CORBAservices: Common Object
Services Specification

Revised Edition- March31, 1995
Updated: March 28,1996
Updated: July 15,1996

Updated: November22,1996
Updated: March 1997

Updated: July 1997

Copyright 1996, AT&T/Lucent Teaiplogies,Inc.

Copyright 1995, 1996 AT&T/NCR

Copyright 1995, 1996 BNR Europe Limited

Copyright 1996, Cooperative Research Centre for Distributed Systems Tech(@®T¢ Pty Ltd).
Copyright 1995, 1996 Digital Equipment Corporation
Copyright 1996, Gradient Tanologies, Inc.

Copyright 1995, 1996 Groupe Bull

Copyright 1995, 1996 Hewlett-Packa@mpany

Copyright 1995, 1996 HyerDesk @rporation

Copyright 1995, 1996 ICL plc

Copyright 1995, 1996 Ing. C. Olivetti & C.Sp

Copyright 1995, 1996 International Bosss Machine€orporation
Copyright 1996, Internation&omputers Limited

Copyright 1995, 1996 lona @hnologiesLtd.

Copyright 1995, 1996 Itasca Sgms, Inc.

Copyright 1996, Nortel Limited

Copyright 1995, 1996 Novell, Inc.

Copyright 1995, 1996 02 Tanolagies

Copyright 1995, 1996 Object Design, Inc.

Copyright 1995, 1996 Object Magement Grougnc.
Copyright 1995, 1996 Objectivity, Inc.

Copyright 1995, 1996 Ontos, Inc.

Copyright 1995, 1996 Oracle Corporation

Copyright 1995, 1996 PestenceSoftware

Copyright 1995, 1996 Servio,dEp.

Copyright 1995, 1996 Siemens Nixdorf Infornatssyseme AG
Copyright 1995, 1996 Sun Microggms,Inc.

Copyright 1995, 1996 SunSoft, Inc.

Copyright 1996, Sybase, Inc.

Copyright 1996, @ligent, Inc.

Copyright 1995, 1996andem Computers, Inc.

Copyright 1995, 1996 éknekron Software Syems,Inc.
Copyright 1995, 1996 Tivoli Syems, Inc.

Copyright 1995, 1996 Trasarc Corporaon

Copyright 1995, 1996 & sant Ofect Technology Corporation

The commnies lided above have granted to the Objectridgenent Group, Inc. (OMG) aonexclusve, royalty-free, paid up, worldwidkcense to opy
and distribute this document andrmdify this document and distribute copies of thedified verson.

Each of the copyright holders listed above has agreed that no person shalinieel de havénfringed thecopyright, inthe induded material of any such
copyright holder by reason of having usee speification set forth herein or lwing conformed angomputer software to the specification.

NOTICE
The information contained in thissdument is subject to changéthout notice.

The material in this docuent cetails an Ofect Management Group speciétion in acordancewith the licenseand notices set fth onthis page. This
document doesot represent a commitment to implement aoxtion of this specification in anyompany’s prodcts.

WHILE THE INFORMATION IN THIS PUBLICATION IS BEUEVED TO BE ACCURATE, THE OBJECT MNAGEMENT GROUP ANDTHE
COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERAL INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSHEhe Object Managemer®roup and
the companies listedbave shallhot beliable for errorscontaned herein or for inidental or consequéial damages in conneon with the furnishing,
performance or use of this material.

The copyright holderfisted alove acknowledge that th®bject MangementGroup (acting itslf or through its desigees) is andrall at all times be the
sole entity that mayuthorize developers, suprs and sellers adomputer software to use certification marksdémarks or other sp@&l designations to
indicate compliance ith these materials.

This documentontainsinformationwhich is protected by copyright. AlRights Reserved. No part tifis work covered by copyright herein may be
reproduced or used amy form or by any means--graphic, electronic, or ma@dcal, including photocoping, recording, taping, or informaticstorage and
retrieval sysems--without permisson of thecopyright owner.

RESTRICTED RIGHTS EGEND. Use, dplication, or dislosure by government is subject to téstions as seforth in subdivision (c)1) (ii) of the
Right in TechnicaData and Cmputer Software @use at DFARS 252.227.7013

OMG® andObject Managment are mistered tralemarks of the Gject Managenent Group, Inc.
Object Request Bker, OMG IDL, ORB, CORBA, CORAfacilities, CORBAservicesand COSS are tdemarks of the Bject Managenent Group, Inc.

X/Open is a trademark of X/@nCompany Ltd.

Table of Contents

0.1

0.2
0.3

04
05
0.6

1. Overview

11

About This Document

0.1.1 Object Mangement Group.
XIOpen. ...
Intended Audience

0.1.2

Need for Object Services

0.3.1

Summary of Key Features
Naming Service
EventService.
Life Cycle ®8rvice

Persistent Object Service
Transaction Service
Concurrency Control Service
Relationship Service.
Externalization Service.
Query Service.
Licensing Service.
Property Service.
Time Service.c i,
Security Service oL
Object Trader Service.

111
1.1.2
113
114
1.15
116
117
118
1.1.9
1.1.10
1.1.11
1.1.12
1.1.13
1.1.14

CORBAservices: Common Object Services Specification

What Is an Object Service Specification?. ..
Associated Documents.
Structure of thisManual.
Acknowledgements,

xli
xli
xlii
xlii
xlii
xliii
xliii
xliv
xliv

2. General Design Principles

Senice Design Principles. .

211
2.1.2
2.1.3
214
2.1.5

2.1.6
2.1.7
2.1.8
2.1.9

Build on CORBA Concepts
Basic, Flexible Services .
Generic Services.

Allow Local and Remote Implemembns :

Quality of Sewice is an Inplementatlon
Characteristic .

Objects Often Cttsplre ina Sennce

Use of Callback Interfaces
Assume No Globatlentifier Smaces
Finding a Service is Gugonal to Using It .

Interface Style Consgstcy .

221
2.2.2
2.2.3

Use of Exceptlons and Return Codes

Explcit Versus Inplicit Operations
Use of Interface Inheritance

Key Design Decisions .

231

2.3.2

24.1
2.4.2
243
24.4
245
2.4.6
2.4.7
248
2.4.9
2.4.10
2411
2.4.12

Senice Dependencies i
EventService
Life Cycle Service
Persistent Objece®ice

Reétionship Service.
Exernalization Service.
Transaction Service

251
25.2
253
254
255
2.5.6

Naming SerV|ce Dlstlnct from @perty and

Trading Services.

Uriversal Objectldentity. e

Integration with Future Object Services.
Archive Service
Backup/Restore Service
Change ManagementiSice.

Datamterchange Service
Internationalization Service
Implemerdtion Repository

Interface Repository.
Logging Service.
Recovery Service
Replication Service.
Startup Service.
Datamterchange Service

CORBAservices: Common Object Services Specification

2-5
2-5
2-5
2-6
2-6
2-6
2-6
2-6
2-7
2-7
2-7
2-8
2-8
2-9

2-9
2-9
2-9
2-9
2-10
2-10

. 2-10

2.6

2.7
2.8

3. Naming Service Specification

3.1

3.2

3.3

Table of Contents

2.5.7
258
2.5.9
2.5.10
2511
2.5.12

Corturrency Control Service.
Query Service.
Licensing Service.
Prperty Service.
Time Service.

Security Service .

Relationship t€¢ ORBA.

2.6.1

2.6.2
2.6.3
26.4
2.6.5
2.6.6

Servce Description
Owrview i
Names. i
NamesLibrary

311
3.1.2
3.1.3
3.14
3.1.5
3.1.6

The CosNamingModule
BindingObjects
ResolvingNames
Unbinding Names.
Creating ldming Contexts
DektingContexts.
Listing a Naming Cdext.

The Binéhglterator Interface.

3.21
3.2.2
3.2.3
3.24
3.2.5
3.2.6
3.2.7

ORB Ineroperablllty ConS|derat|ons

Transaction Service
Life Cycle Service
Naming 8rvice

Reationship Service.
Persistent ObjeCEB/ICG

Generalriteroperability Requwements. ce
Relationship to Object Model.
Conformance to Existing Standards.

Example Scenarios .
Design RAnciples .

Resaltion of Techm:al Issues. e

The Names Library .

3.3.1
3.3.2
3.3.3
3.34

Creating a L|brary Name Component. e
Creating a Library Name3-
The LNameComponentterface

The LName Interface .

Destroying elerary Name Component

Pseudo Object 3-16

Inserting a Name Component 3-16

July 1997

4. Event Service Specification

4.1

4.2

4.3

4.4

4.5

4.6

Senice Description
OVIVIEW . o o ot e e e e e
Event Communication

41.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6

4.2.1
4.2.2

4.3.1
4.3.2
4.3.3
4.3.4

Getting the't Name Component 3-16
Deleting a Name Component 3-17
Number of Name Components 3-17
Testing for Equality 3-17

Testing for Order 3-17

Producing an IDL form 3-18
Translating an IDL Form 3-18

Destroying d_ibrary Name Pseudo-Object 3-18

Example Scenario.
Design RAnciples . .
Resaltion of Techm:al Issues

QLalltyofSerwce.....................
Generic Event Communication
PushModel.
PullModel
The CosEventComm Module.
The PushConsumeartérface
The PusBupplier Interface
The Pull8pplier Interface
The PullConsumenterface.

EventChannels

4.4.1

4.4.2

4.4.3

4.4.4
4.4.5

45.1
45.2
4.5.3
4.5.4
4.5.5
4.5.6
4.5.7

Pushstyle Communlcatlon W|th an Event

Channel .

Pull-Style Cormunlcatlon W|th an Eent

Channel

Mixed Style Cmmunlcatlon Wlth an Event

Channel

Multiple Consumers and Multlplejﬁpllers

Event Channel Admistration
The CosEventChannelAdmin Module
The EventChannel Interface.
The ConsumerAdminterface

The SpplierAdmin Interface.
The PoxyPushConsumer tarface

The PoxyPullSupplier Interface
The PoxyPullConsumer Interface
The PoxyPushSupplier Interface.

Typed Event Communication.

CORBAservices: Common Object Services Specification

. 4-1

4-1
4-1
4-2
4-2
4-4
4-4
4-6
4-6
4-6
4-7
4-8
4-8
4-9
4-9
4-10

.4-10

. 4-10

4-11

4-11
4-12
4-13
4-15

. 4-16

4-17
4-17
4-17
4-18
4-18
4-19
4-19

46.1 TypedPushModel
4.6.2 TypedPullModel....................
4.7 The CosTypedEventComm Module.
4.7.1 The VJpedPushConsumertarface
4.7.2 The VpedPullSupplier Interface
4.8 Typed Event Channels . e
49 The CosTypedEventChanneIAdmln Module
4.9.1 The VpedEventChannel Interface...... ..
4.9.2 The TypedConsum&dmin Interface.
4.9.3 The VpedSupplierAdmin Interface
4.9.4 The VpedProxyPushConsumer Interface. . .
4.9.5 The VpedProxyPullSupplier Interface.

4.10 Composing Event Channels anttéfing
4.11 Policies for Finding Event Channels

Appendix A
Appendix B

5. Persistent Object Service Specification

5.1 Introduction i
5.2 Goalsand Properties i
5.2.1 Basic @pabilities.
5.2.2 Okbect-oriented Storage
Interfaces to Data 5-4
Self-description 5-4
Abstraction 5-4
5.2.3 OpenArchecture
524 Viewsof 8rvice.,
Client 5-5
Object Implementation 5-6
Persistent Data Service 5-6
Datastore 5-6
5.3 Service Structure e
54 The CosPersistencePID Module.
5.4.1 PID hterface
5.4.2 Example PIDFactorylterface
55 The CosPersistencePO Module
5.,5.1 ThePOnterface
5.5.2 The POEBctory Interface
55.3 The SDnterface
5.6 The CosPersistencePOM Module.
5.7 Persistent Data Service (PDS) Overview.

Table of Contents

Implementing Typed Eve@hannels.
An Event Channel Use Example

July 1997

. 4-19
.4-20
.4-21

4-22
4-23

. 4-23

4-24
4-26
4-26
4-27
4-28
4-28
4-28

.4-29
. 4-30
. 4:32

oo 511

5-1

5-3
5-3

5-4
55

5-7
5-8
5-9
5-11
5-11
5-12
5-14
5-14
5-15

5-18

vi

5.8 The CosPersistencePDS Module
5.9 The Direct Access (PD®A) Protocol
5.10 The CosPersistencePDS DA Module

5.10.1
5.10.2
5.10.3
5.10.4
5.10.5
5.10.6
5.10.7
5.10.8

The PID_DAnterface .
The Generic DAObject Interface

The DAObjectFactonnterface.
The DAODbjectFactoryFindemterface.

