Trading Object Service Specification 16

This chapter provides complete documentation for the Trading Object Service

specification.

Contents

This chapter contains tHfellowing sections.

Section Title Page
“Overview” 16-2
“Concepts and Data Types” 16-4
“Exceptions” 16-23
“Abstract Interfaces” 16-28
“Functional Interfaces” 6-30
“Service Type Repository” a-59
“Dynamic Property Evaluation interface” 16-67
“Conformance Criteria” 6-68
Appendix A, “CORBA OMG IDL based (gcification of | 16-74
the Trading Function”

Appendix B, “OMG Constraintanguage BNF” 16-93
Appendix C, “OMG Constraint Recipeanguage” 16-99

CORBAservices March 1997

16-1

16

16.1 Overview

16-2

The OMGtrading object service facilitateése offering and the discovery of instances

of services of particular types. A trader is an object that supports the trading object
service in a distributed environment. It can be viewed as an object through which other
objects can atertise their capabilities and match the#@eds against advertised
capabilities. Advertising a capability or offering a service is calexport.” Matching
against needs or discovering servicesalied ‘import.” Export andmport facilitate
dynamic discovery of, and late binding to, services.

To export, an object gives the trader a description of a seavidehe location of an
interface where that service is available. To import, an object asks the trader for a
service havingcertain characteristics. The traderechks against the service
descriptions it holdsnd responds to thimporter with the location of the selected
service’s interfaceThe impoter is then able to interact with the service. These
interactions aresshown in Figure 16-1.

Sequence of interactions:

1. Export
2. Import
1 2 3. Service interaction

Figure 16-1 Interactions between a trader and its clients

Due to the number of service offers that will be offered worldwide, andiffeging
requirements that users of a trading service will have, itegitmble that a trading
service will be split up and theervice offers will be partitioned.

Each partition will, in the first instance, meet the trading needs of a community of
clients (exporters and importers). Where a client needs a scope for its @ativities

that is wider than that provided by opartiion, it will access other partitions either
directly or indirectly. Directly means that the client interacts with the traders handling
those partitions. Indirectly means that the client interacts with one tradeamahtiiis

trader interacts with other traders responsible for other partitions. The latter possibility
is referred to as interworking (or federation) of traders.

The trading object service in an OMG environment allows interworking between
traders and objects to:

® export (advertise) services

® import information about one or more exported services, according to saarecr

CORBAservices March 1997

16

16.1.1 Diversity and Scalability

The concept of trading to discover new services applies to a wide range of scenarios. A
trader may contain numerous offers of service and its implementation may be based
upon a database. Or, a trader may contain only aféavs and be implementable as a
memory resident trader. Theweo cases exbhit different qualities: availability and
integrity in the first cas@and performance in the second. The variation in these
scenarios illustrates the need for scalability, both upwards for very large systdms
downwards forsmall, fast systems.

To discover any arbitrary fefr of service, a trader needB offers to be visible to it.
One partition cannot hold every offer, many are held at otaeitipns; therefore, in
addition to a number of offers, a trader must possess information about other
partitions. However, there is no need for a tradednmow about albther partitions.
Some of this kowledge can betilized indirectlyvia other traders.

The partitioning of the offer space and the limited Wlealge held within one pdtibn
about other partitions is the basis for meeting requirementsotbr distribution and
contextualisation of the trading object service.

16.1.2 Linking Traders

The requirements to contextualise the offer space adistdbute the trading object
service are both met by linking traders together. When a trader links to other traders, it
makes the offer spaces of those tradienslicitly available to its own clients.

Each trader has a horizon limited to those other tradesitch it is explicitly linked.

As those traders are linked to yet more traders, a large number of traders are reachable
from a givenstarting trader. The traders aneked to form a directed graph with the
information describing the graph distributed among the traders. This graph is called the
trading graph.

Links may cross domain boundaries (e.g., administrative, technological, etc.);
therefore, trading is a federated system.(ione that spans many domains).

16.1.3 Policy

To meet the diverse requirements likely to be placed upon the tradintiof, some
degree of freedom is necessary when specifying the behavior of a trader object. To
accomplish thisand yet sl meet the goals of this specification, the concept of policy
is used to provide a framework for describing the behavior of any OMG trading object
service implementation.

This specification identifies a number of policesd giveshem semantics. Each
policy partly determines the behavior of a trader.

Policies may be communicated during interaction, in which case they relate to an
expectation on subsequent behavior.

Trading Object Service: v1.lOverviev March 1997 16-3

16

16.1.4 Additional ObjectID

A trading object service may be used by an object to booisselpinto operation; as
such,this specification mandates an additional Objectld for use in the
resolve_initial_references() operation defined in the ORB Initialization Specification,
OMG Document 94-10-24.

The following Objectld is reserved for finding an initial trading object service:
TradingService

As described in 94-10-24, a client object wishing to obtaiméial trading object

service object reference will invoke the resolinitial_references() operation, which
has the following OMG IDL signature:

typedef string Objectld;

exception InvalidName {};

Object resolve_initial_references (in Objectld identifier) raises
(InvalidName);

The object reference returned as the result of a successful invocation of this operation

when “Trading®rvice” is specified as the Objectld parameter must be narrowed to an
object referace of the appropriate type; for the trading object service this type is
CosTrading::Lookup.

No other extensions are proposed to OMG IDL, CORBA, and/or the OMG object
model.

16.2 Conceptand Data Types

16-4

16.2.1 Exporter

An exporter advertises a service with a trader. An exporter can be the service provider

or it can advertise a service on behalf of another.

16.2.2 Importer

An importer uses a trader to search for services matching some criteria. An importer
can be the potential service client or it can import a service on behalf of another.

16.2.3 Service Types

A service type, which represents tinéormation needed to describe a service, is
associated with each traded service. It comprises:

® an interface type which defines the computational signature of the service interface,
and

CORBAservices March 1997

16

® zero or more named property types. Typically these represent behavioral, non-
functional, and non-computational aspects that are not captured by the
computational signature.

The property type defines the property value type, whether a property is mandatory,
and whether a property is readonly. That is, associated with a property type is the triple
of <name, type, mode>, where thdes are:

enum PropertyMode {
PROP_NORMAL, PROP_READONLY,
PROP_MANDATORY, PROP_MANDATORY_READONLY
|3
A service type repository is used to hold the type information.

typedef Object TypeRepository;
Each service type in a repositoryidentified by a uniqueéerviceTypeName.
typedef Istring ServiceTypeName; // similar to IR::Identifier

An exporter specifies the service type of the service it is advertising; an importer
specifies the service type it is seeking.

Service types can be related in a hierarchy that reflects interface type inheaitahce
property type aggregation. This hierarchy provides the basis for deciding if a service of
one type may be substituted for a service of another type. These considerations are
described more fully in the following service type model.

Service Type Model

The service type model is illustrated the following BNF:

service <ServiceTypeName>[:<BaseServiceTypeName>
[,<BaseServiceTypeName>]*|{

interface <InterfaceTypeName>;
[[mandatory] [readonly] property <IDLType> <PropertyName>;]*
3

The keyword'service” introduces a new ServiceTypeNarts.structure isimilar to
that of interface repository identifiers (::First::Second::Third As the service type is
visible to end users and not just to programmers, it is internationalizable.

The list of BaseServiceypeNames §ts those service types from which this service
type is deried, which in turn defines where services of this service type caritatdst
for other service.

The “interface” keyword introduces the Intaré&l'ypeName fothis service. It is
related by equivalence or by derivation to the InterfgpeNames in each of the
BaseServiceypeNames.

Trading Object Service: v1.Concepts and Data Tyg March 1997 16-5

16

The properties clause is a listmoperty declarations. Each property declaration is
marked by th&keyword “property” and may be preceded by modeaites
“mandatory” and/or “readonly.” A property declaration is completed by an IDLType
and a PropertyName. A service maapport all the properties of each of its base
service types, theynusthave iderital property value types, and they must not lose
any property modattributes.

The property mode attributes have the followamnnotaions:

® mandatory - an instace of this service typmusi provide an appropriate value for
this property when exportinigs service offer.

® readonly - if an instance of this service type provides an appropriate value for this
property when exportings service offer, thevalue for this property may not be
changed by a subsequent invocation of tlegiRer::modify() operation.

The property strength graphseown inFigure 16-2.

(default)

- Increasing
mandatory readonly | strength

e

mandatory, readonly

Figure 16-2 Property Strength

Summarizing, if a property is defined without any modifiers, it is optional (i.e., an

offer of that service type is not required to provide a value for that property name, but
if it does, it must be of the type specified in the service type), and the property value

subsequently may be modified. The “mandatanddifier indicates that a value must

be provided, but that subsequently it maynbadified. The “readonly” modifier

indicates that the property is optional, but that once given a value, subsequently it may
not be modified. Specifying both modifiers indicates that a value must be provided and
that subsequently it may not be modified.

From the above discussioone carstate the rules for service type conformance; a
service typep is a subtype of service tyja, if and only if:

® the interface type associatedtmp is either the same as, or derived from, the
interface type associated wim

® all the properties defined ia are also defined if3

® for all properties defined in boa andf, the mode of the property must be the
same as, or stronger than, the mode of the propeay in

® all properties defined if3 that are also defined a shall have the same property
value type in as their correspondindefinitions had ina

16-6 CORBAservices March 1997

16

16.2.4 Properties

Properties are <name, value> pairs. An exporter asserts values fert@® of the

service it is advertising. An importean obtain these values about a service and
constrain its search for appropriate offers based on the property values associated with
such offers.

typedef Istring PropertyName;
typedef sequence<PropertyName> PropertyNameSeq;
typedef any PropertyValue;
struct Property {
PropertyName name;
PropertyValue value;
3
typedef sequence<Property> PropertySeq;

enum HowManyProps { none, some, all };
union SpecifiedProps switch (HowManyProps) {

case some: PropertyNameSeq prop_names;

16.2.5 Service Offers

A service offer is the information asserted by an exporter about the service it is
advertising. It contains:

® the service type name,
® a reference to the interface that provides the service, and

® zero or more property values for the service.

An exporter must specify a value for all mandatory properties specified in the
associated servidgpe. In addition, an exporter can hominate values for named
properties that are not specified in the service type. In such case, the trader is not
obliged to do property type checking.

struct Offer {
Obiject reference;
PropertySeq properties;
|3
typedef sequence<Offer> OfferSeq;

struct OfferInfo {

Trading Object Service: v1.Concepts and Data Tyg March 1997 16-7

16

Obiject reference;
ServiceTypeName type;
PropertySeq properties;

ModifiableProperties

The value of a property in a service offer camiadified, if
® the property mode is not readonly, whether optional or mandatory, and

® the trader supports the modify propertydtionality.

Such property values can be updated byiekphodify operations to the trader. An
exporter can control a service offer to be non-modifiable by exposgéngices with
service types that have readonly properties. The modify operation will return a
Notimplementedexception if a trader does not support the modify property
functionality. An importer can also specifiyhether or not a trader should consider
offers with modifiable properties during matching.

DynamicProperties

A service offer can contain dynamic properti€ee valuefor a dynamic property is

not held within a trader, it is obtained on-demand frominiterface of a dynamic
property evaluator nominated by the exporter of the service. That is, a level of
indirection is required to obtain the value for a dynamic property. The structure of a
dynamic property value is:

exception DPEvalFailure {
CosTrading::PropertyName name;
CORBA::TypeCode returned_type;

any extra_info;

interface DynamicPropEval {

any evalDP (
in CosTrading::PropertyName name,
in CORBA:: TypeCode returned_type,
in any extra_info

) raises (
DPEvalFailure

16-8 CORBAservices March 1997

16

16.2.6 Offer

16.2.7 Offer

struct DynamicProp {
DynamicPropEval eval_if;
CORBA::TypeCode retumed_type;
any extra_info;

h

It contains the interface to the dynamic property evaluator, the data type of the
returned dynamic property, and any extrgplementaibn dependent iformation. The

trader recognizes this structure and, when the value of the property is required, invokes
the evalDP operatiorrdm the appropriate DynamicPropEval interface. Theadyic

property evaluator interface has only orpemtion, vihose signature is defined in this
standard for portability but its behavior is not specified. The oedyrictions imposed

are that the property must not be readonly and that the trader must support the dynamic
property functionality.

The use of such Properties hawplications on the performance of a trader. An
importer can specify whether or not a trader should consider offérsdynamic
properties during matching.

Identifier

An offer identifier is returned to an exporter when a service offer is advertised in a
trader. It identifies thex@orted service offer and is quoted by the eigronwhen
withdrawing and modifying the offer (where supported). It only has meaning to the
trader with which the service offer is registered.

typedef string Offerld;
typedef sequence<Offerld> OfferldSeq;

Selection

The total service offer space for an offer selection may be very large, including offers
from all linked traders. Logically, the trader uses policies to identify the set S1 of
service offers to examine. The service type and constraint is applied to S1 to produce
the set S2 that satisfies the service tgpd constraint. Thethis is ordered using
preferences before returning the offers to the importer.

Standard Constraint Language

Importers use service type and astraint to select the set of service offers in which
they have an interest. The constraint isedliormedexpression conforming to a
constraint laguage.

Trading Object Service: v1.Concepts and Data Tyg March 1997 16-9

16

16-10

This document defines the standard, mandatory language which is necessary for
interworking between traders. Appendix B defines the syntax and the expressive power
of the constraint language. This constraint language is used to write stanadsirdiob

expressions.

typedef Istring Constraint;

Its main features are:

Property Value Types

Literals

Operators

These manipulations are neésted toint, float,
boolean, Istring/string, Ichar/champes, and
sequences thereof. The cheter basetypes are
ordered using the collating sequence fedffor

the given character set. Types outside of this
range can only be the subject of the “exist” oper-
ator.

In the constraint, literals adynamically coerced
as required for the properties they are working
with. Literals can contain Istring.

The operators are compamis boolean connec-
tive, setinclusion, substring,itmmetic opera-
tors, property existence.

Note —If a proprietary castraint langiage (outside the scope tbis specification) is
used, then the name and version of the constraint language is placed between <<
at the start of the constraint expression, The redeaiof the string is not interpreted
by a trader that does not support the quoted proprietary constrajouaza

Preferences

Preferences are applied logically to the set of offers matched by application of the
service type, constraint expression, and various policippli¢ation of the preferences
can determine the order used to return matched offers to the importer.

typedef Istring Preference;

Consider the preference string as being composed of two portions.

® The first portion can be comprised of any of tbBowing case-sensitive keyords:

max min with random first

>>

® The interpretation for the second portion is dependent on the first portion; it may be
empty. Table 16-1 escribes the preferences.

CORBAservices March 1997

16

Table 16-1Preferences

Preference Description

max expression | The expression is numeric. The matched offers areneduin a
descending order of the expression.

min expression | The expression is numeric. The matched offers arenesduin an
ascending order of the exgssion.

with expression | The expression is a coraintexpression. The matched offers are
ordered such that those tlaaé TRUE precede thoteat are
FALSE.

random The order of returned matched offers is according to the following
algorithm: select an offer atrandom from the set of matched offers,
select another offer at random from the remaining set aftradt
offers, ..., select the singlemaning offer.

first The order of returned matched offers isha order as the f&rs
are discovered.

If no preference is specified, then the default preference of first applies. No
combinations of the preferences are permitted.

The expression associated with max, naingd with can refer to properties associated
with the matching offersWhen applying a preference argsion to the set of offers
that match the service type and constraint expression, the offer sditismped into a
group of offers for which the preference expression

® could be evaluated (ordered according to min, max, with), and

® could not be evaluated (e.g., the preference expression refers to a property name
that is optional for that service type).

