from the source vertex s. (If a vertex u is not reachable
from the source vertex, d map[u] =∞.)

If a vertex u is reachable from the source vertex s, then p map[u] =
v and u 6= v, where v is the parent node of u in the minimum
spanning tree rooted at s. If either u = s or a vertex u is not
reachable from s, then p map[u] = u.

Pseudocode: The implementation in BGL has an important change
from the algorithm presented in CLRS. A flag relaxed is turned
True only if an edge is relaxed in the loop of lines 7–12. If no
edges are relaxed, then the outer loop of lines 5–16 is terminated
immediately. This improvement dramatically decreases the number
of outer loop iterations actually executed.

Bellman-Ford-BGL(G, w, s)

1: for each vertex v ∈ V [G] do
2: d[v]←∞
3: end for
4: d[s]← 0
5: for i← 1 to |V [G]| do
6: relaxed ← False
7: for each edge (u, v) ∈ E[G] do
8: if d[v] > d[u] + w(u, v) then � Relaxation call
9: d[v]← d[u] + w(u, v) � Relaxation step

10: relaxed ← True
11: end if
12: end for
13: if relaxed = False then
14: exit the loop
15: end if
16: end for
17: for each edge (u, v) ∈ E[G] do
18: if d[v] > d[u] + w(u, v) then
19: return False
20: end if
21: end for
22: return True

Asymptotic complexity:

• Average case (random data): O(|V ||E|)
• Worst case: O(|V ||E|)

Complexity in terms of operation counts: The complexity of the
Bellman-Ford algorithm depends on the number of edge examina-
tions, or relaxation calls (line 8). (Note this is different from relax-
ation steps which refer to the actual changes performed in line 9.)
As mentioned, the number of relaxation calls can be smaller than
|V ||E| with the BGL implementation. In fact, it is much smaller
than |V ||E| in the average case.

The first table shows the number of relaxation calls for random
directed graphs with non-negative random edge weights, allowing
self-edges and parallel edges. Vertices, edges, and operation counts
are shown in thousands. For example, the top-left cell indicates
that operation counts are 20 with V = 10 and E = 10.

Relaxation calls:

Vertices
Edges 0.01 0.1 1 10 100
0.01 0.02 0.01 0.01 0.01 0.01
0.1 0.4 0.3 0.1 0.1 0.1
1 3.3 6.3 3.6 1.1 1.0
10 33.7 64.7 91.0 31.0 10.7
100 225.7 794.3 900.0 1238.6 371.4

† Directed graph, edge weights [0 : 1000], average of seven at-
tempts.

It is hard to create large random graphs with negative edge weights
because the they tend to have negative-weight cycles. The second
table shows the results with random graphs with some negative
weight edges.

Vertices
Edges 0.01 0.1 1 10 100
0.01 0.03 0.01 0.01 0.01 0.01
0.1 0.3 0.2 0.1 0.1 0.1
1 4.1 6.0 2.4 1.0 1.0
10 — — 92.9 28.5 11.4
100 — — — 1357.1 357.1

† Directed graph, edge weights [−10 : 1000], average of successful
seven attempts.

Formulas for average case:

Relaxation calls:

{
1.13|E| if |E| < |V |,
0.95|E| lg |V | if |E| > |V |.

Let L be the number of the outer loop (lines 5–16) executed. Then,
the number of relaxation calls is represented exactly by L|E|. So
the analysis is done in terms of L, which shows interesting variations
as shown in the following contour graph. In the region |E| < |V |,
L is very close to 1 because the average size of each connected
component is less than 1 and so few edges are relaxed. In the
region |E| > |V |, however, L grows in proportion to lg |V |.

10

100

1000

10000

100000

10 100 1000 10000 100000

|E
|

|V|

14.0
12.0
10.0

8.0
6.0
4.0
2.0

Links to: 3d graph animation and curve fitting animation.

http://www.cs.rpi.edu/~obatan/bellman-ford/L-480.gif
http://www.cs.rpi.edu/~obatan/bellman-ford/Lfit-480.gif

Worst case operation counts: If the graph contains a negative-weight
cycle that is reachable from the source vertex, the algorithm shows
the worst case behavior. Again, vertices, edges, and operation
counts are shown in thousands.

Relaxation calls:

Vertices
Edges 0.01 0.1 1 10
0.01 0.1 1.0 10.0 100.0
0.1 1.0 10.0 100.0 1000.0
1 10.0 100.0 1000.0 10000.0
10 100.0 1000.0 10000.0 100000.0

† Directed graph, edge weights [−1000 : −10], maximum of seven
attempts.

Formulas for worst case:
Relaxation calls: 1.00|V ||E|

Iterator trace plot:

The plot shows the memory access pattern of the Bellman-Ford
algorithm processing a directed graph with 1000 vertices and 4000
edges in the adjacency list representation (vecS, vecS). Only mem-
ory accesses to the graph data structure are drawn, and the ad-
dresses are shown relative to the smallest one. Red dots are dis-
tributed irregularly because edge vectors are allocated dynamically.
The Bellman-Ford algorithm makes references to all edges at every

loop of lines 7–12, which is repeated 9 times in this graph. Since
the last loop (lines 17–21) makes a similar memory access, 10 rep-
etitions of the same access patterns may be found if the plot is
examined carefully. In the worst case, the same access patterns are
repeated |V | times.

	Bellman-Ford Algorithm