The PDS_DA Interface.

Defining and Using DA Data Objects Ce
The DynamicAttributeAccess Interface . . .
The PDS_ClusteredDAterface

5.11 The ODMG-93 Protocol. .

5.12 The Dynamic Data Object (DDO) Protocol . ..
5.13 The CosPersistenceDDO Module.
5.14 Qher Protocols
5.15 Datastores: CosPersistenceDS_CLI Module
The UserEnvironmemntterface

The Connectiomterface.
The ConnenFactory Interface
The Cursor Interface.

The CursorFactomterface.

The PID_CLI Interface.
The Dataste_CLlI Interface
5.16 QherDatastores. i e

. 5:43
.5-43

... 6-1

5.15.1
5.15.2
5.15.3
5.15.4
5.15.5
5.15.6
5.15.7

5.17 Standards Conformance......................
5.18 References

6. Life Cycle Service Specification
6.1 Senice Description

6.1.1
6.1.2
6.1.3

6.1.4

6.1.5
6.1.6

6.2 TheCosLlfeCycIeModuIe.......................

Owerview . e
Orgamzatlon of th|s Chapter

Client's Model of Object Life Cycle. e

Client's Model of Ceation 6-4

Client's Model of Deleting an Object 6-6
Client's Model of Copying oMoving an

Object 6-6
Factory Finders.

Multiple Factory Fmders

Design RAnciples . cee
Resaltion of Techncal Issues

CORBAservices: Common Object Services Specification

5:-19
5-21
5-21

.. 5-23
..5-24

5-24
5-25

..5-25
.5-26
.5-28

5-29
5-30

. 5-30

5-31
5-33
5-34
5-36
5-37
5-37

. 5-38

5-38

.5-38

5-40
5-43

6-1
6-1
6-3
6-4

6-7

6-8

6-9
6-10

7. Concurrency Control Service

6.2.1

Target'sUse ofFactories and Factory Finders.

The LifeCycleObjectiterface
copy 6-11
move 6-12
remove 6-13

The FactoryFinder Interface.

find_factories 6-13

The GenericFactoryterface.
create_object 6-15
supports 6-16

Citeria. i
Implementing Factories
Minimal Factories.
Adnministered Factories.

.6-21

Summary of Life Cycle Service .

Summary of Life Cycle SerwcerSd:ture ..
Addendum to Life Cycle Service: Compound

Life Cycle Specification.

Filters.
Administration . e
Support for PCTE Objects

Senice Description

Basic Concepts of Concurrency Control
Clientsand Resources 7-1
Transactions as Clients 7-2
Locks 7-2
Lock Modes 7-2
Lock Granularity 7-2
Conflict Resolution7-3
Conflict Resolution for Tramstons 7-3
Lock Duration 7-3

Locking Model.

Nested Transactions v i i i i e

6.2.2
6.2.3
6.2.4
6.3
6.3.1
6.3.2
6.4
6.5
6.5.1
Appendix A
Appendix B
Appendix C
Appendix D
7.1
7.1.1
7.2
7.2.1
7.2.2
7.3
7.4
7.5

Table of Contents

CosConcugncyControl Module
Types and Exceptions.
LockCoordnator Interface

7.5.1
7.5.2

Lock Modes :
Read, erte and Upgrade Locks 7 4

6-11

6-13

6-14

6-17
6-18

6-19

6-19

6-21

6-22

7-4

Intention Read and Intention Write Locks 7-4

Lock Mode Compatibility 7-5

Multiple Possession Semantics.
Two-Phase Bnsactional Locking

July 1997

75
7-6
7-6
7-7
7-9
7-9

vii

7.5.3 LockSet Interface . . R 7-10

7.5.4 TransactlonaILockSet Interface e 7-11
7.5.5 LockSetFactory Interface. 7-13
8. Externalization Service Specification 8-1

8.1 Senice Description 8-1
8.2 Service Structure e 8-2

8.2.1 Client's Model of Objectﬁernallzatlon . 8-2

8.2.2 Steam’s Model of Object Externallzatlon .. 8-3

8.2.3 Obhect’s Model of Externalization 8-4

8.2.4 Obhect's Model of Internalization. 8-5
8.3 Object and Interface Hierarchies 8-7
8.4 Interface Summary.8-10

Externallzanon Serwce Archltecture
Audience/Bearer Mapping 8-11

8.5 CosExternalization Module . e 8-12
8.5.1 StreamFactormterface P 1 24
Creating a Sgam Object 8- 12
8.5.2 HleStreamFactory Interface8-13
Creating a St.am Object Assomated W|th
a File 8-13
8.5.3 Stream Interface . .. ce......813

Externallzmg an ObJect 8 13
ExternalizingGroups of Objets 8-14
Internalizing an Object 8-14

8.6 CosStream Mdule. 8-15
8.6.1 The S’eamIO Interface e 8-16
8.6.2 The Streamable Interface8-17

Writing the Object's State to a Stream 8-18
Reinitializing the Objet’s State from a

Stream 8-18
8.6.3 The StreamableFactomytérface 8-19
Creating a Streamab@bject 8-19
8.7 CosCompound Externalization Module 8-19
8.7.1 The Noderterface. . .. 821

Externalizing a\lode 8 21
Internalizing a Mde 8-21

8.7.2 The Rolenterface822
Externalizing eRole 8- 22
Internalizing a Rol8-23
Getting a Propagation Value 8-23

8.7.3 The Relationshimterface 823
Externalizing the Relatlonshlp 8 23
Internalizing the Relationshi®-23
Getting a Propagation Value 8-24

Viii CORBAservices: Common Object Services Specification

8.7.4 The PropagationCeitiaFactory Interface .. 8-24
Create a Traversal @GeriaBased on
Externalization Propagation 8-24

8.8 Specific Externalization Relationships.............8-25
8.9 The CosExternalizationContainment Module 8-26
8.10 The CoskternalizationReference Module.8-28
8.11 Standard Stream Data Format . e 8-29
8.11.1 OMG Kternalized Object Data 829
8.11.2 Externalized Repeated Reference Data. ...8-30
8.11.3 ExternalizedNIlData 831
8.12 References.................831
9. Relationship Service Specification. 9-1
9.1 Senice Description e 9-1
9.1.1 Key Features of the Relat|onsh|p SerV|ce 9-2
9.1.2 The Relationshipesvice vs.CORBA Object
References 9-3

Relationships thatAre M'udjlrectlonal 9 4
Relationships that Allow Third Party
Manipulation 9-4

Traversalshat Are Supported for Graphs of
Related Objects 9-4

Relationships and Roles that Can Be Extended
with Attributesand Behavior 9-4

9.1.3 Resaltion of Techntal Issues . .. 9-4
Modeling and Relat|onsh|p Sentacs 9 4
Managing Relationships 9-5
Constraning Relationships 9-5
Referential Integrity 9-5
Relationships and Roles as First Class Objects 9-5
Different Models foiNavigating and
Construdng Relationships 9-6
Efficiency Considerations 9-6

9.2 Service Structure 9-7

9.2.1 Levels of Service C 9-7
Level One: Base Relat|onsh|ps 9 7
Level Two: Graphs of Rated Objects 9-8
Level Three: Specific Relationships 9-9

9.2.2 Hierarchy of Relationship tarface 9-10
9.2.3 Herarchy of Role Interface 9-10
9.2.4 Interface Summary . . 9-11
9.3 The Base Rationship Model . C9-13
9.3.1 Redtionship Attrlbutes and Operatlons . 9-14
Rationale 9-15
9.3.2 Higher Degree Relationships 9-15
Rationale 9-15

Table of Contents July 1997 iX

10. Transaction Service Specification

9.3.3 Ogerations
Creation9- 17
Navigation9-18
Destruction 9-18

9.3.4 Consistency Constints
9.3.5 Implemerdtion Strategies

9.3.6 The CosObjeldentity Module
The IdentifiableObject Interface 9-19

constant_random_id9-20
is_identical 9-20

9.3.7 The CosRelationships Module

9-17

9-18
9-19
9-19

. 9-20

Example ofContainment Relationships9-23

The RelationshipFactory Interface 9-23

The Relationship Interface 9-25
Destroying a Relationship-26

The Role Interface 9-26

The RoleFactory Interface 9-30
The Relationshiperator Interfac®-32

9.4 Graphsof Related Objects
9.4.1 Graph Achitecture.

Nodes 9-35

9.4.2 Traversing Graphs of Related Objects
Detectingand Repreanting Cycles 9-35

9-33
9-33

9-35

Determining the Relevant Nodes and Edges 9-36

9.4.3 Conpound Operations
9.4.4 An Exampl&raversal Criteria.

Propagation 9-37
9.4.5 The CosGraphs Module .

The TraversalFactory Interface 9 41

The Traversal Interface 9-42

The TraversalCteria Interfice 9-43
The Node Interface 9-44

The NodeFactory Interface 9-46
The Role Interface 9-46

The Edgelterator Interface 9-47

9.5 Specific Relationships . .
9.5.1 Cormainment and Refence

9.5.2 The CosContament Module.
9.5.3 The CosReferenceModule.............

9.6 References i

10.1 Senice Description :
10.1.1 Overview of Transactlons

10.1.2 Transactional Appllcatlons. e

10.1.3 Definitions . e
Transactlonal Cl|ent 10 4

CORBAservices: Common Object Services Specification

9-36
9-37

. 9-38

10.2 Senice Architecture.
TypicalUsage.
Transaction Context
Context Management
Datatypes

10.3 Transaction Service Intades
CurrentInterface.

Table of Contents

10.1.4 Transaction Service Functionality

Transactional Object 10-4

Recoverable Objectnd Resource Olijes 10-5

Transactional Server 10-6
Recoverable Server 10-6

Transaction Models 10-6
Transaction Tenination 10-7
Transaction Integrity 10-8
Transaction Context 10-8

.10-6

10.1.5 Principles of Function, Design, and Perfantel0-8

10.2.1
10.2.2
10.2.3
10.2.4
10.2.5

10.3.1

10.3.2

10.3.3

10.3.4

10.3.5

Functional Requirements 10-8
Design Requirements 10-10
Performance Requirements 10-11

Exceptions

Standard Exceqins 10-15

Heuristic Exceptions 10-16
WrongTranactionException 10-17
Other Exceptions 10-17

begin 10-18

commit10-19

rollback 10-19

rollback _only 10-19
get_status 10-19
get_transaction_name 10-20
set_timeout 10-20
get_control 10-20

suspend 10-20

resume 10-20

TransactionFactomterface

create 10-21

Control Interface.

get_terminatod0-22
get_coordinator 10-22

Termimtor Interface.

commit10-23
rollback 10-23

Coordnator Interface

get_status 10-24
get_parent_status 10-24
get_top_level status10-25
is_same_transactidt0-25
is_ancestor_transaction 10-25
is_descendant_tramstion10-25

July 1997

. 0-12
.0-12
.0-13
.0-14
.0-13
.0-13

. 0-17
.0-18

0421

. 0-21

10-22

10-24

Xi

is_related_transaction10-25
is_top_level transacin 10-25
hash_transaction 10-25
hash_top_level_trah0-26
register_esource 10-26
register_subém_aware 10-26
rollback_only 10-26
get_transaction_name 10-27
create_subtransaction 10-27

10.3.6 Recovery Coordator Interface 0127
replay_completioi0-27
10.3.7 Resource Interface0-271

prepare 10-28

rollback 10-29
commit10-29

commit one_phase 10-29
forget 10-29

10.3.8 Subtransaction Aware Resoursteiface .. @-29
commit_subtransactioh0-30
rollback_subtrarection10-30

10.3.9 TransactionalObject Interface. 0-3Q
10.4 The User’s View. : S 0 S N i
10.4.1 Appllcatlon ProgimmlngModels .. @31

Direct Context Management: Epr|C|t
Propagation 10-31

Indirect Context Management: Implicit
Propagation 10-31

Indirect Context Management: Explicit
Propagation 10-32

Direct Context Management: Implicit
Propagation 10-32

10.4.2 hterfaces Y 0 £ 2
10.4.3 Checked Transactlon Baaknor ... 10-32
10.4.4 X/Open Checked Transactlons e .. 033

Reply Check 10-34
Commit Check 10-34
Resume Check 10-34
10.4.5 Implementing a Transactional Client: Heuristic
Completions . . cee.... 10-34