The offers are returned to the importer in the order of §irstip in their preference
order, followed by those in the second group.

Note —If a proprietary preference language (outside the scope of this specification) is
used, the name and version of the preference language used is placed between << >
at the start of the preference. Titeenainder of the string is not interpreted by a trader
that does not support the quoted proprietary language.

Links

Links represent paths for propagation of queries from a source trader to a target trader.
Each link corresponds to an edge in a trading graph, in which the vertices are traders.
A link describes the kowledge that one trader has of another trading service that it
uses. It also includes information ohen to propagate or forward an operation to the
target trader. A link has the following information associated with it:

Trading Object Service: v1.Concepts and Data Tyg March 1997 16-11

16

® A Lookupinterface provided by the target trader, which supports the query
operation.

® A Register interfac@rovided by the target trader, which supports the resolve
operation.

® The Ink’s default follow behavior, which may be used and is passed on when an
importer does not specify a link_follow_rule policy.

® The link’s imiting follow behavior, which overrides an importer’s link_follow_rule
if the importer’s request exceeds thmiti set by the link.

enum FollowOption {
local_only,
if_no_local,
always
h
struct Linkinfo {
Lookup target;
Register target_reg;
FollowOption def_pass_on_follow_rule;
FollowOption limiting_follow_rule;
h
The above information iset for each link Wwen it is created. A link name is given to
the link when it is created. The name uniquely identifies a link in a trader.
typedef Istring LinkName;
typedef sequence<LinkName> LinkNameSeq;

A link is unidirectional. Only the source trader is direclyare of a link; it is the
source trader that supports the Link interface.

Additional information may be kept with a link to descritferacteristics of the target
trading service as perceived by the source trader.

Policies
Policies provide information to affect trader behavior at run time. Policies are
represented as name value pairs.

typedef string PolicyName; // policy names restricted to Latinl

typedef sequence<PolicyName> PolicyNameSegq;

typedef any PolicyValue;

struct Policy {

PolicyName name;

PolicyValue value;

16-12 CORBAservices March 1997

16

typedef sequence<Policy> PolicySeg;
Some policies cannot be overridden,iltother policies apply in the absence of
further informationand can be carridden. Policies can be grouped into two categories:
1. Policies that scope the extent of a search.
2. Policies that determine the functionality applied to an operation.

Different policies areassociated with different roles in the performance of the trading
function. These rolesre:

T = Trader
L =Link
I = Import

Standardized Scoping Policies:
The following tabldists thestandardized scoping policies.

Table 16-2 Scoping Policies

Name

Where |IDL Type Description

def _search_card T unsigned longDefaultupper bound of offers to be

searched; used if no search_card is spec
fied.

max_search_card T unsigned longMaximum uppebound of offers to be

searched.

search_card I unsigned longNominatedupper bound of offers to be

searched; will be overridden by
max_search_card.

def_match_card T unsigned longDefaultupper bound of matched offers tg

be ordered; used if no match_card is speci-
fied.

max_match_card T unsigned longMaximum uppebound of matched offers

to be ordered.

match_card I unsigned longNominatedupper bound of offers to be

ordered; will be overridden by
max_match_card.

def _return_card T unsigned longDefault uppebound of ordered &drs to be

returned; used if no return_card is specir
fied.

max_return_card T unsigned longMaximum uppebound of ordered odfs to

be returned.

return_card

I unsigned longNominatedupper bound of ordered offers
to be returned; will be overridden by
max_return_card.

Trading Object Service: v1.Concepts and Data Tyg March 1997 16-13

16

16-14

Name

Where

IDL Type

Description

def_hop_count

unsigned long

Defaultupper bound of depth of links to be

traversed if hop_count is not specified.

max_hop_count

unsigned long

Maximumupper bound of depth of links t
be traversed.

hop_count

unsigned long

Nominatedupper bound of depth of links t
be traversed; will be overridden by the
trader’'s max_hop_count.

def _pass on_follow_rule

FollowOption

Default link-folow behavior to be passed
on for a particular link if an importer doe
not specify its link_follow_rule; imust not
exceed limiting_follow_rule.

limiting_follow_rule

FollowOption

Limiting link follow behavior for a particu
lar link.

def_follow_policy

FollowOption

Default linkfollow behavior for a particu-
lar trader.

max_follow_policy

FollowOption

Limiting link follow policy for all links of
the trader - overrides both lirdad mporter
policies.

max_link_follow_policy

FollowOption

Upper bound on the value of a link’s limit
ing follow rule at the time of creation or
modificaton of a link.

link_follow_rule

FollowOption

Nominated link follow behavior; it will be
overridden by the trads
max_follow_policy and the link’s
limiting_follow_rule.

starting trader

TraderName

An importer scopes its search by noat-
ing that the query operation starts at a

]

o

=]

remote trader; a trader is obliged to forward

the request down a link even if the link
behavior is local_only.

request id

OctetSeq

An identifier for a query operatidnitiated
by a source trader acting as an importer
a link; a trader is not obliged to geate an

on

id, but is obliged to pass one received down

a link.

exact_type match

boolean

If TRUE, only offers of exactly the servig
type specified by the importer are consid
ered; ifFALSE (or if unspecifid), offers of
any serviced type that conforms to the
importer's service type are considered.

The IDL types for TraderName and Octet&eq:
typedef LinkNameSeq TraderName;

typedef sequence<octet> OctetSeq;

CORBAservices

March 1997

[¢]

16

The results received by an importer are affected by the scoping policies. The
hop_count and linkollow policies sethe scope of the traders to visit. N1 is the total
service offer space of those traders. Those offers that hatero@nt service type are
gathered into the sé&2; the actuakize of N2 may be further restricted by thearch
cardinality policies. Constraints are applied to N2 to produce a set N3 of wfiais
satisfy both the service typad theconstraints; N3 may be further restricted by the
match cardinality policiesThe set N3 is then ordered using preferences to pratiece
set N4. The final set of offers returned to the importer, N5, may be furtthecad by
the returned cardinality policies.

This is illustrated by the folleing diagram, where [N1| >= [N2| >= [N3| = [N4| >= N5

N3
Matched
Offers
search match

cardinality cardinality order

N1 N2

Potential gather Consid-
ered

offers

Offers

Returned return

Offers

return

NS cardinality N4

Figure 16-3 Pipeline View of Trader Query Steps and Cardinality Constraint Application

Standardized Capality Supported Polcies

There are three optional capli@s (proxy offer, dynamic propertiegnd modify

offers) that a trader may or may not wish to support. If a trader does not support a
capability, then an importer cannot override it with its policy parametwerkr, if a
trader supports a capability and an importer does not wish to consider offers that
require such functionality, then the trader must respect the importer’s wish.

The following tabldists thestandardized policies related sapported functionality.

Trading Object Service: v1.Concepts and Data Tyg March 1997 16-15

16

16-16

Table 16-3 Capability Supported Policies

IDL
Name Where | Type Description
supports_modifiable_properties T boolean | Whether the trader supports property
modificaton.
use_modifiable_properties I boolean | Whether to consider offers with modifi-
able properties in the search.
supports_dynamic_properties T boolean | Whether the trader supports dynamic
properties.
use_dynamic_properties I boolean | Whether to consider offers with dynamic
properties in the search.
supports_proxy_éérs T boolean | Whether the trader supports proxyeus.
use_proxy_deérs I boolean | Whether to consider proxy offers in the
search.

Trader Policies

Policies can be set for a trader as a whole. Trader policies are defintidbages of

the trader object. They aspecified initially when the trader isreated, and can be
modified/interrogated via the Admin interface. An importer can interrogate these trader
policies via its lookup interface. An exporter camerrogate a trader's functionality
supported policies via its Registeterface.

Link Follow Behavior

Each link in a trader has its own follow behavior policies. A trader hasitinij

follow policy, max_follow_policy, that overrides all the links of that trader for any
given query. Follow behavior policies are specified for each link when a link is
created. These policies, def_pass_on_follow_rule andinig_follow_rule, can be
interrogated/modified via the Link interfacéhe values they can haagee limited by
another trader policy, max_link_follow_policy, at the time of creation or modification.
An importer can specify a linkollow_rule in a query. In the absence ofiaporter’s
link_follow_rule, the trader’s def follow_policy issed.

After searching its local offers in response to a query, a trader must decide whether to
propagate the query along its links and, if so, what value for the link_follow_rule to
pass on in the policies argument.

CORBAservices March 1997

16

Recall that the OMG IDL for FollowOption is:
enum FollowOption {
local_only,
if_no_local,
always
|3

where “local_only” indicates that the link fisllowed aly by explicit navigation
(“starting_trader” policy), “if_no_local” indicates that the link is followed only if there
are no local offers that satisfy the queaypd “always” has the obvious semantics.
These values are ordered as follows:

local_only < if_no_local < always

The follow policy for a particular link is:

if the importer specified a link_follow_rule policy

min(trader.max_follow_policy, link.limiting_follow_rule,
query.link_follow_rule)

else

min(trader.max_follow_policy, link.limiting_follow_rule,
trader.def_follow_policy)

If this value is “if_no_local” and there were no local offers that match the query, the
nested query is performed; if this value is “always,” the nested query is performed.

If the nested query is pmitted bythe above rule, then the following logietermines
the value for the “link_follev_rule” policy to pass on to the linked trader.

If the importer specified a link_follow_rule policy
pass on min(query.link_follow_rule, link.limiting_follow_rule,
trader.max_follow_policy)
else

pass on min(link.def_pass_on_follow_rule,
trader.max_follow_policy)

Importer Policies

An importer can specify zero or more importer policies in its policy parameter. If an
importer policy is not specified, then the trader uses its default policy. If an importer
policy exceeds the limiting policy values set by the trader, then the trader overrides the
importer expectations withs limiting policy value.

If a starting_trader policy parameterused, trader implementations shall place this
policy parameter as the first element of theussge when forwarding the query
request to linked traders.

Trading Object Service: v1.Concepts and Data Tyg March 1997 16-17

16

16-18

Exporter Policies

There are no exporter policies specified in this standard.

Link Creation Policies

At the time that a link is created, the default and limiting follow rules associated with
the link are specified. These rules can be constrained by the max_link_follow_policy
of the trader.

The trader firsthecks to see that the default rule is less than or equal toritied
rule. If not, then an exception is raised. It then compareBrtigng rule against the
trader's max_link_follow_policy, again raising an exception if tinaitihg rule is
greater than the trader's max_link_follow_policy.

16.2.8 Interworking Mechanisms

Link Traversal Control

The flexible nature of trader linkage allows arbitrary directed graphs of traders to be
produced. This can introduce two types of problem:

® A single trader can be visitedore than once during a search due to it appearing on
more than one path (i.jstinct set oftonnected edges) leadifigm a trader.

® Loops can occur. Theost trivial example of this is where two previoudigjoint
trader spaces decide to join by exchanging links. Thisreanlt in the first trader
propagating a query to the second and then having it returneddiatelg via the
reverse link.

To ensure that a search does not enter into an infinite loop, a hop_casadi limit

the depth of links to propagate a searthe hop_count is decremented by one before
propagating a query to other traders. The search propagation terminates at the trader
when the hop_count reaches zero.

To avoid the unproductive revisiting of a particular trader while performiggeay, a
Requestld can be generated by a source trader for each query operation tiieteis ini
for propagation to a target trader. The traatgribute of request id_stem is used to
form Requestld.

typedef sequence<octet> OctetSeq;

attribute OctetSeq request_id_stem;
A trader remembers the Requestld of all recent interworking query operations that it
has been asked to perform. When an interworking query operation is received, the

trader checks this history and only processes the query if it is the operaitisn’s f
appearance.

In order for this to work, thadministrator for a set of federated traders nnasie
initialized the respective request_id_stematm-overlapping values.

CORBAservices March 1997

16

The Requestld is passed in an importer's policy parameter on the query operation to
the target trader. If the target trader does not support the use of the Requestld policy,
the target trader need not processReguestldput must pass the Requestld onto the
next linked trader if the search propagédtather.

FederatecQuery Example

To propagate a query request in a trading graph, each source trader acts as a client tc
the Lookupinterface of the target trader and passeslient's query ogeration to its
target trader.

The following example illustrates the modification of hopunt @rameter as a query
request passes through a set of linked traders in a trading graph. We assume that the
link follow policies in the traders will result ffalways” follow behavior.

1. A query requestis invoked at the tradinteiface of T1 with an importertsop count
policy expressed as hop_count = 4. The trader scoping policy for T1 includes
max_hop_count = 5. Thesulant hop_count applied for the search (after therarbi
tion action that combines the trader policy and the importer politypiscount = 4.

2. We assume that no matctfasind in T1 and the rafing follow policy isalways. That
is, Tl is to pass the request to T3. Adified importethop_counpolicy ofhop_count
=3 is used. The local trader scoping policy foidfcudes max_hop_count = 1 and the
generation of T3_Request _id to avoid repeat or cyclic searches of the same traders.
The esultant scoping policy applied for the search at Ti®js count = 1 and the
T3_Request id is stored.

3. Assuming that no match is found in T3 and the resulting follow policy is always, the
modified scoping parameter for the query request at Tds: count = 0 and
requestid = T3_Requ&t_id.

4. Assuming that no match is found in T4. Even though the max_hop_count = 4 for T4,
the search is not propagated further. An unsstekesearch result will be paed back
to T3, to T1, and fially to the user at T1.

Of course, if a query request is completed successfully at any of the traders on the
linked search path, then thistlof matched service offers will be reted to the
original user. Whether the query request is propagated througbntaéning trading

Trading Object Service: v1.Concepts and Data Tyg March 1997 16-19

16

graph depends upon the lifdllow policies; in thiscase, where it is assumed to be
always, the query will 8t visit all of the traders commensurate with the hop count
policy.

query.hop_count=4

def_follow_policy = always
max_hop_count =5

query.hop_count = 3

max_hop_count=1
request_id_stem
def_follow_policy = always

query.hop_count=0
/ query.request id = T3_request_id

T4

Legend def_follow_policy = always
@ Service Offer max_hop_count =4
== Link

[l Trader Attribute

Figure 16-4 Flow of a query through a trader graph

Proxy Offers

A proxy offer is a cross between a servaféer and aform of restrictedihk. It
includes the service type and properties of a service offer and, as such, is matched in
the same way. However, if the proxy offer matches the importer’'s requirements, rather

than returning details of the offer, the query request (modified) is forwarded to the
Lookupinterface associated with the proxy offer.

typedef Istring ConstraintRecipe;

struct ProxyInfo {
ServiceTypeName type;
Lookup target;
PropertySeq properties;

16-20 CORBAservices March 1997

16

boolean if_match_all;

ConstraintRecipe recipe;

PolicySeq policies_to_pass_on;
|3

If an importer’s query results in a match to a proxy offer, the trader holding the proxy
offer performs a nested query on the trader hiding behind the proxy offer with the
following parameters:

® The original typeparameter is passed on unchanged.

® A new constraint parameter is constructed following the ConstraintRecipe
associated with the proxy offer.

® The original preferencparameter is passed on unchanged.

®* A new policies parameter is constructed djypending the policies_to_pass_on
associated with the proxy offer to the original policies parameter.

® The originaldesired_props parameter is passediochanged.

® The cdling trader supplies a value of how_many that makes sense itgven
resource constraints.

Proxy offers are @onvenient way to package the encapsah of a legacy system of
“objects” into the trading system. It permits clientddokup these “objects” by

matching the proxy offer. The nested call to the proxy trader, together with the
rewritten constraint expression and the additional polie@sended to the original

policy parameter, permits tltdynamic creation of a service instance which

encapsulates the legacy object. Another possible use of proxies is for a service factory
to be advertised as a proxy offer; the nested call to the factory cansesrestance of

the particular service to be manufactured.

A query may have matched a proaffer due to a particular value of a property
associated with thproxy offer. Any offer returned by the proxy trader as a result of
the nested query muktave the same value for that property so as netdlate the
client’'s expectations regarding the constraint.

A trader does not have to support the proxy offer functionality. Traders that support
such functionality must provide the Proigerface for the export, withdravand
describe of proxy offers. An importean specify whether or not a trader should
consider proxy offers during matching.

16.2.9 Trader Attributes

Each trader has its own characteristics, policiesémported functionalitiesnd
policies for scoping the extent of search. These characteristics and policies are defined
as attributes to the trader. Thed#ributesare described in Table 16-4.

Trading Object Service: v1.Concepts and Data Tyg March 1997 16-21

16

16-22

Table 16-4 Trader Attributes

Name

IDL Type

Description

def _search_card

unsigned long

Defaultupper bound of offers to be
searched for a query operation

max_search_card

unsigned long

Maximum uppebound of offers to be
searched for a query operation

def_match_card

unsigned long

Defaultupper bound of matched offers tq

be ordered in applying a preference criteria

max_match_card

unsigned long

Maximum uppebound of matched offers

to be ordered in applying a preference crite-
ria

def _return_card unsigned long | Default uppebound of ordered &érs to be
retuned to an importer

max_return_card unsigned long | Maximum uppebound of ordered odfs to
be returned to an importer

def_hop_count unsigned long | Defaultupper bound of depth of links to be
traversed

max_hop_count unsigned long | Maximumupper bound of depth of links to
be traversed

max_list unsigned long | The upper bound on the size of any list
retuined by the trader, namely the returned
offers parameter in query, and the next_n
operations in Offerlterat@nd Oferldlter-
ator.

def_follow_policy FollowOption |Default linkfollow behavior for a particu-
lar trader

max_follow_policy FollowOption | Limiting link follow policy for all links of
the trader - overrides both likad mporter
policies

max_link_follow_policy FollowOption |Most permissive follow policy allowed
when ceatingnew links

supports_maodifiable_properties boolean Whether the trader supports property modi-
fication

supports_dynamic_properties boolean Whether the trader supports dynamic prpp-
erties

supports_proxy_éérs boolean Whether the trader supports proxyeo$

type_repos TypeRepository Interface to trader’s service type repository

request_id_stem OctetSeq Identification of the tader, to be used as the
stem for theproduction of an id for a query

request from one trader to another

These attributes aiiaitially specified when a trader is creatadd can be
modified/interrogated via the Admin interface.

CORBAservices

March 1997

16

16.3 Excepions

16.3.1 For CosTrading module

Exceptions used in more than one interface

exception UnknownMaxLeft {};

exception Notimplemented {};

exception lllegalServiceType {
ServiceTypeName type;

exception UnknownServiceType {

ServiceTypeName type;

exception lllegalPropertyName {

PropertyName name;,

exception DuplicatePropertyName {

PropertyName name;

exception Property TypeMismatch {
ServiceTypeName type;
Property prop;

exception MissingMandatoryProperty {
ServiceTypeName type;

PropertyName name;

Trading Object Service: v1.Exception March 1997

This specification defines the exceptions raised by operations. Exceptions are
parameterized to indicate the source of the efioe. OMG IDL segments below refer
to some of the typedef’s defined in Section 16.2 Concepts and Data Types.

Whenmultiple exception conditions arise, only one exception is raised. The choice of
exception to raise is implementatioefkendent.

16-23

16

exception lllegalConstraint {

Constraint constr;

exception InvalidLookupRef {

Lookup target;

exception lllegalOfferld {
Offerld id;

exception UnknownOfferld {
Offerld id;

exception ReadonlyDynamicProperty {
ServiceTypeName type;

PropertyName name;

exception DuplicatePolicyName {

PolicyName name;

Additional Exceptions for Lakup Interface

exception lllegalPreference {

Preference pref;

exception lllegalPolicyName {

PolicyName name;

exception PolicyTypeMismatch {
Policy the_palicy;

16-24 CORBAservices March 1997

16

exception InvalidPolicyValue {
Policy the_palicy;
3

exception lllegalPreference {
Preference pref;

|3
exception lllegalPolicyName {
PolicyName name;

|3

exception PolicyTypeMismatch {
Policy policy;

|3

Additional Exceptions For Register Inface

exception InvalidObjectRef {

Object ref;

exception UnknownPropertyName {

PropertyName name;

exception InterfaceTypeMismatch {
ServiceTypeName type;

Obiject reference;

exception ProxyOfferld {
Offerld id;

exception MandatoryProperty {
ServiceTypeName type;

PropertyName name;,

exception ReadonlyProperty {

ServiceTypeName type;

Trading Object Service: v1.Exception March 1997 16-25

16

PropertyName name;

exception NoMatchingOffers {

Constraint constr;

exception lllegalTraderName {

TraderName name;

exception UnknownTraderName {

TraderName name;

exception RegisterNotSupported {

TraderName name;

Additional Exceptions for Link Intéace

exception lllegalLinkName {

LinkName name;

exception UnknownLinkName {

LinkName name;

exception DuplicateLinkName {

LinkName name;

exception DefaultFollowTooPermissive {
FollowOption def_pass_on_follow_rule;

FollowOption limiting_follow_rule;

exception LimitingFollowTooPermissive {

16-26 CORBAservices March 1997

16

FollowOption limiting_follow_rule;

FollowOption max_link_follow_palicy;

Additional Exceptions fdProxy Offer Interface

exception lllegalRecipe {

ConstraintRecipe recipe;

exception NotProxyOfferld {
Offerld id;

16.3.2 For CosTradingDynamic module
There is only a DgamicRopEval interface in this modul&heinterface has only one
operation which raises the exception:

exception DPEvalFailure {
CosTrading::PropertyName name;
CORBA::TypeCode returned_type;
any extra_info;

16.3.3 For CosTradingRepos module
There is only the Servicg/peRepository interface in this module. Thalowing
interface-specific exceptions can be raised:
exception ServiceTypeEXxists {
CosTrading::ServiceTypeName name;
h
exception InterfaceTypeMismatch {
CosTrading::ServiceTypeName base_service;
Identifier base_if;
CosTrading::ServiceTypeName derived_service;
Identifier derived_if;
h
exception HasSubTypes {
CosTrading::ServiceTypeName the_type;
CosTrading::ServiceTypeName sub_type;
|3
exception AlreadyMasked {

Trading Object Service: v1.Exception March 1997 16-27

16

CosTrading::ServiceTypeName name;

|3

exception NotMasked {
CosTrading::ServiceTypeName name;

|3

exception ValueTypeRedefinition {
CosTrading::ServiceTypeName type_1;
PropStruct definition_1;
CosTrading::ServiceTypeName type_2;
PropStruct definition_2;

|3

exception DuplicateServiceTypeName {

CosTrading::ServiceTypeName name;

16.4 Abstract Interfaces

To enable the construction of traders with varying support for the different trader
interfaces, this specification defines several abstract interfaces finach wach of the
trading object service functional interfaces (LookupgRter,Link, Proxy, and
Admin) are derived. Each of these abstract interfacesl@aremented below.

16.4.1 TraderComponents

interface TraderComponents {

readonly attribute Lookup lookup_if;
readonly attribute Register register_if;
readonly attribute Link link_if;
readonly attribute Proxy proxy_if;

readonly attribute Admin admin_if;
3
A trader’s functionality can be configured by composing the definedfaces inone
of several prescribed combinations. The composition is not modeled through
inheritance, but rather byultiple interfaces to an object. Given one of these

interfaces, a way of finding the other associated interfaceseded. Tdacilitate this,
each trader functional interface is derived from the TraderCompoim¢ettace.

The TraderComponents interface contains five readonly attributes that provide a way
to get a specific object reference.

The implementation of the _get_<interface>_if() operation must return a nil object
reference if the trading service in question does not support that particular interface.

16-28 CORBAservices March 1997

16

16.4.2 SupportAttributes

interface SupportAttributes {

readonly attribute boolean supports_modifiable_properties;
readonly attribute boolean supports_dynamic_properties;
readonly attribute boolean supports_proxy_offers;
readonly attribute TypeRepository type_repos;

|3

In addition to the ability of a trader implementation to selectivglyose which
functional interfaces tsupport, a trademplemenation may also choose not to
support modifiable properties, dynamic properties, angroxy offers.The
functionality supported by a trader implementatoam bedetermined by querying the
readonlyattributes in this interface.

The type repository used by the trader implementation can also be obtained from this
interface.

16.4.3 ImportAttributes

interface ImportAttributes {

readonly attribute unsigned long def_search_card;
readonly attribute unsigned long max_search_card;
readonly attribute unsigned long def_match_card;
readonly attribute unsigned long max_match_card;
readonly attribute unsigned long def_return_card;
readonly attribute unsigned long max_return_card;
readonly attribute unsigned long max_list;
readonly attribute unsigned long def_hop_count;
readonly attribute unsigned long max_hop_count;
readonly attribute FollowOption def_follow_palicy;
readonly attribute FollowOption max_follow_policy;
h

Each trader is configured with default and maxin values of certain cardinality and
link follow constraints that apply to queriébhe valuedor these constraints can be
obtained byguerying theattributes in this irdrface.

Trading Object Service: v1./Abstract Interface March 1997 16-29

16

16.4.4 LinkAttributes

interface LinkAttributes {
readonly attribute FollowOption max_link_follow_policy;
h

When a tradecreates a new link or modifies an existing link the
max_link_follow_policy attribute will determine the most permisdpedavior that the
link will be allowed. The value fothis constraint on link creatioand modification
can be obtained from this interface.

16.5 Functional Interfaces

This section describes the five functional interfaces to a trading object service:
Lookup, Register,Link, Admin, and Proxy. The twddrator interfaces needed for
these functional interfaces are also described.

16.5.1 Lookup

interface Lookup:TraderComponents,SupportAttributes,
ImportAttributes {

typedef Istring Preference;
enum HowManyProps {none, some, all };
union SpecifiedProps switch (HowManyProps) {

case some: PropertyNameSeq prop_names,

exception lllegalPreference {

Preference pref;

exception lllegalPolicyName {

PolicyName name;

exception PolicyTypeMismatch {
Policy the_policy;

16-30 CORBAservices March 1997

16

exception InvalidPolicyValue {

Policy the_policy;

void query (
in ServiceTypeName type,
in Constraint constr,
in Preference pref,
in PolicySeq policies,
in SpecifiedProps desired_props,
in unsigned long how_many,
out OfferSeq offers,
out Offerlterator offer _itr,
out PolicyNameSeq limits_applied
) raises (
lllegalServiceType,
UnknownServiceType,
IllegalConstraint,
lllegalPreference,
lllegalPalicyName,
PolicyTypeMismatch,
InvalidPolicyValue,
lllegalPropertyName,
DuplicatePropertyName,

DuplicatePolicyName

QueryOperation

Signature
void query (

in ServiceTypeName type,

in Constraint constr,

in Preference pref,

in PolicySeq policies,

in SpecifiedProps desired_props,

in unsigned long how_many,

Trading Object Service: v1.[Functional Interface March 1997 16-31

16

16-32

out OfferSeq offers,
out Offerlterator offer_itr,
out PolicyNameSeq limits_applied
) raises (
lllegalServiceType,
UnknownServiceType,
lllegalConstraint,
lllegalPreference,
IllegalPolicyName,
PolicyTypeMismatch,
InvalidPolicyValue,
IllegalPropertyName,
DuplicatePropertyName,
DuplicatePolicyName
);

Function

The query operation is the means by which an object can obtain references to other
objects that provide services meeting its requirements.

The “type” parameter conveys the required service type. It is key to the central purpose
of trading: to perform an introduction for future type safe interactimiaween

importer and exporter. By stating a service type, the importer implies the desired
interface type and a domain of discourse for talking about piepaf the service.

® |f the string representation of the “type” does not obey the rules for service type
identifiers, then an lllegalServicgbe exeption is raised.

® |f the “type” is correct syntactically but is not recognized as a service type within
the trading scope, then an UnknownServiceType exception is raised.

The trader may return a service offer of a subtype of the “type” requested. Sub-typing
of service types is discussed iService Type” on page 16-4. A service subtype can

be described by the properties of its supgeety This ensures that &livformed query

for the “type” is also a well-formed query with respecatty subtypes. However, if

the importer specifies the policy of exact_type _match = TRUE, then only offers with
the exact (no subtype) service type requested are returned.

The constraint “constr” is the means by which the importer states those requirements
of a service that are not captured in the signature of the interface. These requirements
deal with the computational behavior of the desired service, non-functional aspects,
and non-computational aspects (such as the organization owning the objects that
provide the service). An importer is always guaranteed that any returned offer satisfies
the matching constraint at the time of import. If the “condtés not obey the syntax

rules for a legal constraint expression, then an lllegalConstraint exception is raised.

CORBAservices March 1997

16

The “pref” parameter is also used to order those offers that match the “constr” so that
the offers returned by the trader are in the order of greatest interest to the importer. If
“pref” does not obey the syntax rules for a legal preference expression, then an
lllegalPreference exception is raised.

The “policies” parameter allows the importer to specify how the search should be
performed as opposed to what sort of services should be found in the course of the
search. This can be viewed as parameterizing the #igwiwithin the trader
implementation. The “policies” aresequence of hame-value pairs. The names
available to an importedtepend on th@nplementation of the trader. Hewer, some
names are standardized where they effect the interpretation of other parameters or
where they may impact linking and federation of traders.

® |f a policy name in this parameter does nbey the syntactic rules for legal
PolicyName’s, then an lllegalPolicyNameoeyption is raised.

® |f the type of the value associated with a policy differs from that specified in this
specification, then a PolicyTypeMismatch exception is raised.

® |f subsequent processing of a PolicyValue yields any errors (e.g., the starting_trader
policy value is malformed), then an InvalidPolicyValue exception is raised.

® |f the same policy name is included two or marees in this parameter, then the
DuplicatePolicyName eception is raised.

The “desired_props” parameter defines the set of properties describing returned offers
that are to be returned with the object reference. There are three possibilities, the
importer wants one of the propertied|, of the properties (but without having to name
them), or some properties (the names of which are provided).

® |f any of the “desired_props” names do not obey the rules éntifiers, then an
lllegalPropertyName eception is raised.

® |f the same property name is included two or more times in this parameter, the
DuplicatePropertilame exception is raised. The desired _props parameter may
name properties which are not mandatory for the requested semp&e ty

® |f the named property is present in the matched service offer, then it shall be
returned.

The desired_props parameter does not affect whether or not a service offer is returned.
To avoid “missing” desired properties, the importer should specify “exists prop_name”
in the constraint.

The returned offers are passed back in onsvofways(or a combination of both).

® The “offers” return resultonveys dist of offers and the “offer_itr” is a reference
to an interface at which offers can be obtained.

®* The “how_many” parameter states how many offers are to be returned via the
“offers” result,any remaining offers are available via therator interface. If the
“how_many” exceeds the number of offers to be returned, then the “offer_itr” will
be nil.

Trading Object Service: v1.[Functional Interface March 1997 16-33

16

16-34

If any cardinality or othelimits were applied by one or more traders in responding to
a particularquery, then thélimits_applied” parameter will contain the names of the
policies which imited the query. The sequence of names returnétnrts_applied”
from any federated goroxy queriesmust be concatenated onto the namesnoitgi
applied locallyand returned.