10.4.6 Implementlng a Recoverable Server .0-33
Transactional Object 10-35
Resource Object 10-35
ReliableServers 10-35

10.4.7 Application Portability0-36
Flat Transactions 10-36
X/Open Checked Transactions 10-36

10.4.8 Dstributed Transactions. ieieee.... 10-36
10.4.9 Applications Using Both Checked and Unchecked
Services 030

Xi CORBAservices: Common Object Services Specification

10.4.10 Examples0-3711
A Transction Ongmator Indlrect and
Implicit 10-37
Transaction Originator: Direeind Explicit 10-38
Example of &Recoverable Server 10-39
Example of al'ransctonal Object 10-40
10.4.11 Model Interoperability . 0 4
Importing Transactlons 10 41
Exporting Transactions 10-42
Programming Rules 10-43
10.4.12 Failure Models . . ce......043
Transactlon Or|g|nator 10 43
Transactional Server 10-44
Recoverable Server 10-44

10.5 The Implementors’ View . . e ... 044

10.5.1 Transaction SerV|ce Protocols i ... 048
General Principles 10-45
Normal Transaction Completion 10-46
Failures and Recovery 10-52
Transaction Completion after Failure 10-53
10.5.2 ORBI/TS Implementation Considerations . . .0-55
Transaction Propagation 10-55
Transaction Service Interoperatid@-57
Transaction Service Rability 10-60

10.5.3 Model Interoperability0-68
10.6 The CosTransactis Mdule. .. ceev.o... 10-65
10.6.1 The CosTSheroperatlon Module cevee.... 10-69
10.6.2 The CosTSPortdity Module 10-69
Appendix A Relationship of Transaction Service to
TP Standards10-70
Appendix B Transaction Service Glossary.0-811
11. Query Service Specification 11-1
11.1 Senice Description 111
11.1.1 OIVIEW ..ot o i 11-1
11.1.2 DesignRnciples 11-1
11.1.3 Architecture . . ce 11-2
Query Evaluators Nestlng and Federahm
Collectionsl1-4
Queryable Caéctions forScope and Result11-5
Query Objects 11-5
11.1.4 Qerylanguages11-6
SQL Query 11-7
OQL 11-7
SQL Query = OQL 11-8
11.1.5 Keyfatures. 11-9
11.2 Service Structure 11410

Table of Contents July 1997 Xiii

11.2.1 Overview . . ceve.... 1110
Type One Collectrons 11 10
Type Two: Query Framework 11-10

11.2.2 Collection Iterface Structure. 11-10
11.2.3 Query Frameworlaterface Hierarchy/
Structure. 11-10

11.2.4 hterface Overview.................... 11-11
11.3 The Collection Model . Ce A ¢ o 4

11.3.1 Conmon Types of CoIIectrons ceee.. 1122

11.3.2 ltemtors ¢ 5 4
11.4 The CosQueryCollection Module. . Y B

11.4.1 The CoIIectronFactoryllerface. ceee ... 11-15

Creating &Collection 11-16
11.4.2 The Collectionnterface. 11-16

Determining the Cardallty 11 16

Adding an Element 11-16

Adding Elements from a Collection 11-17
Inserting an Element 11-17

Replacing an Element 11-17

Removing an Element 11-17

Removing all Elements 11-18

Retrieving an Element 11-18

Creating an Iteratat1-18

11.4.3 The lerator Interface . .. e ... 11-18
Accessing the Current Element 11-18

Resetting the Iteration 11-19
Testing for Compleion of an Iteration 11-19

11.5 The Query Framework Model11-19
11.51 QeryEvaluators 11-19
11.5.2 Queryable Collections11-20
11.5.3 QueryManagers.11-21
11.5.4 Query Objects. . O 2 |
11.6 The CosQuery Module. .. e ... 11-23
11.6.1 The QueryLanguageTymidrfaces . 11-24
11.6.2 The QueryEvaluatonterface 11-25
Determining the Supported Query Language
Types 11-25
Determining the Default Query Language
Type 11-25
Evaluaing a Query 11-25
11.6.3 The QueryableCollectiontarface. 11-25
11.6.4 The QueryManagenterface 11-25
Creating a&Query Object 11-26
11.6.5 The Query Interface . e . 11-26

Determining the Assocrated Query Manager 11-26
Preparing the Query for Execution 11-26

Xiv CORBAservices: Common Object Services Specification

Executingthe Query 11-26
Determining the Query Status 11-27
Obtainingthe Query Result 11-27

11.7 References e 12227
12. Licensing Service Specification 12-1
12.1 Background On Existing ténse Manageant Products 12-1
12.1.1 Business Palicy. . e 1222
12.1.2 License Types. . o 24
12.1.3 A History of Llcense Types e 123
12.1.4 AssetManagement...................12-3
12.1.5 License Usage Practices...............124
12.1.6 Scalabity...........................124
12.1.7 Reliability.124
12.1.8 Legacy Applications.12-5
12.1.9 Security . e ceee .. 126
12.1.10 CIent/Server Authentlcatlon . 12-6
12.1.11 Example: Appllcatlon Acqumng and Releasmg a
Concurrent license. e . 12-6
12.2 Senice Description 0127
12.2.1 Owerview . . C. 12-7

12.2.2 Key Components of a Llcensmg System .. 12-8
License Attributes 12-8
Licensing Policy 12-8
Interfaces Isolated From Business Polit240

12.2.3 Licensing in the CORBA Environment 2-10
12.2.4 DesignPrinciples2-12
12.2.5 Licensing Serviceterfaces............. 12-13

Interfaces are Mandatofy2-13
Constraints on Obft Behavior12-13

12.2.6 Licensing Event Trace Diagram..........2-14
12.3 The CosLicensing Module . C i e....2-161
12.3.1 LlcenseSrwceManager Interface ... 2-19
12.3.2 ProducerSpeC|f|cL|censeSerV|oterface .. 219
124 References i 22211
Appendix A Licensing Service Glossary2:22
Appendix B Use ofOther Services.2-28B
Appendix C Producer Client Implementation Issues12-27
Appendix D Challenge Mechanism230
13. Property SBrvice 13-1
13.1 Overviewt i .13

Table of Contents July 1997 XV

XVi

13.1.1 Service Description

Client's Model of Propertles 13 2

Object’s Model ofProperties 13-2

13.1.2 OMG IDL hterface Summary
13.1.3 Summary oKey Features

13.2 Service Interfices.

13.2.1 CosProartySerwce Module
Data Types 13-5
Exceptons 13-7

13.2.2 PrpertySet Interface

Defining and Modifying Propertles 13 9

define_propertie§ 3-10

Listing and Getting Properties 13-11

get_all_property_names 13-11
get_property_value 13-11
get_properties 13-11
get_all_properties 13-12
Deleting Properties 13-12
delete_property 13-12
delete_properties 13-13
delete_all properties 13-13

Determining If a Property Is Already

Defined 13-14
13.2.3 PrpertySetDef Interface

. 13-1

13-3
13-3

.. 13-4
. 13-4

.13-9

13-14

Retrieval of PropertySet Constramts 13-15

get_allowed_properties 13-15

Defining and Modifying Properties with

Modes 13-15

define_properties_with_odes 13-16

Getting and Setting Property Modes 13-17

get_property_modes 13-18
set_property_mode 13-18
set_property _modes 13-19

13.2.4 Preertieslterator Interface.

next_one, next_n 13-19
Destroying the lteratat3-20

13.2.5 PreertyNameslterator Interface
Resetting the Position in an Iteraf®- 20

next_one, next_n 13-20
Destroying the lteratat3-21

13.2.6 PreertySetFactory Interface
13.2.7 PrpertySetDefFactory Interface

Appendix A Property Service IDL,

14. Time Service Specification

14.1 Introduction
1411 T|me Serwce Requwements

14.1.2 Representation oleme................
14.1.3 Sourceofime.......... ...

CORBAservices: Common Object Services Specification

13-19

.3-20

14.3 Timer Event &wvice.
14.3.1 ObjectModel

Table of Contents

14.1.4 General ObjectModel
14.1.5 Conformancednts.

14.2 Basic TIME BIVICE. oo i i e e e e

14.2.1 Object Model .

14.2.2 Data Types . .
Type T|meT 14 6
Type InaccuracyT 14-6
Type TdfT 14-6
Type UtcT 14-6
Type IntervalT14-6
Enum ComparisonType 14-7
Enum TimeComparison 14-7
Enum OverlapType 14-7

14.2.3 Exceptions .
T|meUnavdabIe 14 8

14.2.4 Universal Time Object (UTO)..........

Readonly attribute time 14-9
Readonly attribute inaccuracy 14-9
Readonly attribute tdf 14-9
Readonly attribute utc_time 14-9
Operation absolute_time 14-9
Operation compar _time 14-10
Operation time_to_intervd4-10
Operation interval 14-10

14.2.5 Time Interval Object (T10). .
Readonly attribute time_ mterval 14 10
Operation spans 14-11
Operation overlaps14-11
Operation time 14-11

14.2.6 Time Service. .
Operatlon unlversal t|mb4 12
Operation secure_universal_tirhé-12
Operation new_universal_tinig-12
Operation uto_from_utc 14-12
Operation new_interval 14-12

14.3.2 Usage .

14.3.3 Data Types

Enum T|meType 14 14
Enum EventStatus 14-14
Type TimerEventT 14-15

14.3.4 Exceptions .

14.3.5 TlmerEventHandIer

Attribute status 14-16
Operation time_set 14-16
Operation set_timer 14-16
Operation cancel_timer 14-16
Operation set_data 14-16

July 1997

14-3

14-4
14-4

...14-4
.14-5

. 14-8

.14-8

14-11

14-13

4-13
..4-131
.4-14

.4-13
. 4-1%

XVii

xviii

14.3.6 Timer Event Service.

14.4 Confemance i

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E

Operation registet4-17
Operation unregter14-17
Operation event_time 14-17

Implementation Guidelines 4
Consolidated OMGIDL.

4-18

NotesforUsers..4-

Extension Examples.

Refeences 4

15. Security Srvice Specification

15.1 Introductionto Security

15.1.1 Why Security? .

15.1.2 What s Securlty? .. ce
15.1.3 Threatsin a|I§tr|buted Object System ce
15.1.4 Summary oKey Security Features

15.1.5 Goals,

Simplicity 15-4

Consistency 15-4

Scalability 15-4

Usability forEnd Users15-4
Usability of Administratord 5-5
Usability for Implenentors15-5
Flexibility of Security Policy 15-5

Independence of Security Technology 15-5

Applicaion Portability 15-6
Interoperdility 15-6
Performance 15-6

Object Orientation15-6

Specific Security Goals 15-7
Security Archiecure Goals 15-7

15.2 Introduction to the Specification

15.2.1 Conformance to CORBA Securlty

15.2.2 Specification &ucture .
Normative and Non normat|ve N&xial 15-10

15.3 Security Reference Model .

Section Summaries 15-11
Proof of Concept 15-12

15.3.1 Definition of a Securlty Reference Model
15.3.2 Principals andhieir Security Attributes. . . .
15.3.3 Secure Object Invocations

15.3.4 Access Control Model .

EstablishingSecurity Assomaﬂons 15 16
Message Protection 15-17

Obiject Invocation Access Pollcy 15 20

CORBAservices: Common Object Services Specification

.15-8

..15-9

15-10

..5-121

. 5-12
15-14
.5-18

..5-19

Applicaion Access Policy 15-20
Access Policies 15-21

1535 Auditing............................5-2B

15.3.6 DeIegat|on e cev......b28
Privilege Delegatlon 15 26
Overview of Delegation Schemes 15-27
Facilities Potentially Availablé5-27
Specifying Delegation Options 15-30
Technology Support for Delegation Optidis30
15.3.7 Non-repudiation531

15.3.8 Domains . . ce......533
Securlty Pollcy Domams 15 34
Security Environment Domains 15-36
Security Technology Domains 15-37
Domains and Interoperability 15-38

15.3.9 Security Management and Administration . .5-40
Managing Security Policy Domaii%-40
Managing Security Environment Domains 15-41
Managing Securitfrechnology Domains 15-41

15.3.10 Implementing the Model5-41

15.4 Security Architecture . .. 5-421

15.4.1 Diferent Users \/ew of the Securlty Model 542

Enterprise Managementiév 15-42

End User View 15-43

Applicaion Developer View 15-43

Administrator’'sView 15-44

Object System Implementor’s View 15-45
15.4.2 Stuctural Model. . .o5-46

Applicaion Components 15 47

ORB Services 15-47

Security Services 15-49

Security Policiesnd Domain Objes 15-49
15.4.3 Security Techogy. 1551

15.4.4 Basic Protection and Camnications. 15-52
Environment Domains 15-52
Component Protection 15-52

15.4.5 Security Olgct Models 5-b4
The Model as Seen by Appllcat|0h§ 54
Administrative Model 15-71
The Model as Seen by the Objects
Implemanting Seurity 15-75
Summary of Objects in the Model 15-82