Importer Policy Speciftations

struct LookupPolicies {
unsigned long search_card;
unsigned long match_card;
unsigned long return_card;
boolean use_maodifiable_properties;
boolean use_dynamic_properties;
boolean use_proxy_offers;
TraderName starting_trader;
FollowOption link_follow_rule;
unsigned long hop_count;
boolean exact_type_match;

|3

The “search_card” policy indicates to the trader the maximum number of offers it
should consider when looking for type conformance and constraint expression match.
The lesser of this value and the trader's max_search ataifolite isused by the

trader. If this policy is not specified, then the value of the trader’'s def_search_card
attribute is used.

The “match_card” policy indicates to the trader the maximum number of matching
offers to which the preference specification should be applied. The lesthes value
and the trader’'s max_match_catribute isused by the trader. If this policy is not
specified, then the value of the trader's def matard attribute is used.

The “return_card” policy indicates to the trader the maximum number of matching
offers to return as a result of this query. The lesser of this value and the trader’s

max_return_card attribute is used by the trader. Ifghigy is not specified, then the

value of the trader’s def _return_card attribute is used.

The “use_modifiable_properties” policy indicates whether the trader should consider
offers which have moélable properties Wwen constructing thset of offers to which

type conformance and netraint processing should be applied. If the value of this
policy is TRUE, then such offers will be included; if FALSE, they will not. If this
policy is not specified, such offers will be included.

CORBAservices March 1997

16

The “use_dynamic_pperties” policy indicates whether the trader should consider
offers which have dyamic properties when constructing the set of offershizhvtype
conformance and comaint processing should be applied. If the value of this policy is
TRUE, then such offers will be included; if FALSE, they will not. If thidicy is not
specified,such offerswill be included.

The “use_proxy_offers” policy indicates whether the trader should consider proxy
offers whenconstructing the set of offers to which type conformance and constraint
processing should be applied. If the value of this policy is TRUE, then such offers will
be included; if FALSE, they will not. If this policy is not specified, such offers will be
included.

The “starting_trader” policy facilitates the distribution of the trading serivsedf. It

allows an importer to scope a search by choosing to explicitly navigate the links of the
trading graph. If the policy is used in a query invocation it is recommended that it be
the first policy-value pair; this facilitates an optimal forwarding ofdhery operation.

A “policies” parameter need not include a value for the “starting_trader” policy. Where
this policy is present, the first name cammgnt is compared against the name held in
each link. If no match is found, the InvalidPolicyValue exception is rafSéterwise,

the trader invokes query() on the Lookup interface held by the named link, but passing
the “starting_trader” policy with the first component removed.

The “link_follow_rule” policy indicates how the client wishes links tofokowed in
the resolution of itgjuery. See the discussion iLink Follow Behavio” on
page 16-16 for details.

The “hop_count” policy indicates to the trader thaximum number of hops across
federation links thatteould be tolerated in the resolution of this query. The hop_count
at the current trader is determined by taking the minimum of the trader’s
max_hop_counattributeand the impader’s hg_count policy, if provided, or the
trader’'s def_hop_courdttribute if it is not. Ifthe resulting value igero, then no
federated queries are permitted. If it is greater ttexo, then it must be decremented
before passing on to a federated trader.

The “exact_type_match” policy indicates to the trader whether the importer’s service
type must exactly match an offer’s service type; if not (and by default), then any offer
of a type conformant to the importer’s service type is considered.

16.5.2 Offer Iterator

Signature
interface Offerlterator {
unsigned long max_left (
) raises (
UnknownMaxLeft
)i

boolean next_n (

Trading Object Service: v1.[Functional Interface March 1997 16-35

16

16-36

in unsigned long n,

out OfferSeq offers

);
void destroy ();
k
Function

The Offerlterator interface issed to return a set of service offers from the query
operation by enabling the service offers to be extracted by successive operations on the
Offerlterator interface.

The next_n opration returns a set of service offers in the output parameter “offers.”
The operation returns n service offers if there are at least n service offers remaining in
the iterator. If there are fewer than n service offers in the iterator, then all remaining
service offers are returned@he actual number of serviadfers returned can be
determined from the length of the “offers” sequence. The next_n operation returns
TRUE if there are further service offers to be extracted from the iterator. It returns
FALSE if there are no further service offers to be extracted.

The max_left operation returns the number of service offers remaining in the iterator.
The exception UnknownMaxLeft imised if the iteratocannot @&termine the

remaining number of service offersdg if the terator determines its set of service
offers thraugh lazy evaluation).

The destroy operation destroys the iterator. No further operations ¢avoked on an
iterator after it has been destroyed.

16.5.3 Register

interface Register : TraderComponents, SupportAttributes {

struct Offerinfo {
Object reference;
ServiceTypeName type;

PropertySeq properties;

exception InvalidObjectRef {
Object ref;

exception UnknownPropertyName {

PropertyName name;

CORBAservices March 1997

16

exception InterfaceTypeMismatch {
ServiceTypeName type;

Object reference;

exception ProxyOfferld {
Offerld id;

exception MandatoryProperty {
ServiceTypeName type;

PropertyName name;

exception ReadonlyProperty {
ServiceTypeName type;

PropertyName name,;

exception NoMatchingOffers {

Constraint constr;

exception lllegalTraderName {

TraderName name;

exception UnknownTraderName {

TraderName name;

exception RegisterNotSupported {

TraderName name;

Offerld export (

Trading Object Service: v1.[Functional Interface March 1997 16-37

16

16-38

in Object reference,

in ServiceTypeName type,
in PropertySeq properties

) raises (

InvalidObjectRef,
lllegalServiceType,
UnknownServiceType,

InterfaceTypeMismatch,

lllegalPropertyName, // e.g. prop_name = “<foo-bar

PropertyTypeMismatch,

ReadonlyDynamicProperty,
MissingMandatoryProperty,

DuplicatePropertyName

void withdraw (

in Offerld id

) raises (

lllegalOfferld,
UnknownOfferld,
ProxyOfferld

OfferInfo describe (

in Offerld id

) raises (

IllegalOfferld,
UnknownOfferld,
ProxyOfferld

void modify (

in Offerld id,

in PropertyNameSeq del_list,
in PropertySeq modify_list

) raises (

Notimplemented,
lllegalOfferld,

CORBAservices March 1997

”

16

UnknownOfferld,
ProxyOfferld,
IllegalPropertyName,
UnknownPropertyName,
PropertyTypeMismatch,
ReadonlyDynamicProperty,
MandatoryProperty,
ReadonlyProperty,

DuplicatePropertyName

void withdraw_using_constraint (
in ServiceTypeName type,
in Constraint constr

) raises (
lllegalServiceType,
UnknownServiceType,
IllegalConstraint,
NoMatchingOffers

Register resolve (
in TraderName name
) raises (
lllegalTraderName,
UnknownTraderName,

RegisterNotSupported

Export Operation

Signature
Offerld export (

in Object reference,
in ServiceTypeName type,
in PropertySeq properties

) raises (

Trading Object Service: v1.[Functional Interface March 1997 16-39

16

16-40

InvalidObjectRef,

lllegalServiceType,

UnknownServiceType,

InterfaceTypeMismatch,

lllegalPropertyName, // e.g. prop_name = “<foo-bar”
PropertyTypeMismatch,

ReadonlyDynamicProperty,
MissingMandatoryProperty,

DuplicatePropertyName

)i

Function

The export operation is the means by which a service is advertised, via a trader, to a
community of potential importer§.he Offerldreturned is the handle with which the
exporter can identify the exported offer wheetitemping to access it via other

operatims. The Offerld is only meaningful in the context of the trader that generated
it.

The “reference” parameter is the information that enables a client to interact with a
remote server. If a trader implemeidgat chooses to consider certain types of object
references (e.g., a nil object reference) to be unexportable, then it may return the
InvalidObjectRef exception isuch cases.

The “type” parameter identifies the service type, which contains the interface type of
the “reference” and a set of named property types that may be usathir
describing this offer (i.e., it restricts what is acceptable in the properties parameter).

® If the string representation of the “type” does nbéyp the rules fordentifiers, then
an lllegalServiceType exception rigised.

® |If the “type” is correct syntactically but a trader is able to unambiguously determine
that it is not a recognized service type, then akridwnServiceTyp@xception is
raised.

* |f the trader can determine that the interface type of the “reference” parameter is not
a subtype of the interface type specified in “type,” then an InterfaceTypeMismatch
exception is raised.

The “properties” parameter is a list of named values that conform to the property value
types defined for those names. They describeséineice being offered. This

description typically covers behavioral, non-functional, and non-céatipnal aspects

of the service.

® If any of the property names do not obey the syntax rules for PropertyNames, then
an lllegalPropertyName exception is raised.

® If the type of any of the property values is not the same as the declared type
(declared in the service type), then a PropertyTypeMismatch exception is raised.

CORBAservices March 1997

16

® [f an attempt is made to assign a dynamic property valuggadonly property,
then the ReadonlyDynamicProperty exception is raised.

® |f the “properties” parameter dta any property declared in ttservice type with a
mode of mandatory, thenMissingMandatoryProperty exception is raised.

® |f two or more properties with the same property name are included in this
parameter, the DuplicatePropertyName exception is raised.

WithdrawOperation

Signature
void withdraw (

in Offerld id

) raises (
lllegalOfferld,
UnknownOfferld,
ProxyOfferld

)i

Function

The withdraw operation removes the service offer from the trader (i.e., atfelraw
the offer can no longer be returned asrbsult of a query)The ofer is identified by
the “id” parameter which was originally returned by export.

® |f the string representain of “id” does not obey the rules for offer iddiers, then
an lllegalOfferld exception is raised.

® |f the “id” is legal but there is no offer within the trader with that “id,” then an
UnknownOfferld exception is raised.

® If the “id” identifies a proxy offer rather than an ordinary offer, then a ProxyOfferid
exception is raised.

Describe Operation

Signature

Offerinfo describe (
in Offerld id

) raises (
lllegalOfferld,
UnknownOfferld,
ProxyOfferld

)i

Trading Object Service: v1.[Functional Interface March 1997 16-41

16

16-42

Function

The describe operation returns the information about an offered service that is held by
the trader. It comprises the “reference” of the offered service, the “type” of the service
offer, and the “properties” that describe this offer of service. The offer is identified by
the “id” parameter which was originally returned by export.

® |f the string representation of “id” does not obey the rules for objectifust
then an lllegalOfferld exception is raised.

® |f the “id” is legal but there is no offer within the trader with that “id,” then an
UnknownOfferld exception is raised.

® |[f the “id” identifies a proxy offer rather than an ordinary offer, then a ProxyOfferld
exception is raised.

Modify Operation

Signature
void modify (

in Offerld id,
in PropertyNameSeq del_list,
in PropertySeq modify_list
) raises (
Notlmplemented,
lllegalOfferld,
UnknownOfferld,
ProxyOfferld,
lllegalPropertyName,
UnknownPropertyName,
PropertyTypeMismatch,
ReadonlyDynamicProperty,
MandatoryProperty,
ReadonlyProperty,

DuplicatePropertyName

);

Function

The modify operation is used to change the description of a service as held within a
service offer. Thebject reference and the service type associated with the offer cannot
be changed. This operation may:

® add new(non-mandatory) properties to describe an offer,

® change the values of some existing (not readonly) properties, or

CORBAservices March 1997

16

® delete existing (neither mandatory nor readonly) properties.

The modify operation either succeeds completely &ails completely. Theffer is
identified by the “id” parameter whicvas orginally returned by export.

® |f the string representain of “id” does not obey the rules for offer iddiers, then
an lllegalOfferld exception is raised.

® |f the “id” is legal but there is no offer within the trader with that “id,” then an
UnknownOfferld exception is raised.

® If the “id” identifies a proxy offer rather than an ordinary offer, then a ProxyOfferid
exception is raised.

The “del_list” parameter gives the names of the properties that are no longer to be
recorded for the igntified offer. Future gery and describe @pations will not see
these properties.

® |f any of the names within the “del_list” do not obey the rules for Propartys,
then an lllegalPropertyName eaption is raised.

® |fa “name” is legal but there is no property for the offer with that “name,” then an
UnknownPropertyName exceptionriasised.

® |f the list includes a property that has a mandatory mode, then the
MandatoryProperty exception is raised.

® If the same property name is included two or more times in this parameter, the
DuplicatePropertilame exception is raised.

The “modify_list” parameter gives the names and values of properties toabged.

If the property is not in the offer, then the modify operataiasit. The modified (or
added) property values are returned in future query and describe operations in place of
the original values.

® |f any of the names within thenodify_list’ do not doey the rules for
PropertyName’s, then an lllegalPpertyName exception is raised.

® |f the list includes a property thhis a readonly mode, then tReadonlyProperty
exception is raised unless that readonly property is not currently recorded for the
offer. The RedonlyDynamicProperty exception is raised if atewipt is made to
assign a dynamic property value to a m@ag property.

® If the value of any modified property is of a type that is not the same as the type
expected, then the PropertyTypeMismatch exception is raised.

® If two or more properties with the same property name are included in this
argument, the DuplicatePropertyName exception is raised.

The Notimplemented exception shall be raised if and only if the
supports_modifiable_properti@stribute yields FALSE.

Trading Object Service: v1.[Functional Interface March 1997 16-43

16

Note —It is not possible to change the service type of an offer or the object reference
of the service. This has to be achieved by withdrawing and then re-exporting. The
purpose of modify is to change the description of the offered service while preserving
the Offerld. This might be important where the Offerld has been propagated around a
community of objects.

Withdraw Using Constraint Operation

Signature
void withdraw_using_constraint (

in ServiceTypeName type,
in Constraint constr

) raises (
lllegalServiceType,
UnknownServiceType,
lllegalConstraint,

NoMatchingOffers
);

Function

The withdraw_using_constraint eationwithdraws a set of offers from within a
single trader. This set is identified in the same way that a query operadiatifiecs a
set of offers to be returned to an importer.

The “type” parameter conveys the required service tifaehoffer of the specified
type will have the constraint expression applied to it. If it matches the constraint
expression, then the offer will be withdrawn.

® If “type” does not obey the rules for service types, then an lllegalServiceType
exception is raised.

® |f the “type” is correct syntactically but is not recognized as a service type by the
trader, then an UmownServiceType exception is raised.

The constraint “constr” is the means by which the clrestricts the set of offers to
those that are intended for withdrawal.

® |f “constr” does not obey the syntax rules for a constraint then an lllegat€int
exception is raised.

® If the constrainfails to match with anyffer of the specified service type, then a
NoMatchingOffers exeption is raised.

16-44 CORBAservices March 1997

16

ResolveOperation

Signature
Register resolve (

in TraderName name
) raises (

lllegalTraderName,

UnknownTraderName,

RegisterNotSupported

Function

This operation is used to resolve a context relative name for another trader. In
particular, it is sed when exporting to a traddat isknown by a nameather than by

an object reference. The client provides the name, which will be a sequence of name
components.

® |f the content of the parameter canyild legal syntax for the first coropent,
then the lllegalTraderName exception is raised. Otherwise, rftenime
component is compared against the name held in each link.

® |f no match is found, or the trader does not support links, tHendanTraderfdme
exception is raised. Otherwise, ttiader obtains the register_if held as part of the
matched link.

® |f the Register interface is not nilhen the trader binds to the Register interface and
invokes resolve but passes the TraderNantle the first component removed; if it
is nil, then the RegisterNotSupported exception is raised.