15.5 Application Developer’sinteates 584

15.5.1 Introduction5-84
Security Functlonallty Conformance 15 85
Introduction to the Interfaes 15-86

15.5.2 Finding Security Features.5924
Description of Facilities 15-92
Interfacesl5-92

Table of Contents July 1997 Xix

Portability mplicatons 15-92

15.5.3 Authentication of Principals.5-9
Description of Facilities 15-92
Interfacesl5-93
Portability mplicaions 15-95

15.5.4 Credentials . . e, .5-9d
Descnptlon of FaC|I|t|es 15 96
Interfacesl5-96
Portability mplicatons 15-100

15.5.5 Object Reference=1006
Description of Facmtles 15 100
Interfaces15-101
Portability mplicatons 15-104

15.5.6 Security Operationson Current:10%
Description 15-104
Interfaces15-105

15.5.7 Security Audit-109

Description of FaC|I|t|es 15 109
Interfaces15-109
Portability mplicatons 15-111

15.5.8 Adninistering Security Policy 15-111

15.5.9 Use ofiiterfaces foAccess Control 15-111
Description of Facilities 15-111
Interfacesl5-112
Portability mplicatons 15-113
15.5.10 Use ofriterfaces for Delegation 15-113
Description of Facilities 15-113
Interfaces15-114
Portability mplicatons 15-114
15.5.11 Non-repudiation . ce. ... 15-115

Description of FaC|I|t|es 15 115
Interfacesl5-116

15.6 Administator’'siIntefaces- 1128

15.6.1 Concepts. . .. o 22 (153
Admlnlstrat0r315 124
Policy Domains 15-124
Security Policie45-125
15.6.2 Domain Management.................:12%
Policy 15-126
Domain Manager 15-126
Construdbn Policy 15-127
Extensions to the Object Interfdée 127
15.6.3 Security Plaies Introduction 15-128

15.6.4 Access Policies.:12B
Rights15-129
AccessPolicy Interface 15-131
Specific Invocation Access Polici&s-132
DomainAccessPolicy Interface 15-132

15.6.5 Audit Policies.-138
Audit Admlnlstratlon Interaces 15 138

CORBAservices: Common Object Services Specification

15.6.6 Secure Invocation and Delegation Policies. -14(%
Secure Invocation Policies 15-141
Invocation Delegation Policy 15-144
15.6.7 Non-repudiation Policy Management.-145
15.7 Implementor’s Security Intextes . - .. -187

15.7.1 Generic ORB Services and Interceptors 145
Request-Level Interceptors15-149
Message-Level Interceptors15-149
Selecting Interceptors5-150
Interceptor Interfaces 15-150

15.7.2 Securitynterceptors. . . cev.... 15-150
Invocation Time PoI|C|e$5 152
Secure Invocation Interceptorl5-152
Access Control Interceptor 15-154
15.7.3 ImpIementation-LeveI Security Object
Interfaces-185
Vault 15- 156
Security Context Object 15-158
Access Decision Object15-161
Audit Objects 15-162
Principal Authentiation15-163
Non-repudiation 15-163

15.7.4 Replaceable Security Services-1685
Replacing Authenticatioand Security
Association Servicek5-163
Replacing Access Decision Policies-163
Replacing Audit Services 15-164
Replacing Non-repudiation Services 15-164
Other Replaceability 15-164
Linking to External Security Services 15-164

15.8 Security andnteroperability . ce e iiiiee.... 15-165

15.8.1 hteroperability Model -166
Security Informatlon in the Object
Reference 15-167
Establishing é&ecurity Association 15-168
Protecting Messages 15-168
Security Mechanisms for Secure Object
Invocations 15-168
Security Mechanisriypes 15-169
Interoperating bigveen Unddying
Security Services 15-170
Interoperating between Security Policy
Domains 15-170
Secure InteroperabilitBridges15-171

15.8.2 Protocol Enhancements-1715
15.8.3 CORBA Ineroperable Object Reference with
Security . . cevv... 15-171

Secunty Components of the IOR 15-172
Operational Semantit§-175

15.8.4 Securenter-ORB Prdocol (SECIOP) 15-177

Table of Contents July 1997 XXi

15.8.5 DCE-CIOP with Security .

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix |

SECIOP Message Header 15-177
SECIOP 15-178

Contextld15-178
ContextldDefn15-178

Message Definitions 15-179

SECIOP Protocol State Tables 15-182

Goals of Secure DCE- CIOP 15- 185
Secure DCE-CIOP Overview 15-186

IOR Security Components for DCE-CIOP
DCE RPC Security Services 15-191

15-186

Secure DCE-CIOP Operanal Semantics 15-192

Consolidated OMG IDL . ce
Summary of CORBA 2 Core Changes

Relationship to Other Services.
.-2B5

ConformanceDetails

Guidelines for a Trustworthy System.

Conformance Stament.
Facilities Not in This Specification
Interoperability Guidelines.

Glossary

16. Trading Object Service Specification.

16.1 Overview .
16.1.1 D|ver5|ty and Scalablllty

16.1.2 LlrklngTraders......................

16.1.3 Policy..

16.1.4 Addmonal ObjectID
16.2 ConceptsandDataTypes.....................

16.2.1

16.2.2

16.2.3

16.2.4
16.2.5

16.2.6
16.2.7

XXii

Expoter
Impater

Service Types.
Service Type Model 16 5

Prperties .

Service @ers
Modlflable Propemes 16 8
Dynamic Properties 16-8

Offer Identifier .

Offer Selectlon . .
Standard Constralnt Language 16 9
Preferences 16-10
Links 16-11
Policies 16-12
Trader Policies 16-16
Link Follow Behavior 16-16

CORBAservices: Common Object Services Specification

. 15-196

. 211B

. 15-232

. 15-245

. 15-267

. 15-273

-285%

. 15-286
16-1

...16-2
..16-3

16-3

.. 16-3
.16-4
.16-4

16-4
16-4

.16-4

16-7
16-7

...16-9
..16-9

Importer Policies 16-17
Exporter Policies 16-18
Link Creation Policies 16-18

16.2.8 hterworkingMechanisms 6-18
Link Traversal Control 16-18

Federated Query Example 16-19
Proxy Offers 16-20

16.2.9 Trader Attributes6-21
16.3 Excefions 16-23
16.3.1 ForCosTradlng module P o f2 |

Exceptons used in more than one interface 16-23
Additional Exceptions for Lookup letface 6-24
Additional Exceptions For Register Interface16-25
Additional Exceptions for Link Interface 16-26
Additional Exceptions for Proxy Offer
Interfacel6-27

16.3.2 For CosTradingDynamic module6-2%
16.3.3 For CosTradingRepos module6-27
16.4 Abstract Intedces. N ok
16.4.1 TraderComponents ... 628
16.4.2 SupportAtibutes. 16-29
16.4.3 ImportAttibutes. 16-29
16.4.4 LirkAttributes6-30
16.5 Functional Intetces . A 5)
16.5.1 Lookup. .. I e (]
Query Operatlon 16 31
16.5.2 Offerlteator 16-35

Signature 16- 35
Function 16-36
16.5.3 Register I e [
Export Operatlon 16-39
Withdraw Operation 16-41
Describe Operation 16-41
Modify Operation 16-42
Withdraw Using Cons#int Operatiorl6-44
Resolve Operation 16-45
16.5.4 OfferIdlIterator6-4b
Signature 16-45
Function 16-46
16.5.5 Admin. . .. b-46
Attrlbutes and Set Operatlons 16 48
List Offers Operation 16-48
List Proxies Operation 16-48
1656 Link6-49
Add_Link Operation 16-51
Remove Link Operation 16-52
Describe Link Operatiofh6-52
List Links Operation 16-53

Table of Contents July 1997 XXiii

Modify Link Operation16-53
16.5.7 Proxy . ce......06-54
Export Proxy Operatlon 16 55
Withdraw Proxy Operation 16-58
Describe Proxy Operatids-58

16.6 Service Ype Repository . ceee......6-52
Add Type Operat|on 16 62
Remove Type Operation 16-64
List Types Operation 16-64
Describe Type Operatial6-65
Fully Describe Type Operation 16-65
Mask Type Operation 16-66
Unmask Type Operation 16-66

16.7 Dynamic Prperty Evaluation interface 16-67
16.8 Confomance Criteria. C 16-68
16.8.1 Conformance Requwements for Tradlng
Interfacesas&wver 16-69

Lookup hterface 16-69
Register Interface16-69
Admin Interface16-70
Link Interfacel6-70
Proxy Interface 16-70
16.8.2 Conformance Requirements for Implementation
Conformance Classes6-71
Query Trader 16-71
Simple Traded6-72
Stand-alone Trader 16-72
Linked Trader 16-72
Proxy Trader 16-73
Full-service Trader 16-73

Appendix A CORBA OMG IDL based Specification of the

Trading Function16-74
Appendix B OMG Constraint Laguage BNF683
Appendix C OMG ConstrainRecipe Language ce ... 699
17. Object Collection Specification 17-1
17.1 Overview . N
17.2 Service Structure 17-2
17.2.1 Combined Pp:erty CoIIectlons ce 17-3

Restricted Access Celttons 17 4
Collecion Factories 17-5

17.2.2 HeBtors i 17-5

17.2.3 Function Interfaces .. L17-7

Collectible Elementand Type Safety 17 7
Collectible Elements and the Operations

Interface 17-7

Collectible Elements of Key Collectiodg-8

17.2.4 List of InterhcesDehed. 17-8

XXV CORBAservices: Common Object Services Specification

17.3 Canmbined Collections e ... 1710

17.3.1 Combined Colleains Usage &mples. 17-10
Bag, SortedBag 17-10
EqualitySequence 17-11
Heap 17-11
KeyBag, KeySortedBag 17-11
KeySet, KeySortedSet 17-12
Map, SortedMap 17-12
Relation, SortedRelation 17-13
Set, SortedSet 17-13
Sequence 17-13

17.4 Restricted Access Celitions 17-14
17.4.1 Restrictedccess Clections Usage Samples 74114
Deque 17-14
PriorityQueue 17-14
Queue 17-15
Stack 17-15
17.5 The CosCollectionModule7-18
17.5.1 hterface Hierazhies 715

Collection Inteface Hierarchies 17-15
Iterator Hierachy 17-18

17.5.2 Exceptions and Type Defiions 17-19

17.5.3 Abstract Collection Inteates 7121
The Collection Interface 17-21
The OrderedCaddiction Interfacel 7-28
The SequentialCollection Interfad@-31
The SortedCollection Interface 17-37
The EqualityCollection Interface 17-37
The KeyCollection Interface 17-42
The EqualityKeyCollection Inteate 17-50
The KeySortedCadiction Interfacel 7-51
The EqualitySortedClaction Interfacel7-53
The EqualityKeySortedCollection Interfacel7-55
The EqualitySequentialJeltion Interbce 17-55

17.5.4 Concrete Collectionsterfaces 17-57
The KeySet Interface 17-57
The KeyBag Interface 17-57
The Map Interface 17-57
The Relation Interfacer-61
The Set Interface 17-61
The Bag Interface 17-62
The KeySortedSet Interface 17-62
The KeySortedBag Iatfacel7-63
The SortedMap Interfacel7-63
The SortedRelation Interface 17-63
The SortedSet Interfat@-63
The SortedBag Interface 17-64
The Sequence Interfacel7-64
The EqualitySequence Interface 17-64
The Heap Interface 17-64

17.5.5 Restricted\ccess Clection Intefaces.... 7Z-65

Table of Contents July 1997 XXV

17.5.6 Abstract RestrictéddtcessCdEection Interface 17-65
The RestrictedAccessCollection Interface 17-65

17.5.7 Concrete Restricted Access Collection
Interffaces7-6B
The Queue Interface 17-66
The Dequeue Interface 17-67
The Stack Interfac&7-67
The PriorityQueue Interface 17-69

17.5.8 Collection Facry Inteffaces 7170
The ColledbnFactory and CollectionFactories
Interfaces17-71
The RACollectionFactory and
RACollectionFatories Interface$7-74
The KeySetFactory Interfader-75
The KeyBagFactory Interface 17-75
The MapFactory Interfack7-76
The RelationFactory Interface 17-76
The SetFactory Interfacel7-77
The BagFactorynterface 17-77
The KeySortedSetFactorgterface 17-78
The KeySortedBagFactory brfacel7-78
The SortedMapFactory Interfat@-79
The SortedRelationFactory Interface 17-79
The SortedSetFactory Interface 17-80
The SortedBagFactory Interface 17-80
The SequenceFactory Interface 17-81
The EqualitySequence Factontdrface 17-81
The HeapFactorynterface 17-82
The QueueFactornterface 17-82
The StackFactory Interface 17-83
The DequeFactonynterface 17-83
The PriorityQueueFactory Interface 17-83

17.5.9 ltemtorInterbces.....................7-84
Iterators as pointer abstractitii-84
Iterators and support for generic
programming 17-84
Iterators and pérmance 17-85
The Managedtérator Model 17-85
The Iterator Interfac&7-86
The Orderedlterator Interface 17-97
The Sequentiallterator Interface 17-106
The Keylterator Interface 17-108
The Equalitylterator Inteaice 17-110
The EqualityKeylterator Interfackr-111
The Sortedlterator Interfad&’-112
The KeySaedlterator Interface 17-112
The EqualitySortedlterator Interfad@-114
The EqualityKeySortedliterator Interfacel7-116
The EqualitySequentiallterator Interfate-117

17.5.10 Function Interfaces. eeee ... 17-118

The Operations Interfackr-118
The Command and Comparator Interface 17-122

XXVi CORBAservices: Common Object Services Specification

Identificationand Justitaton of
Differences 17-124
CosQueryColle@dn Module Detailed
Comparson 17-126

Containers 17-133
Algorithms17-134

Iterators 17-134

Consideration on choice 17-135

Appendix A OMG Obect Query Service. : c... . 17-124
Appendix B Relationship to Oth&elevant Standards-133
AppendixC Refeences-139
Index e e JIndex-1

Table of Contents July 1997 XXVii

XXVili CORBAservices: Common Object Services Specification

Listof Figures

Figure 2-1

Figure 3-1
Figure 3-2
Figure 3-3

Figure 4-1

Figure 4-2

Figure 4-3

Figure 4-4

Figure 4-5

Figure 4-6

Figure 4-7

Figure 4-8

Figure 4-9

An event channel as a collection of objects
conspiring to manage multiple simultaneous

consumerclients.
A Naming Graph
The CosNaming Module

The Names lbrary Inteface in PIDL

Push-style Communication Between ap$lier and
a Consumer

Pull-style Communication Between a Supplier and a
CONSUMBT . .. o e e e e e e e

The OMG IDL Module CosEventComm

Push-style Communication Between apglier and
an Event Channel, and a Consumer and an Event

Channel

Pull-style communication betweensapgier and
an event channel and a consumer and the event

channel

Push-style Communication Between ap$lier and
an Event Channel, and Pull-style Camnication

Between a Consumer and an Event Channel

An Event Channel with Multlple Supplleesnd
Multiple Consumers

A newly created event chaeh The channehas no
suppliers or consumers

State diagram of a proxy

CORBAservices: Common Object Services Specification

. 3-14

.4-7

. 4-8

4-11.

4-11

4-12

. 4-12

.4-13
4-14

XXIX

XXX

Figure 4-10

Figure 4-11

Figure 4-12

Figure 4-13
Figure 4-14
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 5-10
Figure 5-11
Figure 5-12

Figure 6-1

Figure 6-2

Figure 6-3

Figure 6-4

Figure 6-5

Figure 6-6

The CosEventChannelAdmin Module4-16

TypedPush-style CommunicatioBetween a

Supplierand a Consumer4-20
Typed Pull-style Communication Betveen aSuppher

and a Consumer . e 42
The IDL Module CosTypedEventComm 4-22
The CosTypedEventChannelAdmin Module4-25
Roles in the Persistent Object Service5-1
Major Components of the POS arfeeir Interactons 5-8

The CosPersistencePID Module59
TheCosPersistencePO Module512
The CosPersistencePOM Module5-15
Example to illustrate POMFunctions5-18
The CosPersistencePDS Module 5-20
Direct Access Protocolnterfaces521
The CosPersistencePDS_DA Module5-22
StructureofaDDO531
The CosPersistenceDDO Module532
The CosPersistenceDS_CLIModule5-35
Life Cycle servicadefines how alient cancreate

an object “overthere”.061

Life Cycle Service defines how a client can move
or copy an object overthere.62

The object life cycle problem for graphs of objects is

to determine the bawdaries of a gaph of objects and

operate on that graph. In the above example, a document
contains a graphic and a logefers to a dictionargnd
iscontainedinafolder.6-3

To create an object “ovehere” a client mst
possess an object sgEnce to a factory ovehere.
The client simply issues i@quest on the factory.6-4

An example of a document factory intece. This
interface is defined for clients aspart of application
development. ii.....6b

To delete an object, a client myisses awbject
reference supporting tHaefeCycleObjecinterface
and issues eemove request on the object.6-6

CORBAservices: Common Object Services Specification

Figure 6-7

Figure 6-8

Figure 6-9
Figure 6-10

Figure 6-11

Figure 6-12

Figure 6-13

Figure 8-1

Figure 8-2

Figure 8-3

Figure 8-4

Figure 8-5

Figure 8-6

July 1997

Life cycle serviceslefinehow a clientcan move or
copy an object from here to there.

The FactoryFinderinterface can be “mixed in” with

interfaces of more pwerful finding serices.

The CosLifeCgle Module

The Life Cycle service povides a gneric creation
capability. Ultimately, implementation specific
creation code is invoked by the creation service.
The implementation specificode also supports the
GenericFactoryinterface. ..

Factoies assemble resources for the execution of an
object. A minimalimplementation adleves this with

a single factorymplementation.

In an administered environment, factory
implementationgan delegate the eation problem
to a generic factory. The generic factamanapply
resource allocation policies. Ultimatelythe creation
service cormunicates with mplementation specific

code that assembles resources for the bject.

The copy and moveperations are pasd a

. 6-8
. 6-10

. 6-15

6-19

6-20

FactoryFinder to represent "there." The implementation

of the targeuses the &ctoryFinder to find a

factory obgct for ceation over there. Therotocol
between the object and the factory isvpte.They can
commujnicate and transfer state acdogdio any

implementation-dehed protocol..

Externalization control flow when streamable object

is not in a graph of related objects

Externalization control flow when streamable object
is a node in a graph of related objects

Internalization control flow when object is not in a

graph ofrelatedgbets L

Internalization control flow when object is in a graph

ofrelated objects

Object Externalization Seice Booch Class

(=Interface) Diagram

Client Functional Interfaces support client’'s model

of externalization

6-21

.84

.85

. 8-7

. 8-9

8-10

XXXi

XXXii

Figure 8-7

Figure 8-8

Figure 8-9
Figure 8-10

Figure 8-11

Figure 8-12
Figure 8-13
Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5
Figure 9-6

Figure 9-7

Figure 9-8

Figure 9-9

Figure 9-10
Figure 9-11
Figure 9-12
Figure 9-13
Figure 9-14
Figure 9-15
Figure 9-16
Figure 9-17
Figure 9-18

Figure 9-19
Figure 9-20

Service Constrction Interfices support service

implementation’s model of externalization8-10
Compound Externalization Intexcessupport service
implementation’s model of graph externalization 8-11
The CosStreemmodule815
The CosCompundExternalization Module8-20
Internalizing a node returns tmew object and the
correspondingres. 822
The CosExternalizationContainment module8-26
The CosExternalizationReference module8-28
Base refitionships L 9T
Navigation functionality obaserelationships9-8
An example graph of related objects 99
Relationship intedcehierarchy9-10
Role interface ferarchy9-10
Simple relationship type: documentference books ... 9-14
Simple relationship instance: my document references

the book “Warand Peace”914
A ternary check-out relatlonshlp type Weien books,

libraries and persons. - : ceev... 915
An unsatisfactory representation of the ternary

check-out relationship using binary relationships 9-16
Another unsatisfactory representation9-16
Creating a role for an object9-17
A fully established binaryalationship9-17
The CosObjectldentity Module9-19
The CosRelationshipsModule9-21
Two binary one-to-many containment relationships. 9-23
An example graph of related objects 9-34
A traversal of a gaph for compound copy operation ... 9-37
How deep, shllow and none propagation vuas

affect nales, roles andetationships. 9-38
The CosGraphs Module939
The CosContainment Module9-48

CORBAservices: Common Object Services Specification

Figure 9-21

Figure 10-1

Figure 10-2
Figure 10-3
Figure 10-4
Figure 10-5
Figure 11-1
Figure 11-2
Figure 11-3
Figure 11-4
Figure 11-5
Figure 11-6
Figure 11-7
Figure 11-8
Figure 11-9
Figure 12-1
Figure 12-2
Figure 12-3
Figure 12-4
Figure 13-1
Figure 13-2
Figure 13-3

Figure 13-4

Figure 13-5
Figure 13-6

Figure 13-7

Figure 13-8
Figure 13-9
Figure 13-10

Figure 13-11

July 1997

The CosReference Module

This figure illustates the major coppnents and

interfaces of thelransaction Service
....10-41

X/Open client

XIOPEN SEIVEr .. i e

Example

Model interoperability example

Query Evaluators: Nesting and Federation
Queryable Collections
.....11-8
... 11-10

SQL Query = OQL

Collection interacestructure

Query Framework intéace herarchy/structure

CosQueryCollection Module

Query EvaluatomndQueryable Collection
Query Manager anQuery Object

QueryLanguageype IntefaceHierarchy
Licensing Service Relationships
Licensing Service Instance Diagram
....12-16
L0 12-17
.....13-5

Licensing Event Trace Diagram
CosLicensingManager Module
Data types

PropertySet intdace excepions

Operationaused to éfine new propeigs or set

New values

Operationaused to retrieve pperty names and

values e
Operationaused to delete pperties
is_property_defined operation

Operationaused to retrieve infonation related to
CONSraiNtS. i i e e

Operationaused to éfine new propeits or values. . ..
Operationaused to get and setqperty mode.
resetoperation i
... 13-20

next_one and next_operations (properties)

. 9-50

10-12

... 10-42
... 10-42

...10-64

... 11-3
... 115

. 11-11
... 11-14

.. 11-20
.. 11-21

. 11-24
Sl 12-7
... 12-14

.. 13-7

13-9

... 138-11
13-12
13-14

13-15
13-16
13-18
13-19

XXXIii

XXXV

Figure 13-12
Figure 13-13
Figure 13-14
Figure 13-15
Figure 13-16
Figure 13-17
Figure 14-1
Figure 14-2
Figure 14-3
Figure 14-4
Figure 14-5
Figure 15-1
Figure 15-2
Figure 15-3
Figure 15-4
Figure 15-5
Figure 15-6
Figure 15-7
Figure 15-8
Figure 15-9
Figure 15-10
Figure 15-11
Figure 15-12
Figure 15-13
Figure 15-14
Figure 15-15
Figure 15-16
Figure 15-17
Figure 15-18
Figure 15-19
Figure 15-20

Figure 15-21

destroy operation
... 13-20
.13-21

resetoperation
next_one, next_n operations (PestyNames)
destroy operation
PropetySetFactory interface
PropertySetDefFactory interface
...14-3

General Object Model for Service

Object Model for Time Service
[llustration of Intewal Overlap
.. 14-13
... 14-19
.. 15-13

Object Model of Timer Event Service

Time Service and Proxies,

A Security model for object systems

Credential containing security attributes
.. 15-15
.. 15-18
.. 15-19
.. 15-21

Target Object vi®DRB
Message prection
Accesscontrol model

Authorizaion model

Auditing model

Delegation model

No delegation

Simple delegation

Composite delegation
Combined privieges @legation

Traced delegation

Proof of receipt

Non-repudiation services

Security policy domains

Policy domain hierardes
Federated policy domains
System- and apigation-enforced policies
Overlapping policy domains

Framework of domains15-39

CORBAservices: Common Object Services Specification

13-20

13-21
13-21
13-22

.. 14-5
. 14-8

. 15-15

. 15-24
. 15-25
. 15-28
. 15-28
. 15-29

. 15-29
... 15-29
... 15-32
... 15-32
... 15-34
. 15-35
...15-35

15-36
. 15-36

Figure 15-22
Figure 15-23
Figure 15-24
Figure 15-25
Figure 15-26
Figure 15-27
Figure 15-28
Figure 15-29
Figure 15-30
Figure 15-31
Figure 15-32
Figure 15-33
Figure 15-34
Figure 15-35
Figure 15-36
Figure 15-37
Figure 15-38
Figure 15-39
Figure 15-40
Figure 15-41
Figure 15-42
Figure 15-43
Figure 15-44
Figure 15-45
Figure 15-46
Figure 15-47
Figure 15-48
Figure 15-49
Figure 15-50
Figure 15-51

Figure 15-52

July 1997

Structural malel

ORB SEIVICESt e e e e e e

Object refeence

Domain objects

Controlled relationship

Object encapsulation
Authentication

Multiple credentials

Changing security attrilias

Making a secure invocation

Target object security

Security-unaware intermexe object
Securityaware intermediteobject
access_allowed application

get_policy application

audit_write application

Audit decisionobject o
set_NR_featuresperation

generate_token operation

Non-repudiation service

verify_evidence operation

Proof of origin message

Managing security @licies

Securing invocatins

get_policy operation

ORB Security Seficescccuin ...