When a trader is able to match the first name component leaving no residual name, that
trader returns the reference for the Register interface for that linked trader. In
unwinding the recursion, interediate traders return the Register interface reference to
their client (another trader).

16.5.4 Offer Id Iterator

Signature

interface Offerldliterator {
unsigned long max_left (

) raises (

UnknownMaxLeft

Trading Object Service: v1.[Functional Interface March 1997 16-45

16

boolean next_n (
in unsigned long n,
out OfferldSeq ids

void destroy ();

Function

The Offerldlterator interface is used to return a set of offer identifiers from the
list_offers operatiorand the list_proxies operation in the Adniimerface byenabling
the offer identifiers to be extracted by successive operations on the Offerlditerator
interface.

The next_n opration returns a set of offer identifiers in the output parameter “ids.”
The operation returns n offer identifiers if there are at least n offer identifiers
remaining in the iterator. If there arenfer than n offer ideifiers in the iterator, then

all remaining offer identifiers are returnethe actual number of offer identifiers
returned can bdetermined from the length of the “idséquence. The next_n
operation returns TRUE if there are further offer identifiers to be extracted from the
iterator. It returns FALSE if there are no further offer identifiers to be extracted.

The max_left operation returns the number of offer identifiers remaining in the iterator.
The exception UnknownMaxLeft imised if the iteratocannot @termine the

remaining number of offer identifieg.qg., if the iterator determindés set of offer
identifiers through lazy evaluation).

The destroy operation destroys the iterator. No further operations ¢avoked on an
iterator after it has been destroyed.

16.5.5 Admin

interface Admin : TraderComponents, SupportAttributes,
ImportAttributes, LinkAttributes {

typedef sequence<octet> OctetSeq;

readonly attribute OctetSeq request_id_stem;

unsigned long set_def_search_card (in unsigned long value);

unsigned long set_max_search_card (in unsigned long value);

unsigned long set_def_match_card (in unsigned long value);

unsigned long set_max_match_card (in unsigned long value);

16-46 CORBAservices March 1997

16

unsigned long set_def _return_card (in unsigned long value);

unsigned long set_max_return_card (in unsigned long value);

unsigned long set_max_list (in unsigned long value);

boolean set_supports_maodifiable_properties (in boolean value);
boolean set_supports_dynamic_properties (in boolean value);

boolean set_supports_proxy_offers (in boolean value);

unsigned long set_def_hop_count (in unsigned long value);

unsigned long set_max_hop_count (in unsigned long value);

FollowOption set_max_follow_policy (in FollowOption policy);

FollowOption set_def_follow_policy (in FollowOption policy);

FollowOption set_max_link_follow_policy (in FollowOption
policy);

TypeRepository set_type_repos (in TypeRepository repository);

OctetSeq set_request_id_stem (in OctetSeq stem);

void list_offers (
in unsigned long how_many,
out OfferldSeq ids,
out Offerldlterator id_itr
) raises (
Notlmplemented

void list_proxies (
in unsigned long how_many,
out OfferldSeq ids,
out OfferldIterator id_itr
) raises (
Notlmplemented

Trading Object Service: v1.[Functional Interface March 1997

16-47

16

16-48

Attributes and Set Operations

The admin interface enables the values of the trader attributes to be read and written.
All attributes are defined as readonly in eitheportAttributes, ImportAttributes,
LinkAttributes, or Admin. To set the trad@ttribute” to a new value,
set_<attributename> @erations are defined in Admiitach of thesset operations

returns the previous value of the attribute as its function value.

If the admin interface operation setpport proxy_ offers is invoked with a value set

to FALSE in a trader which supports the proxy interface, the set_support_proxy_offer
value does not affect the function of operations in the proxy interface. However, in this
case, it does have the effect of making any proxy offers exported via the proxy
interface for that trader unavailable to satisfy queries on that trader’s lookup interface.

List Offers Operation

Signature
void list_offers (

in unsigned long how_many,
out OfferldSeq ids,
out Offerldlterator id_itr

) raises (

Notlmplemented

Function

The list_offers peration allows the administrator of a trader to perform housekeeping
by obtaining a handle on each of the offers within a trader (e.g., for gacblgetion

etc.). Only the identifiers of ordinary offers are returned, identifierafy offers are

not returned via this operation. If the trader does not support the Register interface, the
Notimplementedexception is raised.

The returned identifiers areapsed back in one of two ways (or a combination of both).

® The “ids” return result conveys &t of offer identifiersand the'id_itr" is a
reference to an interface at which additional offer identit&s be obtained.

® The “how_many” parameter states how many identifiers are to be returned via the
“ids” result; any remaining ar@vailable via the iterator interface. If the
“how_many” exceeds the number of offers held in the trader, then the “id_itr” is nil.

List Proxies Operation
Signature

void list_proxies (

in unsigned long how_many,

CORBAservices March 1997

16

out OfferldSeqids,
out Offerldlterator id_itr
) raises (

Notimplemented

Function

The list_proxies operation returns the set of offer identifierpfory offers held by a
trader. Most'how_many” offer icentifiers are returned via “idsf:

® There are more than “how_many” offielentifiers, the remainder are returned via
the “id_itr" iterator.

® There are only “how_many” or fewer offer idéiers, the id_itr is nil.

® The tader does not support the Proxy interface, the Notimplemented exception is
raised.

16.5.6 Link

interface Link : TraderComponents, SupportAttributes,
LinkAttributes {

struct LinkInfo {
Lookup target;
Register target_reg;
FollowOption def_pass_on_follow_rule;

FollowOption limiting_follow_rule;

exception lllegalLinkName {

LinkName name;

exception UnknownLinkName {

LinkName name;

exception DuplicateLinkName {

LinkName name;

Trading Object Service: v1.[Functional Interface March 1997 16-49

16

16-50

exception DefaultFollowTooPermissive {
FollowOption def_pass_on_follow_rule;

FollowOption limiting_follow_rule;

exception LimitingFollowTooPermissive {
FollowOption limiting_follow_rule;

FollowOption max_link_follow_policy;

void add_link (
in LinkName name,
in Lookup target,
in FollowOption def_pass_on_follow_rule,
in FollowOption limiting_follow_rule
) raises (
lllegalLinkName,
DuplicateLinkName,
InvalidLookupRef, // e.g. nil
DefaultFollowTooPermissive,

LimitingFollowTooPermissive

void remove_link (
in LinkName name
) raises (
IllegalLinkName,

UnknownLinkName

LinkInfo describe_link (
in LinkName name

) raises (
lllegalLinkName,

UnknownLinkName

LinkNameSeq list_links ();

CORBAservices March 1997

16

void modify_link (
in LinkName name,
in FollowOption def_pass_on_follow_rule,
in FollowOption limiting_follow_rule

) raises (
IllegalLinkName,
UnknownLinkName,
DefaultFollowTooPermissive,

LimitingFollowTooPermissive

Add_Link Operation

Signature
void add_link (
in LinkName name,
in Lookup target,
in FollowOption def_pass_on_follow_rule,
in FollowOption limiting_follow_rule
) raises (
lllegalLinkName,
DuplicateLinkName,
InvalidLookupRef, // e.g. nil
DefaultFollowTooPermissive,
LimitingFollowTooPermissive
);
Function

The add_link operation allows a trader subsequently to use the service of another
trader in the performance of its own trading service operations.

The “name” parameter is used in subsequent link managemeradtiops to identify

the intended link. If the parameter is not legally formed, then the lllegalLinkName
exception is raised. An exception of DuplicateLinkName is raised if the link name
already exists. The link name is also used as a component in a sequence of name
components in naming a trader for resolving or forwarding operations. The sequence
of context relative link names provides a path to a trader.

Trading Object Service: v1.[Functional Interface March 1997 16-51

16

16-52

The “target” parameter identifies theakupinterface at which the trading service
provided by the target trader can be accessed. Shouldthepinterface parameter
be nil, then an exception of InvalidbkupRef is raised. Thiarget interface is used to
obtain the associated Register interface, which wikldesequently returned as part of
a describe_link operatioand invoked as part of a resolve operation.

The “def_pass_on_folls_rule” parameter sxifies the default linkbehavior for the
link if no link behavior is specified on an importer’s query request. If the
“def_pass_on_follr_rule” exceeds the ‘hiting_follow_rule” specified in the next
parameter, then a DefaultFolldwoPernssive exception is raised.

The “limiting_follow_rule” parameter specifies the most permissive link follow
behavior that the link is willing to tolerate. Tlegception

LimitingFollowTooPermissive is raised if this parameter exceeds the tretéitaite

of “max_link_follow_policy” at the time of the link’s creation. Note it is possible for a
link’s “limiting_follow_rule” to exceed the trader’s “max_link_follow_policy” later in
the life of a link, as it is possible that the trader could set its “max_link_follow_policy”
to a more restrictive value after the creation of the link.

Remove Link Operation

Signature
void remove_link (

in LinkName name
) raises (
IllegalLinkName,

UnknownLinkName

Function

The remove_link operation removes latiowledge of the target trader. The target
trader cannot be used subsequently to resolve, forward, or propagate trading operations
from this trader.

The “name” parameter identifies the link to be remavThe ereption
lllegalLinkName is raised if the link is formed poorly and the UnknlowkName
exception is raised if the named link is not in the trader.

Describe Link Operation

Signature
LinkInfo describe_link (

in LinkName name
) raises (

IllegalLinkName,

CORBAservices March 1997

16

UnknownLinkName

Function
The describe_link operation returns information on a link held in the trader.
The “name” parameter identifies the link whose description is required. For a

malformed link name, the exception lllegalkName is raised. An
UnknownLinkName exception is raised if the named link is not found in the trader.

The operation returns a LinkIinfo structure comprising:
® the Lookup interface of the@arget trading service,
® the Register interface of the target trading service, and

® the default, as well as thanliting follow behavior of the named link.

If the target service does nstipport the Regter interface, then that field of the
LinkiInfo structure is nil. Given the description of the Register::resolve() operation in
“Resolve Operatic’ on page 16-45, most implementations will opt for determining the
Register interface ten add_link is called amstoring that information statically with
the rest of the link state.

List Links Operation

Signature
LinkNameSeq list_links ();

Function

The list_links operation returns a listtbie names of all trading links within the trader.
The names can be used subsequently for other manageneeatiaps,such as
describe_link or remove_link.

Modify Link Operation

Signature
void modify_link (

in LinkName name,
in FollowOption def_pass_on_follow_rule,
in FollowOption limiting_follow_rule
) raises (
lllegalLinkName,

UnknownLinkName,

Trading Object Service: v1.[Functional Interface March 1997 16-53

16

DefaultFollowTooPermissive,

LimitingFollowTooPermissive

)

Function

The modify_link operation is used to change the existing link follow behaviors of an
identified link. TheLookup inerface reference of the target trader and the name of the
link cannot be changed.

The “name” parameter identifies the link whose follow behaviors are thdreged. A
poorly formed “name” raises the lllegalLinkName exception. ArkidrwnLinkName
exception is raised if the link name is not known to the trader.

The “def_pass_on_follw_rule” parameter sxifies the new default link behavior for
this link. If the “def_pass_on_follow_rule” exceeds thmiting_follow_rule”
specified in the next parameter, then a DefaultFolloaP ernssive exception is
raised.

The “limiting_follow_rule” parameter specifies tmew imit for the follow behavior
of this link. The exception LimitingollowTooPermissive is raised if the value exceeds
the current “max_link_follow_policy” of the trader.

16.5.7 Proxy

interface Proxy: TraderComponents, SupportAttributes {
typedef Istring ConstraintRecipe;
struct ProxyInfo {
ServiceTypeName type;
Lookup target;
PropertySeq properties;
boolean if_match_all;
ConstraintRecipe recipe;
PolicySeq policies_to_pass_on;
h
exception lllegalRecipe {

ConstraintRecipe recipe;

|3

exception NotProxyOfferld {
Offerld id;

|3

Offerld export_proxy (
in Lookup target,

in ServiceTypeName type,

16-54 CORBAservices March 1997

16

in PropertySeq properties,
in boolean if_match_all,
in ConstraintRecipe recipe,
in PolicySeq policies_to_pass_on
) raises (
lllegalServiceType,
UnknownServiceType,
InvalidLookupRef, // e.g. nil
IllegalPropertyName,
PropertyTypeMismatch,
ReadonlyDynamicProperty,
MissingMandatoryProperty,
lllegalRecipe,
DuplicatePropertyName,

DuplicatePolicyName

void withdraw_proxy (
in Offerld id

) raises (
IllegalOfferld,
UnknownOfferld,
NotProxyOfferld

ProxylInfo describe_proxy (
in Offerld id

) raises (
lllegalOfferld,
UnknownOfferld,
NotProxyOfferld

Export Proxy Operation

Signature
Offerld export_proxy (

Trading Object Service: v1.[Functional Interface March 1997 16-55

16

16-56

in Lookup target,
in ServiceTypeName type,

in PropertySeq properties,

in boolean if_match_all,
in ConstraintRecipe recipe,
in PolicySeq policies_to_pass_on
) raises (
lllegalServiceType,
UnknownServiceType,
InvalidLookupRef, // e.g. nil
IllegalPropertyName,
PropertyTypeMismatch,
ReadonlyDynamicProperty,
MissingMandatoryProperty,
lllegalRecipe,
DuplicatePropertyName,

DuplicatePolicyName
);

Function

The Proxy interface enables the export and subsequent manipulation of proxy offers.
Proxy offers enableun-time determination of the interface at which a service is
provided. The export_proxy operation adds a proffgr to the trader’s set of service
offers.

Like normal service offers, proxy offers have a service type “type” and named property
values “properties.” However, a proxy offer does not include an object reference at
which the offered service is provided. Instead this object reference is obtained when it
is needed for a query operation; it is obtained by invoking another quergtimm

upon the“target” Lookup interface held in the proxy offer.

The “if_match_all” parameter, if TRUE, indicates that the trader should consider this
proxy offer as a match to an importers query bagmah type coformance alone (i.e.,

it does not match the importer'srtstraint expression against theperties associated
with the proxy offer). This is most often usefuh@n the constraint expression

supplied by the importer is simply passed along in the secondary query operation.

The “recipe” parameter tells the trader how to construct the constraint expression for
the secondary query operation to “targéfitierecipe language is described in

Appendix C; it perrits the secondary canstraint expression to be made up of literals,
values of properties of the proxy offer, and the primary constraint expression.

CORBAservices March 1997

16

The “policies_to_pass_on” parameter provides a static seharhe, value>pairs for
relaying on to the “target” trader. Table 16-5 describes how the secondary policy
parameter is generated from the primary policy paranasteérthe

“policies_to pass_on.”

If a query operation matches the proxy offer (using the normal service type matching
and property matching and preference algorithais3, primaryquery operation

invokes a secondary queryperation on the Ldap interface nominated in the proxy
offer. Although the proxy offer nominates a lkap interface, this interface is only
required to conform syntactically to the Lag interface; it need not conform to the
Lookupinterface behavior specified above.

The secondary query epation is detailed in Tabl&6-5.

Table 16-5 Primary/Secondary Policy Parameters

in ServiceTypeName type The type is copied from primary query.

in Constraint constr The recipe in the proxy offer is evaluated to provide the constr
parameter.

in Preference pref The preference is copied from the primary query.

in PolicySeq policies The “policies” (names and values) contained in the

policies_b_pass_on field of the proxy offer appended to thg
policies of the primary query.