Accessdecision object

Target objects sharing security names
Object created by application or factory

Relationship beteen main objects

Interceptors Called During Invocation Path

XXXV

XXXVi

Figure 15-53

Figure 15-54
Figure 15-55
Figure 16-1
Figure 16-2

Figure 16-3

Figure 16-4
Figure 17-1
Figure 17-2
Figure 17-3

Figure 17-4

Security Functionality Implemented by Security

Service Objects

Secure Interoperability Model

New CORBA 2.0 Protocol

Interactbns between adder and its clients

Property Strength

Pipeline \lew of Trader Query Steps and

Cardinality Constraint Application

Flow of a query through a trader graph

Collections InterfacesHierarchy
Restricted Acces€ollections Interface Hierahy 17-17

Iterator InterbiceHierarchy

Inheritance Redtionships

CORBAservices: Common Object Services Specification

. 15-151
15-167
. 15-177
16-1
16-5

. 16-15
. 16-19
L17-17

.17-18
. 17-126

List of Tables

Table 3-5
Table 3-6
Table 3-7

Table 3-8

Table 6-1

Table 6-2

Table 6-3

Table 8-1

Table 9-1

Table 9-2

Table 9-3

Table 9-4

Table 9-5

Table 10-1

Exceptons Raised binding Operations.
Exceptons Raised by Resolve &mtion.
Exceptons Raised by Unbin@peration

Exceptons Raised by Creatlmgjew
Contexts

Suggested Converins for Factory Finder

KBYS o e

Suggested Convemtns for Generic Factory

KeYS o e
Suggested @¥eria. e

Tag Byte Values and Data Formats for Basic

CORBAData Types v e e e e s

InterfacesDefined in the CosObjectIdentlty
Module .

InterfacesDefined in the CosRationships

Module

InterfacesDefined in the CosGraphs Module

InterfacesDefined in the CosGaainment

Module e

InterfacesDefined in the CosRefence

Module

Use of Tansaction Seliee Furctionality.

CORBAservices: Common Object Services Specification

3-10
3-10

..3-11.

6-14

6-16
6-17

8-30

. 9-11

9-11
9-12

9-12

9-13
10-32

XXXVii

XXXViii

Table 11-1

Table 12-1

Table 13-1
Table 13-2

Table 13-3

Table 13-4

Table 13-5

Table 13-6

Table 15-1

Table 15-2

Table 15-3

Table 15-4

Table 15-5

Table 15-6

Table 15-7

Table 15-8
Table 15-9
Table 15-10
Table 15-11
Table 15-12

Table 15-13

Table 15-14
Table 16-1

Table 16-2

Interfaces Defined in th€osQueryCollection
Module

Exceptions Raised by Licensing Service

Operations. e
Property Serice Inteffaces.

Exceptions Raised by Define ©&mtions.............13-10

Exceptions Raised by List and Get

PropertesOperations

Exceptions Raised by delete pempes
Operations. . . .

Exceptions Raised byefine Operations

Exceptions Raised by Get and Set Mode

Operations. .

DomainmAccessBPlicy,

User Privilege Attributes (NdDefmed by
This Specification) . e

DomainAccessilicy (with Privilege

Attributes).

DomalnAccesslbllcy (with Delegate
Entry) . e

Interface Instances i

DomainAccesslicy (with Required

Rights Mapping).o i e

RequiredRights for Inteaftes cl1, c2

and C3
Standard Audit Policy.
Option Definitions
IORExample i i
Client State Table
Target State Table.

Association (Dtlon Mapplng toDCE
Security. .

Relationship beteenldentifiers
Preferencesot e

Scoping Policies.

CORBAservices: Common Object Services Specification

11-12

12-19
13-3

13-12

. 13-13
. 13-17

. 13-19
15-133

. 15-133

15-134

. 15-134
15-135

15-135

15-136
15-137
15-174

15-175

15-182

15-184

. 15-189
15-191
. 16-10
16-13

Table 16-3
Table 16-4
Table 16-5

Table 17-1

Table 17-2

Table 17-3

Table 17-4

Table 17-5

Table 17-6

Table 17-7

Table 17-8

Table 17-9

Table 17-10

Table 17-11

Table 17-12

Table 17-13

Table 17-14

July 1997

Capability Suppaed Policies
Trader Attibutes.

Primary/Secondary Policy Parameters

Interfaces daved from combinatns of cdlection

PrOPEItES . .o ot e e

Iterators and Collections

Collection interbces and theerator intefaces

supported e

Implementation Category Examples

Required element arkky-type specific user-defined
information for KeySetFactory [] |mpI|ed by
key compare. -

Required element andey-type specific user-defined
information for KeyBagFactory [| |mpI|ed by
key compare. . e

Required element any-type specific user-defined
information for MapFactory [] |m|mdad by
key compare. :

Required element andy-type specific user-defined
information for RelationFactory.[]- implied by

key compare.0

Required element andey-type specific user-defined

information for SetFactory.[]- impd by canpare. . ..

Required element any-type specific user-defined
information for BagFactory.[]- implied by compare.

Required element andy-type specific user-defined
information for KeySortedSetFactory [] |mpd
by key _compare. .. ce

Required element andy-type specific user-defined
information for KeySortedBagFactory.[]- implied

by key compare.

Required element any-type specific user-defined
information for SortedMapFactory [] |mpI|ed by
key_compare. :

Required element any-type specific user-defined
information for SortedReIatlonFactory [] |mpl|ed
by key _compare. e

. 16-15
.16-21
. 16-56

17-4
.17-19

17-27
. 17-72

. 17-75

.17-76

. 17-76

C17-T77

L 17-77

.17-78

.17-78

. 17-79

.17-79

. 17-80

XXXIX

x|

Table 17-15

Table 17-16

Table 17-17

Table 17-18

Required element any-type specific user-defined
information for SortedSetFactory. []- implied

by compare.

Required element any-type specific user-defined
information for SortedBagFactory. []- implied

by compare.

Required element andey-type specific user-defined
information for EqualitySequenceFactory.

Required element any-type specific user-defined
information for PrlorltyQueueFactory |] - |mpI|ed
by key_compare.

CORBAservices: Common Object Services Specification

.17-80

.17-81

. 17-82

.17-83

Preface

0.1 About This Document

Under the terms of the collaboration between OMG andp¥fOCo Ltd, this document

is a candidate for endorsement by X/Open, initially as arRirelry Specificatiorand

later as a full CAE Specification. The collaboratmiween OMG and X/Open Co Ltd
ensures joint review and cohesive support for emerging object-based specifications.

X/Open Preliminary Specifications undergo cleseutiny thraigh a review process at
X/Open before publication and are inherently staplecifications. Upgrade tall

CAE Specification, after a reasonable interval, takes place following further review by
X/Open. This further review considers the implementation experience of members and
the full implicaions of conformance and branding.

0.1.1 Object Management Group

The Object Management Group, If©@MG) is aninternational organizatiosupported

by over 750 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theorypraudice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based softwaredistributed,heterogeneous
environments. Conformance to these specifications will make it possible etopev
heterogeneous applications environment across all majowhescpatforms and

operating systems.

OMG's objectives are to foster the growth of object technologyirghdence its
direction by establishing the Object Management ArchitectuMA®D The OMA
provides the conceptuaifrastructureupon which all OMGspecifications are based.

CORBAservices: Common Object Services Specification xli

xlii

0.1.2 X/Open

X/Open is an independent, worldwide, open systems organization supported by most of
the world's largest information system suppliers, user organizadimhsoftware
companies. Its mission is to bring to users greater value from compihtiaggh the
practical implementation of open systems.

0.2 Intended Audience

The specifications described in this manual are aimed at software desigders
developers who want to produce applications that comply with OMG standards for
object services; the benefits of compliance are outlined in the following sectiead“N
for Object Services.”

0.3 Need for Object Services

To understand how Object Services benefit all computedwes and users, it is helpful

to understand their context within OMG'’s vision of object management. The key to
understanding the structure of the architecture is the Reference Model, which consists
of the following components:

» Object Request Broker which enables objects to transparently make and receive
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for intergbility between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are describ@DRBA: Common
ObjectRequest Broker &hitecture and Specification.

* Object Services a collection of services (interfacand djects) that support
basic functions for using arichplementingobjects. Services are necessary to
construct any distributed application and areaglsvindependent of application
domains. For example, the Life Cycle Service defines conventions for creating,
deleting, copying, and moving objects; it does digtate how the objects are
implemented in an application. Specifications for Object Services are contained in
this manual.

« Common Facilities a collection of services that many applications may share,
but which are not as fundamental as the Object Services. For instance, a system
management or electronic mélcility could be classified as a common fagi
Informationabout Common &cilities iscontained iNCORBAfacilities: Common
Facilities Architecture

« Application Obijects, which are products of a single vendor on in-house
development group which contrdlseir interfaces. Applicatio®bjects
correspond to the traditional notion of applications, so they are not standardized
by OMG. Instead, Application Objects mstitute the uppermost layer of the
Reference Model.

The Object Request Broker, then, is the core of the Reference Model. Nevertheless, an
Object Request Broker alone cannot enatleroperability at the application semantic
level. An ORB is like a telephone exchange: it provides the basic mechanism for
making and receivingalls but does not ensure meaningful communication between

CORBAservices: Common Object Services Specification

subscribers. Meaningful, productive communicatil@pends on additional interfaces,
protocols, and policies that are agregmbn outside the telephone system, such as
telephones, modems and directory services. This is equivalent to the role of Object
Services.

0.3.1 What Is arDbject Service Specification?

A specification of an Object Service usually consists of a set of interfaxcka

description of the service’s behavior. The syntax used to speciintéréaces is the

OMG Interface Definition Language (OMG IDLThe semairi¢s that specify a

services’s behavior are, in general, expressed in terms of the OMG Object Model. The
OMG Object Model is based on objects, operations, types, and subtyping. It provides a
standard, commonly understood setayins with vhich to describe a service’s

behavior.

(For detailed informatiombout the OMG Reference Model and the OMG Object
Model, refer to theDbject Management Architecture Guide).

0.4 Associated Documents

The CORBA documentation set includes thBowing books:

» CORBA: Common Object Request Brokezhitectureand Spedication contains
the architecture and specifications for the Object Request Broker.

» CORBAservices: Common Object Services Specificabatains specifications
for the object services.

» CORBAfacilities: Common Facilities Architectwentains information about the
design of Common Facilites; it provides tiramework for Common Facility
specifications.

» ObjectManagement Ahitecture Guidedefines the OMG'’s technical objectives
and terminology and describes the conceptual models upon which OMG standards
are based. It algprovides information about the policies and proceduresGO
such as how standards are proposed, evaluated, and accepted.

OMG collects information for eadhook in the documentation set by issuing Requests
for Information, Requests for Proposals, dRequests foComment and, with its
membership, evaluating the responses. Specificationsdaged as standards only
when representatives of the OMG membership accept them as such by vote.

To obtain books in the documentation set, or other OMG publications, refer to the
enclosed sukcription card or contact the Object Management Group, atc.
OMG Headquarters
492 Old Connecticut Path
Framingham, MA 01701
USA
Tel: +1-508-820-4300
pubs@omg.org
http://www.omg.org

Preface Associated Documents July 1997 xliii

0.5 Structure of this Manual

In addition to this prefacaZORBAservices: Common Object Servicestains the
following chapters:

Overview provides an introduction to the CORBA obiject services, including a
summary of features for each service.

General Design Principlegprovides information about the principles that were used in
designing each service; explains the dependencies among services; and explains how
Object Services relate to each other, CORBA, and industry standards in general.

Chapters 3 through 16 each contain a specification for the following Object Services:
* Naming
* Event
» Persistent Object
* Life Cycle
« Concurrency Control
» Externalization
» Relationship
» Transaction
* Query
* Licensing
* Property
» Time
» Security
» Trading
* Collections

0.6 Acknowledgements

The following companies submitted parts of the specifications that werevaplply
the Object Management Group to beco@f@RBAservices:

AT&T/Lucent Technologies
AT&T/NCR

BNR EuropeLimited
CooperativeResearch Centre fdistributed Systems Technology (DTSC Pty Ltd.)
Digital Equipment Corpa@tion
Expersoft @rporation
Gradient Technologies, Inc.
Groupe Bull

Hewlett-Packard Company
HyperDesk Corporation

ICL PLC

Ing. C. Olivetti & C.Sp

xliv CORBAservices: Common Object Services Specification

International Business Machines Corporation
International Computers Liited

lona Technologies Ltd.