D

in SpecifiedProps desired_props | The desired_props are copied from the primary query.

in unsigned long how_many The how_many parameter is set by the trader to reflect the
trader implementation’s preference for receiving the resultant
offer as a list or through an iterator.

out OfferSeq offers At most how_many offers are returned from deeondary
guery operation via offers.
out Offerlterator offer_itr If the secondary query needs to return more than how_many

offers, then the remaining offers can be accessed via the iterator
offer_itr. If there are only how_many or fewer offergen
offer_itr is nil.

out PolicyNameSeq limits_applied The names of any policy limits that were applied by tleypr
trader.

®* The llegalServiceType exception is raised if the service type name (type) is not
well-formed.

® The UnknownServiceTypexception is raised if the service type name (type) is not
known to the tradr.

® The InvalidLookupRefexception is raised if target is not a validdkupinterface
reference (e.g. if target is a nil object reference).

®* The llegalPropertyName exception is raised if a property name in “properties” is
not well-formed.

Trading Object Service: v1.[Functional Interface March 1997 16-57

16

16-58

® The PropertyTpeMismatch exception is raised if a property value is not of an
appropriate type as determined by the service type.

® The ReadonlyDynamicProperty exceptiomassed if a dynamic property value was
supplied for a property that was flagged as readonly.

® TheMissingMandatoryProperty exceptionrised if“properties” does not adain
one of the mandatory pperties defined by the service type.

® The llegalRecipe exception is raised if the recipe is not well-formed.

® The DupicatePropertyName eeption is raised if two or more properties with the
same property name are included in the “properties” parameter.

® The DuplicatePolicyName exceptionr@sed if two or more policies with the same
policy name are included in the “policies_to_pass_on” parameter.

Note —Proxy offers cannot be modified; theyust bewithdrawn and re-exported.

Withdraw Proxy Operation

Signature
void withdraw_proxy (
in Offerld id
) raises (
IllegalOfferld,
UnknownOfferld,
NotProxyOfferld
);
Function

The withdraw_proxy operation removes the proxy off@nidfied by “id” from the
trader.

The lllegalOfferld exception is raised if “id” is noteN-formed. The UnknownOfferld
exception is raised if “id” does notedtify any ofer held by the trader. The
NotProxyOfferld exeption is raised if “id” identifies a normal service offer rather than
a proxy offer.

Describe ProxyDperation

Signature
ProxylInfo describe_proxy (

in Offerld id
) raises (
lllegalOfferld,

CORBAservices March 1997

16

UnknownOfferld,
NotProxyOfferld

)

Function
The descrile_proxy operation returns the informatiomtained in theproxy offer
identified by “id” in the trader.

The lllegalOfferld exception is raised if “id” is noteN-formed. The UnknownOfferld
exception is raised if “id” does notedtify any ofer held by the trader. The
NotProxyOfferld exeption is raised if “id” identifies a normal service offer rather than
a proxy offer.

16.6 Service Type Repository

module CosTradingRepos {
interface ServiceTypeRepository {

/l'local types

typedef sequence<CosTrading::ServiceTypeName>
ServiceTypeNameSeq;

enum PropertyMode {
PROP_NORMAL, PROP_READONLY,
PROP_MANDATORY, PROP_MANDATORY_READONLY
h
struct PropStruct {
CosTrading::PropertyName name;
CORBA::TypeCode value_type;
PropertyMode mode;
h
typedef sequence<PropStruct> PropStructSeq;

typedef CosTrading::Istring Identifier; // IR::1dentifier
struct IncarnationNumber {
unsigned long high;
unsigned long low;
h
struct TypeStruct {
Identifier if_name;

PropStructSeq props;

Trading Object Service: v1.Service Type Repositc March 1997 16-59

16

ServiceTypeNameSeq super_types;
boolean masked;

IncamationNumber incarnation;

enum ListOption { all, since };
union SpecifiedServiceTypes switch (ListOption) {

case since: IncarnationNumber incarnation;

Il local exceptions

exception ServiceTypeEXxists {
CosTrading::ServiceTypeName name;

h

exception InterfaceTypeMismatch {
CosTrading::ServiceTypeName base_service;
Identifier base_if;
CosTrading::ServiceTypeName derived_service;
Identifier derived_if;

h

exception HasSubTypes {
CosTrading::ServiceTypeName the_type;
CosTrading::ServiceTypeName sub_type;

|3

exception AlreadyMasked {
CosTrading::ServiceTypeName name;

|3

exception NotMasked {
CosTrading::ServiceTypeName name;

|3

exception ValueTypeRedefinition {
CosTrading::ServiceTypeName type_1;
PropStruct definition_1;
CosTrading::ServiceTypeName type_2;
PropStruct definition_2;

|3

exception DuplicateServiceTypeName {

16-60 CORBAservices March 1997

16

CosTrading::ServiceTypeName name;

/] attributes

readonly attribute IncarnationNumber incarnation;

/I operation signatures

IncarnationNumber add_type (
in CosTrading::ServiceTypeName name,
in Identifier if_name,
in PropStructSeq props,
in ServiceTypeNameSeq super_types

) raises (
CosTrading::lllegalServiceType,
ServiceTypeEXxists,
InterfaceTypeMismatch,
CosTrading::lllegalPropertyName,
CosTrading::DuplicatePropertyName,
ValueTypeRedefinition,
CosTrading::UnknownServiceType,

DuplicateServiceTypeName

void remove_type (
in CosTrading::ServiceTypeName name
) raises (
CosTrading::lllegalServiceType,
CosTrading::UnknownServiceType,

HasSubTypes

ServiceTypeNameSeq list_types (
in SpecifiedServiceTypes which_types

TypeStruct describe_type (
in CosTrading::ServiceTypeName name

) raises (

Trading Object Service: v1.Service Type Repositc March 1997 16-61

16

16-62

CosTrading::lllegalServiceType,

CosTrading::UnknownServiceType

TypeStruct fully_describe_type (

in CosTrading::ServiceTypeName name
) raises (

CosTrading::lllegalServiceType,

CosTrading::UnknownServiceType

void mask_type (
in CosTrading::ServiceTypeName name
) raises (
CosTrading::lllegalServiceType,
CosTrading::UnknownServiceType,
AlreadyMasked

void unmask_type (
in CosTrading::ServiceTypeName name
) raises (
CosTrading::lllegalServiceType,
CosTrading::UnknownServiceType,
NotMasked

b

}; /* end module CosTradingRepos */

Add TypeOperation

Signature
IncarnationNumber add_type (

in CosTrading::ServiceTypeName name,
in Identifier if_name,
in PropStructSeq props,

in ServiceTypeNameSeq super_types

CORBAservices March 1997

16

) raises (
CosTrading::lllegalServiceType,
ServiceTypeEXxists,
InterfaceTypeMismatch,
CosTrading::lllegalPropertyName,
CosTrading::DuplicatePropertyName,
ValueTypeRedefinition,
CosTrading::UnknownServiceType,

DuplicateServiceTypeName

)i

Function

The add_type operatioanables thereation of new service types in the service type
repository. The caller supplies the “name” for the new type, the identifier for the
interface associated with instances of this service type, the properties definitions for
this service tpe, and the service type names of the immediate super-typlas to
service type.

If the type creation is successful, an incarnation number is returned as the value of the
operation. Incarnation numbers angaque values that are assigned to each

modification to the repository’state. Anincarnation number can be quoted when
invoking thelist_types operation to retrieve alhanges to the service repository since

a particular logical time. (Note: IncarnationNumber is currently declared as a struct
consisting of two unsigned longs; what we really want here is an unsigned hyper [64-
bit integer]. A future revision task force should modify thisemw CORBAsystems

support IDL 64-bit integers.)

® |f the “name” parameter is malformed, then the CosTrading::lllegalServiceType
exception is raised.

® |f the type already exists, then the Servicp@kxbsts exception is raised.

® |f the “if_name” parameter is not a sub-type of the interface associated with a
service type from which this service type is derived, such that substitutability would
be violated, then the InterfaceTypeMismatch exception is raised.

® If a property name supplied in the “props” parameter is malformed, the
CosTrading::lllegalPropertyName exception is raised.

® |f the same property name appears two or more times in the “props” parameter, the
CosTrading::DuplicatePropertyName @ption is raised.

® [fa property value type associated with this service type illegally modifies the value
type of a super-type’s property, or if two super-types incompatibly declare value
types for the same property name, then the VatpeRedefinition exception is
raised.

® |f one of the ServicejipeNames in “super_types” imalformed,then the
CosTrading::lllegalServiceype exception is raised.

Trading Object Service: v1.Service Type Repositc March 1997 16-63

16

16-64

® If one of the ServicejfipeNames in “super_types” does not exist, then the
CosTrading::UnknownServiceType egption is raised.

® |f the same service type name is included two or more times in this parameter, the
DuplicateServicgypeName exception is raised.

Remove Typ@peration

Signature
void remove_type (

in CosTrading::ServiceTypeName name
) raises (

CosTrading::lllegalServiceType,

CosTrading::UnknownServiceType,

HasSubTypes

Function
The remove_type operation removes the named type from the service type repository.

* |f “name” is malformed then theCosTrading::lllegalServiceype exception is
raised.

® |f “name” does not exist within the repository, then the
CosTrading::UnknownServiceType egption is raised.

® |f “name” has a service type which has been derived from it, theldab8ubTypes
exception is raised.

List Types Operation

Signature
ServiceTypeNameSeq list_types (

in SpecifiedServiceTypes which_types

Function

The list_types operation permits a client to obtain the names of serpee\which are
in the repository. The “which_typesapameter permits the client $pecify one of two
possible values:

® all types known to the repository

® all types addd/modified since a particular incarnation number

The names of the requested types are returned by the operation for subsequent
guerying via the describe_type or the fully_describe_type operation.

CORBAservices March 1997

16

Describe Typ®peration

Signature
TypeStruct describe_type (

in CosTrading::ServiceTypeName name
) raises (

CosTrading::lllegalServiceType,

CosTrading::UnknownServiceType

)i

Function
The describe_type @pation permits a client to obtain the details for a particular
service type.

* |f “name” is malformed then theCosTrading::lllegalServiceype exception is
raised.

® |f “name” does not exist within the repository, then the
CosTrading::UnknownServiceType egption is raised.

Fully Describe Type Operation

Signature
TypeStruct fully_describe_type (

in CosTrading::ServiceTypeName name
) raises (
CosTrading::lllegalServiceType,

CosTrading::UnknownServiceType

Function

The fully_describe_type operation permits a client to obtain the details for a particular
service type. The pperty sequence returned in the TypeStruct incladlggroperties
inherited from the transitive closure of its super types; the sequence of super types in
the TypeStruct contains the names of the types in the transitive closure of the super
type relation.

* |f “name” is malformed then theCosTrading::lllegalServiceype exception is
raised.

® |f “name” does not exist within the repository, then the
CosTrading::UnknownServiceType egption is raised.

Trading Object Service: v1.Service Type Repositc March 1997 16-65

16

16-66

Mask Type Operation

Signature
void mask_type (

in CosTrading::ServiceTypeName name
) raises (

CosTrading::lllegalServiceType,

CosTrading::UnknownServiceType,

AlreadyMasked

Function

The mask_type operation permits the deprecation of a partiyplar(i.e., after being
masked, exporters will no longer be able to advertise offers of that particular type).
The type continues to exist in the service reposithug to other service types being
derived from it.

* |f “name” is malformed then theCosTrading::lllegalServiceype exception is
raised.

® |f “name” does not exist within the repository, then the
CosTrading::UnknownServiceType egption is raised.

® |f the type is currently in the masked state, then the AlreadyMasked exception is
raised.

Unmask Typ®peration

Signature
void unmask_type (

in CosTrading::ServiceTypeName name
) raises (

CosTrading::lllegalServiceType,

CosTrading::UnknownServiceType,

NotMasked
);

Function

The unmask_type undeprecates a type (i.e., after being unmasked, exporters will be
able to resume advertisement of offers of that particular type).

® If “name” is malformed then theCosTrading::lllegalServiceype exception is
raised.

CORBAservices March 1997

16

® If “name” does not exist within the repository, then the
CosTrading::UnknownServiceType egption is raised.

® |[f the type is not currently in the masksthte,then the NotMasked exception is
raised.

16.7 Dynamic Property Evaluation interface

module CosTradingDynamic {

exception DPEvalFailure {
CosTrading::PropertyName name;
CORBA::TypeCode returned_type;
any extra_info;

3
interface DynamicPropEval {

any evalDP (
in CosTrading::PropertyName name,
in TypeCode returned_type,
in any extra_info)

raises (DPEvalFailure);

b

struct DynamicProp {
DynamicPropEval eval_if;
CORBA::TypeCode returned_type;
any extra_info;

h

The DynamicPropEval interface is provided by an exporter who wishes to provide a
dynamic property value in a service offer held by the trader.

When exporting a servicefef (or proxy offer), the propertyitih the dynamic value
has an “any” value which contains a iamicRop structure rather than the normal
property value. A trader which supports dynamic propgrccepts this DynamicProp
value as containing the information whiehables a correctlyped prgperty value to
be obtained during the evaluation of a quéye export(or export_proxy) operation
raises the PropertyTypeMismatch if the returned_type is not appropriate for the
property name as defined by the service type.

Readonly properties may not have dynamic valii&e export ananodify operations

on the Register interfacand the export_proxy operation on the Proxy interface raise
the ReadonlyDynamicProperty egption ifdynamic values are assigned to readonly
properties.

When a query requires a dynamic jpeoty value, theevalDP operation is invoked on
the eval_if interface in the DynamicProp structuree property namparameter is the
name of the property whose value is being obtaiiiéd.returned_type anektra_info

Trading Object Service: v1.[Dynamic Property Evaluation interfa March 1997 16-67

16

parameters areopied from the DynamicProp structure. TdalDP geration returns
an any value which should etain a value for that property. The vakleould be of a
type indicated by returned_type.

The DPEvalFailure exception is raised if the value for the property cannot be
determined. If the value is required for the evaluation of a constraint or preference,
then that evaluation is deemed to héaiéed on that serviceffer (or proxy offer).

Other than the preceding rules, the behavior of the evalDP operation is not specified by
this standard. In particular, the purpose of the extra_info data in determining the
dynamic property value is implementation-specific.

If the trader does not support dynamic properties (indicated by the &tideute
supports_dynamic_pperties), theexport and export_proxyperationsshould not be
parameterized by dynamic properties. Hehavior of such traders in such
circumstances is not specified by this standard.

If the trader does not support dynamic properties or the importer has requested that
dynamic properties are not used (via the policies parameter of the query operation),
then dynamic property evaluation is not performed. If the value of a dynamic property
is required by the evaluation of a constraint or preference, then that evaluation is
deemed to havkailed on that serviceffer (or proxy offer).

The describe operation of the Register interface and the degmabxg operation of

the Proxy interface do ngerform dynamic property evaluation, but return the
DynamicProp structure as the value of the property. As these interfaces are used to
create dynamic properties via the export argort_proxy @erations, the other
operations on these interfaces must ensure that the dynamic natureaftbeies
remains visible to the exporters.

The modify operation on the Register interface of a trader wdiplorts dynamic
properties must accept the establishment and modificatiolyr@Emic preerties,
consistent with the export operation. There igegtricton on a property value
changing from a static value stored by the trader irdgreamic value, and vice versa.

Note —Readonlystatic properties may not be modified to be dynamic.

16.8 Conformance Criteria

16-68

The following interfaces are programmatic reference pointsefgiingconformance:

® the Lookup interfacéas server) provided by the trader implementation uiekdr

® the Register interface (as server) provided by the trader implementation under test
® the Admin interface (as server) provided by the trader implementation tesder

® the Link interface (as server) provided by the trader implementation tester

® the Proxyinterface (as serveprovided by the trader implementation untest

® a Lookupinterface (as client) of a liked trader, used by the traderplementation
undertest

CORBAservices March 1997

16

® a Register interface (as client) of a linked trader, used by the trader implementation
undertest

® a DynamicPropEvahterface (as client) of an objectsed by the trader
implementation undetestduring the evaluation of a dynamic property

The behavior defined for each of the operations in the interface specifications shall be
exhibited at the conformance points associated with tHzer.

The following taxonomy is defined for specific implementation conformance classes of
trading object service implementations:

® query trader - supports theobkupinterface
® simple trader - supports thebkup and Regter interfaces
® stand-alone trader - supports theokup, Register,and Admininterfaces

® linked trader - supports the Lookup, Rstgr, Admin, and Linknterfaces; is also a
client for Lookup and Bgister interfaces

® proxy trader - supports the Lookupe@ister, Admin, androxy interfaces; is also a
client for Lookupinterfaces

® full-service trader - supports theobkup, Register, Admin,Link, and Proxy
interfaces; is also a client for Lkop and Rgister interfaces

Any of these specific trading object service classes may also be a client for the
DynamicPropEval interface if it supports dynamic properties.

16.8.1 Conformance Requirements for Trading InterfaceSawer

Since the interfaces to a trading object service are separable, and support for those
interfaces is selectable subject to the conformance classes daffioeelthis section
specifies the conformance requirements on a per-interface basis.

Lookup Interface

An implementation claimingonformance to the Lookup interface as sesfell
implement the complete behavior associated wiltlthe operationsnd readonly
attributes defined within the scope of the Lookup interface as documentLookug”
on page 16-30.

An implementation claiimg conformance to theookupinterface as server shall also
support the Offerlterator interface as server as documenteOffer lterato” on
page 16-35.

Register Interface

An implementation claimingonformance to the Register interface as server shall
implement the complete behavior associated willthe operationand readonly
attributes defined within the scope of the Régiinterface as documented in
“Registe” on page 16-36, vth the following permitted exceptions:

Trading Object Service: v1..Conformance Criteri March 1997 16-69

16

16-70

® An implementation which only allows the value of FALSE for the
supports_modifiable_properti@stribute is confanant, in which case it may reject
a service offer which includes modifiable properp@ssed in an export operation,
and may always respond to modify operationuesis with an exception.

® An implementation which only allows the value of FALSE for the
supports_dgamic_properties attribute is conformant, in which case it may reject a
service offer which includes dynamic properties passed in an export operation.

®* An implementation claiming conformancette Register interface as server, with
the value of the supports_dynamic_properties set to TRUE, shall be able to assume
the client role for the DynamicPropEval interface.

®* An implementation claiming conformancette Register interface as server, with
the value of the readonly attribute supports_proxy_offers set to TRUE, shall also
support the Proxy interface.

Admin Interface

An implementation claimingonformance to the Admin interface as server shall
implement the complete behavior associated wailtlthe operationsnd readonly
attributes defined within the scope of the Admin interface as documentAdmin”
on page 16-46.

An implementation claimingonformance to the Admin interface as server shall also
support the @erldlterator interface as server descumented in Offer Id Iterato” on
page 16-45.

Link Interface

An implementation claimingonformance to the Linkiterface as server shall
implement the complete behavior associated wiltlthe operationsand readonly
attributes defined within the scope of the Link interface as documentdLink” on
page 16-49.

Proxy Interface

An implementation claimingonformance to the Proxy interface as sestall
implement the complete behavior associated wiltlthe operationsnd readonly
attributes defined within the scope of the Proxy interface as documeniProxy” on
page 16-54.

CORBAservices March 1997

16

16.8.2 Conformance Requirements fonplematation Conformance Classes

In the sections below, the follang graphical notation is used:

— P Interface,

Conformance Class Name

The meaning of this notation is as follows:
® The rectagle represents an implementation @dnhformance Class Name.”

® The elipses on the surface of the rectangle represent the interfaces supported by
this implementation.

®* The arrows to the right indicate that tradershi$ conformance class act as clients
to other traders via the named interface.

Query Tader

query trader

A trading object service implemeniart claiming conformance to the query trader
conformance class shall meet the conformance requirementslajdkepinterface as
server.

Trading Object Service: v1..Conformance Criteri March 1997 16-71

16

Simple Trader

simple trader

A trading object service implemenitart claiming conformance to the simple trader
conformance class shall meet the conformance requirements of tkepLand
Register interfaces as server.

Stand-abne Trader

stand-alone trader

A trading object service implemeniat claiming conformance to the stand-alone

trader conformance class shall meet the conformance requirements of fupl oo
Register, and Admin interfaces as server.

Linked Trader

Lookup @ Admin Link

— > Lookup
— P Register

linked trader

A trading object service implemenitat claiming conformance to the linked trader

conformance class shall meet the conformance requirements of tkap,dRegister,
Admin, and Link interfaces as server.

16-72 CORBAservices March 1997

16

Proxy Trader

Lookup Register Admin @

— > Lookup

proxy trader

A trading object service implemenitart claiming conformance to the proxy trader
conformance class shall meet the conformance requirements of tkap,dRegister,
Admin, and Proxy interfaces as server.

Full-service Trader

@ @ Admin Link Proxy

— P Lookup
— P Register

full-service trader

A trading object service implemeni@t claiming conformance to the full-service
trader conformance class shall meet the conformance requirements of fupl oo
Register, Admin, Link, and Proxy interfaces as server.

Trading Object Service: v1..Conformance Criteri March 1997 16-73

16

Appendix A CORBA OMG IDL based Specifiga of the Trading Furteon

This appendix provides the CORBA OMG IDL specification of the interface signature
for the trading function’s computational specification. It specifies the signature for
each computational operation in OMG IDL, according to the functioestription
(signature and semantics) provided in tlogly of this chapter.

A.l OMG TradingFunction Module

module CosTrading {
/I forward references to our interfaces

interface Lookup;
interface Register;
interface Link;
interface Proxy;
interface Admin;
interface Offerlterator;

interface Offerldlterator;
I/ type definitions used in more than one interface

typedef string Istring;
typedef Object TypeRepository;

typedef Istring PropertyName;
typedef sequence<PropertyName> PropertyNameSeq;
typedef any PropertyValue;
struct Property {
PropertyName name;
PropertyValue value;
|3
typedef sequence<Property> PropertySeq;

struct Offer {
Object reference;
PropertySeq properties;
|3
typedef sequence<Offer> OfferSeq;

16-74 CORBAservices March 1997

16

typedef string Offerld;
typedef sequence<Offerld> OfferldSeq;

typedef Istring ServiceTypeName; // similar structure to
IR::Identifier

typedef Istring Constraint;

enum FollowOption {
local_only,
if_no_local,

always

typedef Istring LinkName;
typedef sequence<LinkName> LinkNameSeq;

typedef LinkNameSeq TraderName;

typedef string PolicyName; // policy names restricted to Latinl
typedef sequence<PolicyName> PolicyNameSeq;
typedef any PolicyValue;
struct Policy {
PolicyName name;
PolicyValue value;
|3
typedef sequence<Policy> PolicySeq;

/I exceptions used in more than one interface

exception UnknownMaxLeft {};

exception Notimplemented {};

exception lllegalServiceType {
ServiceTypeName type;

Trading Object Service: v1.COMG Trading Function Modu March 1997 16-75

16

16-76

exception UnknownServiceType {

ServiceTypeName type;

exception lllegalPropertyName {

PropertyName name;

exception DuplicatePropertyName {
PropertyName name;

|3

exception PropertyTypeMismatch {
ServiceTypeName type;
Property prop;

exception MissingMandatoryProperty {
ServiceTypeName type;

PropertyName name;

exception ReadonlyDynamicProperty {
ServiceTypeName type;

PropertyName name;

exception lllegalConstraint {

Constraint constr;

exception InvalidLookupRef {

Lookup target;

exception lllegalOfferld {
Offerld id;

CORBAservices March 1997

16

exception UnknownOfferld {
Offerld id;

exception DuplicatePolicyName {

PolicyName name;

/I the interfaces

interface TraderComponents {

readonly attribute Lookup lookup_if;
readonly attribute Register register_if;
readonly attribute Link link_if;
readonly attribute Proxy proxy_if;

readonly attribute Admin admin_if;

interface SupportAttributes {

readonly attribute boolean supports_modifiable_properties;
readonly attribute boolean supports_dynamic_properties;
readonly attribute boolean supports_proxy_offers;

readonly attribute TypeRepository type_repos;

interface ImportAttributes {

readonly attribute unsigned long def_search_card;
readonly attribute unsigned long max_search_card;
readonly attribute unsigned long def_match_card;
readonly attribute unsigned long max_match_card;
readonly attribute unsigned long def_return_card;
readonly attribute unsigned long max_return_card;
readonly attribute unsigned long max_list;

readonly attribute unsigned long def_hop_count;

readonly attribute unsigned long max_hop_count;

Trading Object Service: v1.COMG Trading Function Modu March 1997 16-77

16

readonly attribute FollowOption def_follow_palicy;

readonly attribute FollowOption max_follow_palicy;

interface LinkAttributes {

readonly attribute FollowOption max_link_follow_policy;

interface
Lookup:TraderComponents,SupportAttributes,ImportAttributes {

typedef Istring Preference;

enum HowManyProps { none, some, all };

union SpecifiedProps switch (HowManyProps) {

case some: PropertyNameSeq prop_names;

exception lllegalPreference {

Preference pref;

exception lllegalPolicyName {

PolicyName name;

exception PolicyTypeMismatch {
Policy the_policy;

exception InvalidPolicyValue {

Policy the_policy;

void query (

in ServiceTypeName type,

16-78 CORBAservices March 1997

16

in Constraint constr,

in Preference pref,

in PolicySeq policies,

in SpecifiedProps desired_props,

in unsigned long how_many,

out OfferSeq offers,

out Offerlterator offer _itr,

out PolicyNameSeq limits_applied
) raises (

lllegalServiceType,

UnknownServiceType,

IllegalConstraint,

lllegalPreference,

lllegalPolicyName,

PolicyTypeMismatch,

InvalidPolicyValue,

lllegalPropertyName,

DuplicatePropertyName,

DuplicatePolicyName

interface Register : TraderComponents, SupportAttributes {

struct OfferInfo {
Object reference;
ServiceTypeName type;
PropertySeq properties;

exception InvalidObjectRef {
Obiject ref;

exception UnknownPropertyName {

PropertyName name;

Trading Object Service: v1.COMG Trading Function Modu March 1997 16-79

16

16-80

exception InterfaceTypeMismatch {
ServiceTypeName type;

Object reference;

exception ProxyOfferld {
Offerld id;

exception MandatoryProperty {
ServiceTypeName type;

PropertyName name;

exception ReadonlyProperty {
ServiceTypeName type;

PropertyName name;

exception NoMatchingOffers {

Constraint constr;

exception lllegalTraderName {

TraderName name;

exception UnknownTraderName {

TraderName name;

exception RegisterNotSupported {

TraderName name;

Offerld export (
in Object reference,

in ServiceTypeName type,

CORBAservices March 1997

16

in PropertySeq properties
) raises (
InvalidObjectRef,
lllegalServiceType,
UnknownServiceType,
InterfaceTypeMismatch,
lllegalPropertyName, // e.g. prop_name = “<foo-bar”
PropertyTypeMismatch,
ReadonlyDynamicProperty,
MissingMandatoryProperty,

DuplicatePropertyName

void withdraw (
in Offerld id

) raises (
lllegalOfferld,
UnknownOfferld,
ProxyOfferld

Offerinfo describe (
in Offerld id

) raises (
lllegalOfferld,
UnknownOfferld,
ProxyOfferld

void modify (
in Offerld id,
in PropertyNameSeq del_list,
in PropertySeq modify_list

) raises (
Notlmplemented,
IllegalOfferld,
UnknownOfferld,
ProxyOfferld,

Trading Object Service: v1.COMG Trading Function Modu March 1997 16-81

16

lllegalPropertyName,
UnknownPropertyName,
PropertyTypeMismatch,
ReadonlyDynamicProperty,
MandatoryProperty,
ReadonlyProperty,

DuplicatePropertyName

void withdraw_using_constraint (
in ServiceTypeName type,
in Constraint constr

) raises (
lllegalServiceType,
UnknownServiceType,
lllegalConstraint,

NoMatchingOffers

Register resolve (
in TraderName name
) raises (
lllegalTraderName,
UnknownTraderName,

RegisterNotSupported

interface Link : TraderComponents, SupportAttributes,
LinkAttributes {

struct LinkInfo {
Lookup target;
Register target_reg;
FollowOption def_pass_on_follow_rule;

FollowOption limiting_follow_rule;

16-82 CORBAservices March 1997

16

exception lllegalLinkName {

LinkName name;

exception UnknownLinkName {

LinkName name;

exception DuplicateLinkName {
LinkName name;

3

exception DefaultFollowTooPermissive {
FollowOption def_pass_on_follow_rule;

FollowOption limiting_follow_rule;

exception LimitingFollowTooPermissive {
FollowOption limiting_follow_rule;

FollowOption max_link_follow_policy;

void add_link (
in LinkName name,
in Lookup target,
in FollowOption def_pass_on_follow_rule,
in FollowOption limiting_follow_rule
) raises (
lllegalLinkName,
DuplicateLinkName,
InvalidLookupRef, // e.g. nil
DefaultFollowTooPermissive,

LimitingFollowTooPermissive

void remove_link (
in LinkName name
) raises (

lllegalLinkName,

Trading Object Service: v1.COMG Trading Function Modu March 1997 16-83

16

16-84

UnknownLinkName

LinkInfo describe_link (
in LinkName name

) raises (
lllegalLinkName,

UnknownLinkName

LinkNameSeq list_links ();

void modify_link (
in LinkName name,
in FollowOption def_pass_on_follow_rule,
in FollowOption limiting_follow_rule

) raises (
IllegalLinkName,
UnknownLinkName,
DefaultFollowTooPermissive,

LimitingFollowTooPermissive

interface Proxy : TraderComponents, SupportAttributes {

typedef Istring ConstraintRecipe;

struct ProxylInfo {
ServiceTypeName type;
Lookup target;
PropertySeq properties;
boolean if_match_all;
ConstraintRecipe recipe;

PolicySeq policies_to_pass_on;

exception lllegalRecipe {

CORBAservices March 1997

16

ConstraintRecipe recipe;

exception NotProxyOfferld {
Offerld id,;

Offerld export_proxy (
in Lookup target,
in ServiceTypeName type,
in PropertySeq properties,
in boolean if_match_all,
in ConstraintRecipe recipe,
in PolicySeq policies_to_pass_on
) raises (
lllegalServiceType,
UnknownServiceType,
InvalidLookupRef, // e.g. nil
lllegalPropertyName,
PropertyTypeMismatch,
ReadonlyDynamicProperty,
MissingMandatoryProperty,
lllegalRecipe,
DuplicatePropertyName,

DuplicatePolicyName

void withdraw_proxy (
in Offerld id

) raises (
lllegalOfferld,
UnknownOfferld,
NotProxyOfferld

Proxylnfo describe_proxy (
in Offerld id

) raises (

Trading Object Service: v1.COMG Trading Function Modu March 1997 16-85

16

lllegalOfferld,
UnknownOfferld,
NotProxyOfferld

interface Admin : TraderComponents, SupportAttributes,
ImportAttributes,

value);

policy);