Itasca Systems, Inc.

Nortel Limited

Novell, Inc.

02 Technologies, SA

Object Design, Inc.

Obijectivity, Inc.

Odyssey Research Associates, Inc.
Ontos, Inc.

Oracle Corporation

Persistence Software, Inc.

Servio Corporation

Siemens Nixdorf Informationssysteme AG
Sun Microsystms, Inc.

SunSoft,Inc.

Sybase, Inc.

Taligent, Inc.

Tandem Computers, Inc.

Teknekron Software Systems, Inc.
Tivoli Systems, Inc.

Transarc Corporation

Versant Object Technology Capation

Preface Acknowledgements July 1997 xlv

xlvi CORBAservices: Common Object Services Specification

Overview 1

1.1 Summary of Keiyeatures

1.1.1 Naming Service

The Naming Service provides the ability to bind a name to an object relative to a
naming catext A naming context is an object that contains a set of name bindings
in which each name is unique. To resolve a name detiermine the object
associated with the name in a given context.

Through the use of a very general model drdling with names in their structural
form, naming service implementations can be application §pecibe based on a
variety of naming systems currently available on system platforms.

Graphs of naming contexts can be supported in a distributed, federated fashion. The
scalable design allows thistributed, hetrogeneousmplementatiorand
administration of names and name contexts.

Because name component attribute values arasgined or interpreted by the
naming service, higher levels of software are not constraingstrims ofpolicies
about the use and managemenatifibutevalues.

Through the use of a “namébrary,” name manipulation is miplified and names
can be made representation-independent thus allowing their representation to evolve
without requiring client changes.

Application localization is facilitated by name syntaxiépendence and the
provision of a name “kind” attribute.

CORBAservices: Common Object Services Specification 1-1

1.1.2 Event Service

®* The Event Setice provides basic capaibies thatcan be configured together in a
very flexible and powerful manner. Asynchronous events (decoupled event
suppliers and consumers), evéfan-in,” notification “fan-out,” and (through
appropriate event channiehplementations) reliable event delivery are supported.

® The Event Setice design is scalable and is suitable datributed environments.
There is no requirement for a centralized server or dependenagyoglobal
service.

®* The Event Servicenterfaces allow implementations that provide different qualities
of service to satisfy different application requirements. In addition, the event service
does not impose higher level policiesg(e sgecific event types) allowing great
flexibility on how it isused in a given application environment.

® Both push and pull event delivery models are suppotted:is, consumers can
either request events or be notified of events, whichever is needetkfy
application requirements. There canrbeltiple consumers and multiple suppliers
events.

® Supplers can generate events withdmbwing the identities of the consumers.
Conversely, consumers can receive events without knowingiéngities of the
suppliers.

®* The event chamel interfacecan be subtyped to support extended capabilifibs.
event consumer-supplier interfaces are isyatric, allowing the chaining of event
channels (for example, to support various event filtering models). Event channels
can be chained by third-parties.

* Typed event channels extend basic event channels to support typed interaction.

® Because event gpliers, consumers arghannels are objects, advantage can be
taken of performance optimizations provided by ORB implementations for local and
remote objects. No extension is required to CORBA.

1.1.3 Life Cycle Seice

® The Life Cycle Service defines conventidios creating, deleting, copying and
moving objects. Because CORBA-based environments support distributed objects,
life cycle services define servicasd conentions that allow clients to perform life
cycle operations on objects in different locations.

®* Theclient's model of creation is defined in terms of factobjects. Afactory is an
object that creates another object. Factoriematspecial objects. As with any
object, factories have well-defined OMG IDL interfaces and implementations in
some programming language.

® The Life Cycle Service defines amerface for a generic factory. This allows for
the definition of standard creation services.

® The Life Cycle Service defineslafeCycleObjecinterface. This interface defines
remove, copy and move egmtions.

CORBAservices: Common Object Services Specification

The Life Cycle Service has been extended to support compdarzytle
operations on graphs of related objects. Compound objects (graphs of objects) rely
on the Relationship Service for the definition of object graphs.

1.1.4 Persistent Object Service

The Persistent Object Service (POS) provides a set of common interfaces to the
mechanisms used for retaining and managing theigient state of objects.

The objectultimately has the responsibility of managing its state, but can use or
delegate to the Persistent Object Service for the astudl. A major feature of the
Persistent Object Service is its openness. In this case, that means that there can be
variety of different clients and implementations of the Persistent OBgreice,

and they can work together. This is arlarly important for storage, where
mechanisms useful for documents may not be appropriate for employee databases,
or the mechanisms appropriate for mobile computers do not apply to mainframes.

1.1.5 Transaction Service

The Transaction Service supports multiple transaction models, including the flat
(mandatory in the specification) and nested (optional) models.

The Object Transaction Service suppanteroperability between different
programming models. For instance, some users waaddmbjectiplementations
to existingprocedural applicationand to augment objeanplementations with
code that uses the procedural paradigm. To do so in a transaction environment
requires the object and procedural code to share a sing&abtam.

Network interoperability is also supported, since users me@dmunication
between different systems, including the ability to have onesaction service
interoperate with a cooperating transaction service using different ORBs.

The Transaction Service supports battplicit (Ssystem-managed transaction)
propagation and exiplt (application-managed)rppagation. With implicit
propagation, transactionbEhavior is not specified in the operation’s signature.
With explicit propagation, applications define their own mechanisms for sharing a
common transaction.

The Transaction Service can be implemented in a TP monitor environment, so it
supports the ability to execubeaultiple ransactions concurrently, and to execute
clients, servers, and transaction services in separate processes.

1.1.6 Concurrency Contrdbervice

The Concurrency Control Service enabladtiple clients to coordinate their access

to shared resources. Coordinating access to a resource meankdahatuliple,
concurrent clients access a single resource, any conflicting actions by the clients are
reconciled so that the resource remains in a consistent state.

Overview Summary of Key Features July 1997 1-3

Concurrent use of a resource is regulated with locks. Each lock is associated with a
single resource and a single client. Coordination is achieved by preventing multiple
clients from simultaneously possessing locks for the same resource if the client's
activities might conflict. l#nce, a client must obtain an appropriate lock before
accessing a shared resource. The Concurrency Control Service defines several lock
modes, which corregmd to diferent categories of access. This variety of lock

modes provides flexible conflict resolution. For example, providing different modes
for reading and witing lets a resource suppantultiple concurrent clients on a read-

only transaction. The Concurrency Control Service also defines Intention Locks that
support locking amultiple levels of granularity.

1.1.7 Relationship $eice

The Relationship &vice allows entities and relationships to be explicitly
represented. iities are represented as CORBA objects. The service defines two
new kinds of objects: relatiships and roles. A role represents a CORBA object in
a relatiorship. The Relationship interfacan be extended to add relationship-
specific attributes and operations. In addition, relationships of arbitiegyee can

be defined. Similarly, th&oleinterface can be extended to add role-specific
attributes and operations.

Type andcardinality constraints can be expressad checked: exceptions are
raised when the constraints are violated.

The Life Cycle Service defines operations to copy, move,ramibve graphs of
related objects, while the Relationship Service allows graphs of related objects to be
traversed withouactivating the relatedbjects.

Distributedimplemenations of the Relationship Service can have navigation
performance and availaltyf similar to CORBAobject references: role objects can
be located with their objects and need notetepon a centralized repository of
relationship information. As such, navigating a relationship can be a local
operation.

The Relationship &vicesupports the compound life cycle component of the Life
Cycle Service by defining object graphs.

1.1.8 Externalization Seice

The Externalization Service defines protocols and conventions for externadiaohg
internalizing objects. Externalizing an object is to record the object state in a stream
of data (in memory, on a disk file, across tregwork, and so forth) and then be
internalized into a new object in the same or a different process. The externalized
object canexist for arbitrary amounts of time, be transported by means outside of
the ORB, and be internalized in a different, disconnected ORB. Ftabjildy,

clients can request that externalized data be stored in a file idrosat is defined

with the Externalization Service Specification.

The Externalization Service is related to the Relationship Service and parallels the
Life Cycle Service in defining externalization protocols for simple objects, for
arbitrarily related objectsand forfacilities, directoryservices, and file services.

1-4 CORBAservices: Common Object Services Specification

1.1.9 Query Service

® The purpose of the Query Service is to allow usersodjects to invoke queries on
collections of other object3.he queries are declarative statements with predicates
and include the ability to specify values of attributes; to invoke arbitrayatipns;
and to invoke other Object Services.

® The Query Service allows indexing; maps welthe query mechanisms used in
database systems and other systems that store and access large collections of
objects;and is based oaxisting standards for query, including I5Q2, OQL-93,
and OQL-93 Basic.

®* The Query Service provides an atekture for a nested and federated service that
can coordinatenultiple, nested query evaluators.

1.1.10 Licensing Service

® The Licensing Setice provides a mechanism for producers to control the use of
their intellectual property. Producers can implement the Licensing Service
according to their own needs, and the needbeif customershecause the
Licensing Service does not impose it own business policies or practices.

® Alicense in the Licensing Service has three types of attributes that allow producers
to apply controls flexiblytime value mappingandconsumerTime allows licenses
to have start/duration and expiration dates. Value mapping allows producers to
implement a licensing scheme according to units, allocation (through concurrent use
licensing), or consumption (for example, metering or allowance of grace periods
through “overflow licenses.”) Consumattributesallow a license to be reserved or
assiqied for sgcific entities; for example, a licenseuld be assigned to a
particular machine. Theicensing Service allows producers to combine and derive
from license attributes.

® The Licensing Setice consists of &icenseServiceManagénterface and a
ProducerSpecificLicenseServiggerface: these interfaces do not impose business
policiesupon mplementors.

1.1.11 Property Service

®* Provides theability to dynanically associate named values with objects outside the
static IDL-type system.

® Defines operations to create and manipulate sets of name-value pairs or name-
value-mode tuplesThe names are simple OMG IDL stringEhe valuesare OMG
IDL anys. The use ofype any is significant in that it allows a property service
implementation to deal with any value that can be represented in the OMG IDL-
type system. The modes are similar to those defined imtaeface Repository
AttributeDef interface.

® Designed to be a basic building block, yet robustugih to be applicabltor a
broad set of applications.

Overview Summary of Key Features July 1997 1-5

Provides “batch” operations to deal with sets of properties as a whole. The use of
“batch” operations is significant in that the systems and network management
(SNMP, CMIP, ...) coomunitieshave proven such a need whagaling with

“attribute” manipulation in a distritted environment.

Provides exceptions such tiRroperty Seimplementors may exercise control of (or
apply castraintsto) the nameand types of prperties associated with an object,
similar in nature to the control one wld have with CORBA attributes.

Allows PropertySeimplementors to restrict modification, addition and/or deletion
of properties (readonly, fixed) similar in nature to the restrictions one would have
with CORBA attributes.

Provides client access and control of doaiats and property modes.

Does not rely on any other object services.

1.1.12 Time Service

Enables the user tdbtain current time together with an erestimate associated
with it.

Ascertains the order in which “events” occurred.
Generates time-based events basetimarsand ahrms.
Computes thénterval between two events.

Consists of two servicetence defines two service interfaces:

» Time Service manages Universal Time Objects (UTOs) and Time Interval Objects
(T1Os), and is represented by thieneServicenterface.

« Timer Event Service manages Timer Event Handigeats, and is represented by
the TimerEventServicénterface.

1.1.13 Security Service

The security functionality defined by thépecification compsies:

Identification andauthentication of principals (human users and objects which
need to operate under their own rights) to verify they are who they claim to be.

Authorization andaccessontrol - deciding whether a praipal can access an
object, normally using the identity éfor other privilege @tibutes of the prinipal
(such as role, groups, securithearance) and the controlréiutes of the target
object (sating which prirtipals, or principals with which attributes) can access it.

Security auditing to make users accountable for thsscurityrelated actions. It is
normally the human user who should be accountable. Auditing mechanisms should
be able to identify the user eectly, even after a chain ehlls through many

objects.

CORBAservices: Common Object Services Specification

1

® Security of communication between objects, which is often over insecure lower
layer communications. Thigqures trust to be gablished between the client and
target, which may redre authentication of clients to targetsandauthentication
of targets to clients It alsorequiresintegrity protection and (optionally)
confidentiality protection of messages itransit betveen objects.

® Non-repudiation provides irrefutable evidence of actions su cip@®f of origin of
data to the recipient, or proof of receipt of data to theleetoprotect against
subsequent attempts tal$ely deny the receiving or sending of the data.

®* Administration of security information (for exaple, security policy) is also
needed.

1.1.14 Object Trader Service

The Object Trader Service provides a matchmaking service for objects.