LinkAttributes {

typedef sequence<octet> OctetSeq;

readonly attribute OctetSeq request_id_stem;

unsigned long set_def_search_card (in unsigned long value);

unsigned long set_max_search_card (in unsigned long value);

unsigned long set_def_match_card (in unsigned long value);

unsigned long set_max_match_card (in unsigned long value);

unsigned long set_def_retumn_card (in unsigned long value);

unsigned long set_max_return_card (in unsigned long value);

unsigned long set_max_list (in unsigned long value);

boolean set_supports_maodifiable_properties (in boolean

boolean set_supports_dynamic_properties (in boolean value);

boolean set_supports_proxy_offers (in boolean value);

unsigned long set_def_hop_count (in unsigned long value);

unsigned long set_max_hop_count (in unsigned long value);

FollowOptionset_def_follow_policy (in FollowOption policy);

FollowOptionset_max_follow_policy (in FollowOption policy);

FollowOption set_max_link_follow_policy (in FollowOption

16-86 CORBAservices March 1997

16

TypeRepository set_type_repos (in TypeRepository

repository);

OctetSeq set_request_id_stem (in OctetSeq stem);

void list_offers (
in unsigned long how_many,
out OfferldSeq ids,
out Offerldlterator id_itr

) raises (

Notlmplemented

void list_proxies (
in unsigned long how_many,
out OfferldSeq ids,
out Offerldlterator id_itr

) raises (

Notimplemented

interface Offerlterator {

unsigned long max_left (
) raises (

UnknownMaxLeft

boolean next_n (
in unsigned long n,

out OfferSeq offers

void destroy ();

interface Offerldlterator {

Trading Object Service: v1.COMG Trading Function Modu March 1997

16-87

16

16-88

A.2

unsigned long max_left (
) raises (

UnknownMaxLeft

boolean next_n (
in unsigned long n,
out OfferldSeq ids

void destroy ();

}; 1* end module CosTrading */

Dynamic Property Module

module CosTradingDynamic {

exception DPEvalFailure {
CosTrading::PropertyName name;
CORBA::TypeCode returned_type;

any extra_info;

interface DynamicPropEval {

any evalDP (
in CosTrading::PropertyName name,
in CORBA:: TypeCode returned_type,
in any extra_info

) raises (
DPEvalFailure

struct DynamicProp {
DynamicPropEval eval_if;
CORBA::TypeCode retumed_type;

CORBAservices March 1997

16

any extra_info;
k

}; /* end module CosTradingDynamic */

A.3 Service Type Repository Module

module CosTradingRepos {
interface ServiceTypeRepository {

/l'local types

typedef sequence<CosTrading::ServiceTypeName>
ServiceTypeNameSeq;

enum PropertyMode {
PROP_NORMAL, PROP_READONLY,
PROP_MANDATORY, PROP_MANDATORY_READONLY
|3
struct PropStruct {
CosTrading::PropertyName name;
CORBA::TypeCode value_type;
PropertyMode mode;
|3
typedef sequence<PropStruct> PropStructSeq;

typedef CosTrading::Istring Identifier; // IR::1dentifier
struct IncarnationNumber {
unsigned long high;
unsigned long low;
h
struct TypeStruct {
Identifier if_name;
PropStructSeq props;
ServiceTypeNameSeq super_types;
boolean masked;

IncamationNumber incarnation;

enum ListOption { all, since };

union SpecifiedServiceTypes switch (ListOption) {

Trading Object Service: v1.(Service Type Repository Mod March 1997

16-89

16

case since: IncarnationNumber incarnation;

/I'local exceptions

exception ServiceTypeExists {
CosTrading::ServiceTypeName name;

h

exception InterfaceTypeMismatch {
CosTrading::ServiceTypeName base_service;
Identifier base_|if;
CosTrading::ServiceTypeName derived_service;
Identifier derived_if;

h

exception HasSubTypes {
CosTrading::ServiceTypeName the_type;
CosTrading::ServiceTypeName sub_type;

3

exception AlreadyMasked {
CosTrading::ServiceTypeName name;

3

exception NotMasked {
CosTrading::ServiceTypeName name;

3

exception ValueTypeRedefinition {
CosTrading::ServiceTypeName type_1;
PropStruct definition_1;
CosTrading::ServiceTypeName type_2;
PropStruct definition_2;

3

exception DuplicateServiceTypeName {

CosTrading::ServiceTypeName name;

/I attributes
readonly attribute IncarnationNumber incarnation;
/I operation signatures

IncarnationNumber add_type (

16-90 CORBAservices March 1997

16

in CosTrading::ServiceTypeName name,

in Identifier if_name,

in PropStructSeq props,

in ServiceTypeNameSeq super_types
) raises (

CosTrading::lllegalServiceType,

ServiceTypeEXists,

InterfaceTypeMismatch,

CosTrading::lllegalPropertyName,

CosTrading::DuplicatePropertyName,

ValueTypeRedefinition,

CosTrading::UnknownServiceType,

DuplicateServiceTypeName

void remove_type (
in CosTrading::ServiceTypeName name
) raises (
CosTrading::lllegalServiceType,
CosTrading::UnknownServiceType,

HasSubTypes

ServiceTypeNameSeq list_types (
in SpecifiedServiceTypes which_types

TypeStruct describe_type (

in CosTrading::ServiceTypeName name
) raises (

CosTrading::lllegalServiceType,

CosTrading::UnknownServiceType

TypeStruct fully_describe_type (
in CosTrading::ServiceTypeName name
) raises (

CosTrading::lllegalServiceType,

Trading Object Service: v1.(Service Type Repository Mod

March 1997

16-91

16

16-92

CosTrading::UnknownServiceType

void mask_type (
in CosTrading::ServiceTypeName name
) raises (
CosTrading::lllegalServiceType,
CosTrading::UnknownServiceType,
AlreadyMasked

void unmask_type (
in CosTrading::ServiceTypeName name
) raises (
CosTrading::lllegalServiceType,
CosTrading::UnknownServiceType,
NotMasked

b

}; /* end module CosTradingRepos */

CORBAservices March 1997

16

Appendix B OMG Constraint Language BNF

This appendix provides the BNF specification of the CORBA standard constraint
language; it is used for specifying both the constraint and preference expression
parameters to various operations in the trader interfaces.

A statement in this language is an Istring. Otherst@int langiages may be supported
by a particular trader implementation; the constraint languagd by a client of the
trader is indicated by embedding “<<Identifier major.minor>>" at the beginning of the
string. If such an escape is not used, it is equivalent to embedding “<<O0AG" at

the beginning of the string.

B.1 Language Basics

B.1.1 Basic Elements

Both the constraint and preference expressions in a query can be constructed from
property names of conformant offers and literals. The constraint language in which
these expressions are written consists of the following items (examples of these
expressions are shown in square brackets below each butktgd

® comparative functions: == (equality), != (inequality), >, >=, <, <=, ~ (substring
match), in (element in sequence); the result of applying a comparative function is a
boolean value
[“Cost < 5” implies only consider offers with a Cost property value less than 5;
“Visa’' in CreditCards” implies aly consider offers in which the CreditCards
property, consisting of a set of strings, contains the stringg’y

® boolean connectives: and, or, not
[‘Cost >= 2 and Cost <= 5" imj@s only consider offers where the value of the
Cost prgerty is in the range 2 <€ost <= 5]

® property existence: exist
® property names
® numericand string constants

®* mathematical operators: +, -, *, /
[10 < 12.3 * MemSize + 4.6 * FileSize” imjgs only consider offers for which the
arithmetic function in terms of the value of the MemSize and FileSize properties
exceeds 10]

® grouping operators: (,)

Note that thekeywords in the language are case sensitive.

B.1.2 Precedence Relations

The following precedenceelations lold in the absence of parentheses, in the order of
highest to lowest:

Trading Object Service: v1.(Language Basic March 1997 16-93

16

16-94

() exist unary-minus

not
*/

B.1.3 Legal Property Value Types

While one can define propes$ of service types with arbitrarily complex OMG IDL
value types, only the following property value types can be manipulated using the
constraint language:

® boolean, short, unsigned short, long, unsigned lfingt, double, char, Ichar,
string, Istring

® sequences of the above types

The “exist” operator can be applied to any property name, regardless of the property’s
value type.

B.1.4 Operator Restrictions

exist

can be applied to any property

can only be applied if left operand and rigipierand are both strings or both
Istrings

can only be applied if the left operand is one of the simple types described
above and the right operand is a sequence of the siampée type

can only be applied if the left and right operands are of the same simple type
can only be applied if the left and right operands are of the same simple type
can only be applied if the left and right operands are of the same simple type
can only be applied if the left and right operands are of the same simple type
can only be applied if the left and right operands are of the same simple type
can only be applied if the left and right operands are of the same simple type
can only be applied to simple numeric operands

can only be applied to simple numeric operands

can only be applied to simple numeric operands

CORBAservices March 1997

16

/ can only be applied to simple numeric operands

<, <=, >, >= comparisons imply use of the appropreatating sequence for
characters andtrings; TRUE is greater than FALSE for booleans.

B.1.5 Representation of Literals

boolean TRUE or FALSE

integers sequences of digits, with a possible leading + or -

floats digits with decimal point, with optional exponential notation
characters char and Ichar are of tHerm ‘<char>’, string and Istring are of the

form ‘<char><char>+’; to embed an apostrophe in a string, place a
backslash(\) in front ofit; to embed a backslash in a string, use \\.

B.2 TheConstraint Language BNF

B.2.1 The Constraint Language Properin Term&exical Tokens

<constraint> = /* empty ¥/

[<bool>
<preference> :=/* <empty>*/
min <bool>

max <bool>

I

I

| with <bool>
| random
I

first
<bool> := <bool_or>

<bool or> := <bool_or> or <bool_and>

| <bool_and>

<bool _and> := <hool_and> and <bool_compare>

| <bool_compare>

<bool compare> := <expr_in> == <expr_in>
| <expr_in> = <expr_in>
| <expr_in> < <expr_in>

| <expr_in> <= <expr_in>

Trading Object Service: v1.(The Constraint Language Bl March 1997 16-95

16

| <expr_in>> <expr_in>
| <expr_in> >=<expr_in>

[<expr_in>

<expr_in> = <expr_twiddle> in <ldent>

[<expr_twiddle>

<expr_twiddle> = <expr> ~ <expr>

[<expr>

<expr> := <expr>+ <term>
[<expr> - <term>

| <term>

<term> := <term> * <factor_not>
| <term> / <factor_not>

| <factor_not>

<factor_not> := not <factor>

| <factor>

<factor> :=(<bool_or>)
exist <ldent>
<ldent>

<Number>

<String>
TRUE

|
I
I
| - <Number>
I
I
| FALSE

B.2.2 “BNF”for Lexical Tokens up to Character Set Issues

<ldent> := <Leader> <FollowSeqg>

<FollowSeqg> := ¥ <empty>*/

[<FollowSeqg> <Follow>

<Number>:= <Mantissa>

[<Mantissa> <Exponent>

16-96 CORBAservices March 1997

16

<Mantissa> := <Digits>
[<Digits> .
[. <Digits>
| <Digits> . <Digits>

<Exponent> := <Exp> <Sign> <Digits>

<Sign> = +
| -
<Exp>:= E
[e

<Digits> := <Digits> <Digit>
| <Digit>

<String> :=’<TextChars>’

<TextChars> := * <empty>*/

| <TextChars> <TextChar>

<TextChar> := <Alpha>
| <Digit>
| <Other>

| <Special>

<Special> =\
|V

B.2.3 Character Set Issues

The previous BNF has been complete up to the non-termihalader>, <Follow>,
<Alpha>, <Dgit>, and <Qher>. For gparticular character satne must define the
characters which make up these character classes.

Each character set which the trading service is to suppast define these character
classes. This appendix defines these character classes for the ASCII character set.

<Leader> := <Alpha>

Trading Object Service: v1.(The Constraint Language Bl March 1997 16-97

16

16-98

<Follow> := <Alpha>
| <Digit>
o

<Alpha> is the set of alphabetic characters [A-Za-Z]
<Digit> is the set of digits [0-9]

<Other>isthesetof ASCII charactersthatare not<Alpha>,<Digit>,
or <Special>

CORBAservices March 1997

16

Appendix C OMG Constraint Recipe Language

Cl

This appendix describes the recipe language used to construct the secondamintonst
expression when resolving proxffers; the secondary constraint expression is
constructed from the primary constraint expressiod the properties associatedhw

the proxy offer.

A statement in this language is an Istring. Other recipe languages may be supported by
a particular trader implementation; the reclimeguage used by a client of the trader is
indicated by embedding “<<ldefier major.minor>>" at théeginning of the string. If

such an escape is not used, it is equivalent to embedding “<<QO4G"1atthe

beginning of thestring.

While the nested inw@ation of the Trader behind the proxy assumexpett for the
Lookup interface, the secondacgnstraint expression does not necessarily need to
conform to the language described in Appendix B.

TheRecipe Syntax

The rewriting from primary to secondary works similarlyféomattedoutput in a
variety of programming languages and systems. It is patterned after the variable
replacement syntax of the Bourne and Korn shells on most UNIX systems.

When it is time to construct the secondarynstoaint expression from the recipe, the
algorithm is as follows:

while not end of recipe
fetch the next character from the recipe
if nota ‘$ character
append the character to the secondary constraint
else
fetch next character from the recipe
if a “*' character

append the entire primary constraint to the secondary
constraint

else if not a ‘(' character
append the character to the secondary constraint
else
collect characters up to a ‘)’ character, discarding ‘)’
lookup property with that name

append formatted value of that property to secondary
constraint

Trading Object Service: v1.(The Recipe Synt March 1997 16-99

16

C.2 Example
Assume a proxy offer has been exported to a trader with the following properties:
<Name, ‘MyName’>, <Cost, 42>, <Host, ‘X.y.co.uk’>
and with the following recipe:
“Name == $(Name) and Cost == $$$(Cost)”

The above algdthm will generate the followingecondary constraint for the nested
call to the trader behind the proxy:

“Name == ‘MyName’ and Cost == $42"

16-100 CORBAservices March 1997

	Trading Object Service Specification
	16.1 Overview
	16.1.1 Diversity and Scalability
	16.1.2 Linking Traders
	16.1.3 Policy
	16.1.4 Additional ObjectID

	16.2 Concepts and Data Types
	16.2.1 Exporter
	16.2.2 Importer
	16.2.3 Service Types
	16.2.4 Properties
	16.2.5 Service Offers
	16.2.6 Offer Identifier
	16.2.7 Offer Selection
	16.2.8 Interworking Mechanisms
	16.2.9 Trader Attributes

	16.3 Exceptions
	16.3.1 For CosTrading module
	16.3.2 For CosTradingDynamic module
	16.3.3 For CosTradingRepos module

	16.4 Abstract Interfaces
	16.4.1 TraderComponents
	16.4.2 SupportAttributes
	16.4.3 ImportAttributes
	16.4.4 LinkAttributes

	16.5 Functional Interfaces
	16.5.1 Lookup
	16.5.2 Offer Iterator
	16.5.3 Register
	16.5.4 Offer Id Iterator
	16.5.5 Admin
	16.5.6 Link
	16.5.7 Proxy

	16.6 Service Type Repository
	16.7 Dynamic Property Evaluation interface
	16.8 Conformance Criteria
	16.8.1 Conformance Requirements for Trading Interf...
	16.8.2 Conformance Requirements for Implementation...