The Service Provider registers the availapidf the service by moking an export
operation on the trader, passing as parameters informedtiont the offered service.

The export operation carries an object rafeeethat can be used by a client to invoke
operations on the advertised services, a description of the type of the offered service
(i.e., the names of the operations to which it will respond, along with their parameter
and result types), information on the distinguishing attributes of the offered service.

The offer space nmaged by traders may Ipartitioned toease admistration and
navigation. This information is stored persistently by the Trader. Whenever a potential
client wishes to obtain a reference to a service that does a particular job, it invokes an
import operation, passing as parameters a description of the service required. Given
this import request, the Trader checks appropriate offers for acceptability. To be
acceptable, an offer must have a type that conforms to that requestedvand

properties consistent with the constraints specified by an imported.

Trading service in a single trading domain maydisributed over a number of trader
objects. Traders in different domains may be federated. Federation enables systems in
different domains to negotiate the sharing of services without losing control of their
own policiesand services. A domain can thus share information with other domains
with which it has leen federated, and it can now be searched for appropriate service
offers.

1.1.15 Object Collections 8ace

Collections aregroups of objects which, as a group, support sopgFaiionsand

exhibit specific behaviors that are related to the nature of the collection rather than to
the type of object they contain. Examples of collections are satsieg, stacks, lists,
binary, and treesThe purpose othe Collection Object Service is to provide a uniform
way to create and manifate the most common collections generically.

Examples of collections are setgjeues, stacksists, binary, and trees. For example,
sets might support the following operations: insert new element, membership test,
union, intersection, cardinality, equtgiltest, emptiness test, etc. One of the defining

Overview Summary of Key Features July 1997 1-7

1-8

semantics of a set is that, if an object O is a member of a set S, then inserting O into S
results in the set being unchanged. This property would not hold for awcothetion
type called a bag.

CORBAservices: Common Object Services Specification

General Design Principles 2

This chapter discusses the principles that were considered in designing Object Services
and their interfaces. It also addresdependencies between Object Services, their
relationship to CORBA, andheir conformance to existing standards.

2.1 Service Design Principles

2.1.1 Build on CORBA Concepts

The design of each Object Service uses and builds on CORBA concepts:
» Separation of interface anhplementation
» Object references are typed by interfaces
 Clients depend on interfaces, niwiplementations
» Use of muiiple inheritance of interfaces
» Use of subtyping to extend, evolve and spkzé functionality

Other related principles that the desigthere to include:

» Assume good ORB andifect Services implementations. Specifically, it is
assumed that CORBA-compliant ORB implementations are being built that
supportefficient localand remote access to “fine-grain” objects and have
performance characteristics that place no major barriers to the pervasive use of
distributed objects for virtually all servi@nd gplication elements.

« Do not build non-type properties into interfaces

A discussion and rationale for the design of object services was included in the HP-
SunSoft response to the OMG Object Services RFI (OM@bEument 92.2.0).

CORBAservices: Common Object Services Specification 2-1

2.1.2 Basic, Flexible Services

The services are designed to do one thing well and are omlyngglicated as they
need to be. Individual services are by themselves relatively simple yetdahepy
virtue of their structuring as objects, be combined together in interestihgowerful
ways.

For example, the event and life cycle services, plus a future relationship service, may
play together to support graphs of objects. Object graphs commonly occur in the real
world and must be supported in many applicati@énfunctionally-rich Folder

compound objectfor example, may be constructed using the life cycle, naming,
events, and futureelationship services as “building blocks.”

2.1.3 Generic Services

Services are designed to be generic in that they do not depend on the type of the client
object nor, in general, on the type of data passed in requests. For example, the event
channel interfaces accept event data of apg.t€lients of the service can dynamically
determine the actual data type and handle it apjartety.

2.1.4 Allow Local and Reote Implementations

In general the services are structured as CORBA objects with OMG IDL interfaces that
can be accessed locally or remotely and wici@h have local library or remote server
styles of implementations. This allows considerable flexibility as regards the location
of participating objects. So, for example, if the performance requirements of a
particular application dictate it, objeatan be implemented to work with a Library
Object Adapter that enables their execution in the same process as the client.

2.1.5 Quality of Service is an Implementation Characteristic

Service interfaces are designed to allow a wide rangmmlEmentationapproaches
depending on the quality of service required paaticular environment. For example,

in the Event Service, an event channel can be implemented to provide fast but
unreliable delivery of events or sker but guaranteed delivery. However, the interfaces

to the event channel are the same for all implementations and all clients. Because rules
are not wired into a complex type hierarchy, developers can select particular
implementations as building blocks and easily combine them with other components.

2.1.6 Objects Often Conspire in a Service

Services are typically decomposed into several distinct interfaces that provide different
views for different kinds of clients of the service. For example, the Event Service is
composed oPushConsumePullSupplierandEventChanneinterfaces. This

simplifies the way in \Wwich a particular client uses a service.

CORBAservices: Common Object Services Specification

2

A particular service implementatiaran support the ewstituent interfaces as a single
CORBA object or as a collection of distinct objects. This allows considerable
implementation flexibility A client of a service may use a different object reference to
communicate with each distinct service function. Conceptually, these “internal” objects
conspireto provide the complete service.

As an example, in the Event Service an event channel can providBusitE onsumer
andEventChanneinterfaces for use bglifferentkinds of client. A particular client

sends a request not to a single “event channel” object but to an object that implements
either thePushConsumeandEventChanneinterface. Hidden to all the clients, these
objects interact to support the service.

The service designs also use distinct objectsithplement specific service interfaces

as the means to distinguish and coordinate different clients without relying on the
existence of an object equality test or some special way of identifying clients. Using
the event service again as an example, when an event consumer is connected with an
event channel, a new object is created that supporBuh®upplierinterface. An

object reference to this object is returned to the event consumer edrnchen request
events by invoking the appropriateesption on the new “supplier” objedBecause

each client uses a different object reference to interact with the event channel, the event
channel can keep track of and managsétiple simultaneous clients. This sfown
graphically in Figure 2-1.

PullConsumer .
L PushSupplier
|

-
consumer } | |/ '\s’upplier
1 » 1
PushConsumer

event channel

PullSupplier

\%IIConsumer
4]
|

consumer \

|
/ PullSupplier

Figure 2-1 An event channel as a collection of objects conspiring to manage multiple
simultaneous consumer clients.

The graphical notation shown in Figure 2-1 is used throughout this document and in
the full service specifications. An arrowitli a vertical bar isused to show thahe

target object supports the interface named below the arrow and that clients holding an
object reference to it of this type can invoke operations. In shorthand, one says that the
object referace (held by the client) supports ti¢erface. The arrow points from the
client to the target (server) object.

General Design Principles Service Design Principles July 1997 2-3

A blob (misshapen circle) delineates a conspiracy of one or more objects. In other
words, it corresponds to a conceptual object that may be composed of one or more
CORBA objects that together provide some coordinated service to potentially multiple
clients making requests using different object references.

2.1.7 Use of Callback Interfaces

Services often emplogallback interfaces. Callback interfaces are interfaces that a
client object is required to support to enable a servigalidackto it to invoke some
operation. The callback maye, for example, to pass back data asynchronously to a
client.

Callback interfaces have two major benefits:
®* Theyclearly define how a client object participates in a service

® They allowthe use of the standard interface definition (OMG IDL) andrafion
invocation (object reference) mechanisms

2.1.8 Assume No Global Identifier Spaces

Several services employ identifiers to label and distinguish vaélmmsents. The

service designs do not assume or rely on any gloleatifier service or global id

spaces in order to function. The scope of identifiers is always limited to some context.
For example, in the naming service, the scope of names fmthieular naming

context object.

In the case where a service generates ids, clients can assume that an id is unique withir
its scope but should not make any othssumption.

2.1.9 Finding a Service is Orthogonal to Using It

Finding a service is at a higher level and orthogonal to using a service. These services
do not dictate a particulapproach. They do not, for example, mandate dHat

services must be found via the naming service. Because services are structured as
objects there does not need to be a special way of finding objects assodiated w
services - general purpose finding services can be used. Solutions are anticipated to be
applicationand policy specific.

2.2 Interface Style Consistency

2.2.1 Use of Exceptions and Return Codes

Throughout the services, exceptions are usetleively forhandling exceptional
conditions such as error returns. Normal return codes are passed back via output
parameters. An example of this is tiee of a DONE return code to indicate iteration
completion.

CORBAservices: Common Object Services Specification

2.2.2 Explicit Versus Implicit Operations

Operations are always explicit rather than implied e.g. by a flag passed as a parameter
value to some “umbrella” operation. In other words, there is always a distinct operation
corresponding to each distinct function of a service.

2.2.3 Use of Interface Inheritance

Interface inheritance (subtyping) is used whenever one can iméminelient code
should depend on less functionality than thk interface. Services are often
partitioned into several unrelated interfaces when it is possitgartiion the clients
into different roles. For example, an administrative interface is often unrelated and
distinct in the type system from the interface used by “normal”’ clients.

2.3 Key Design Decisions

2.3.1 Naming Swice: Diginct from Property and Trading 8Baces

The Naming Service is addressed separately from property and trading services.

Naming contexts have somarslarity to property lists (that is, lists of values

associated with objectsdhgh not necessarily part of tlobject’s state). The Naming
Service in general aldoas elements in common with a trading service. However,
following the “Bauhaus” principle of keeping services as simple and as orthogonal as
possible, these services have been kepindisand are being addressed separately.

2.3.2 Universal Object Identity

The services described in this manual do not require the concept of object identity.

2.4 Integration with Future Object Services

This section discusses how the Object Services could evolve to integrate with future
services, such as:

* Archive

» Backup/Restore

« Change Management (Versioning)
» Data Interchange

* ImplementationRepostiory

* Internationalization

* Logging

¢ Recovery

* Replication

e Startup

General Design Principles Key Design Decisions July 1997 2-5

2.4.1 Archive Service

Persistent Object ServiceThe Archive Service copies objects from an
active/persistent store to a backup store and vice versa. This service should be able to
archive objects stored with the Persistent Obsntiice.

Externalization Service.The Archive Service copies objedtem an active/persistent
store to a backup store and vice versa. This service could use the Externalization
Service to get the internal state of objects for saving and to sub#§qrecreate

objects with this stored state. If only persistent objects need to be archived, then the
Object Persistence Service could be used instead.

2.4.2 Backup/Restore Service

Externalization Service. The Backup/Restore Service provides recovergrat
system failure or a user error. This service could use the Object Externalization Service
as an underlying mechanism for objects regardless of whether they are persistent.

Persistent Object ServiceThe Backup/Restore Service provides recoadtgr a
system failure or a user error. This service could use the Persistent Object Service as ar
underlying mechanism for persistent objects.

Transaction Service The permanence efffect property of a transactiomplies that

the state established by the aaitment of atransaction will not be lost. To guarantee

this property, the storage media on which the objects updated by the transaction are
stored must be backed-up to secondary storage to ensure that they are not lost should
the primary storage media fail.r&ilarly, the storage mediased by the logging service

must be restorable should the mefdith Since there areultiple commnents which

require backup services, a single interface would be advantageous.

2.4.3 Change Management Service

Persistent Object ServiceThe Change Management Service supports the
idenfification and consistent evolution of objects including version and configuration
management. This service showdrk with thePersistent Object Service to allow
persistent objects tevolve from the old to new versions.

2.4.4 Data Interchange Service

Persistent Object Service The Data Interchange Service enables objects to exchange
some or all of their associated state. This service shootkl with Persistent Object
Service to allowstate to be xechanged when one or more of the objects amsigtent.

2.4.5 InternationalizatiorBervice

Naming Service.Naming Service interfaces may also need to be extended (for
example, the structure of names extended, additional name resolution operations
added) to better support representing and resolving nhames for some languages and
cultures.

CORBAservices: Common Object Services Specification

2.4.6 Implemstation Repository

Persistent Object Service The Implementation Repository supports the management
of objectimplemenéations.The Persistent Object Service may éep onthis to

determine what persistent data an object contains.ddpgendency is at the
implementation level.

2.4.7 Interface Repository

Persistent Object Service Thelnterface Repository supports runtime access to OMG
IDL-specified definitionssuch as object interfaces and tygedinitions. The Persistent
Object Service depends on thisdetermine if a persistent objesipports certain
interfaces.

2.4.8 Logging Service

Transaction Service.A logging service implements the abstract notion oiindinitely

long, seqentially-accessible, agend-only file. It typicallysupportsmultiple log fies,

where each log file consists of a sequence of log records. New log records are written
to the end of a log file, old log records can be reath any position in the file. To

stop log files from grwing too large for the underlying storage medium, a log service
must provide an operation to archive old log records to allow the log file to be
truncated.

Various components of a transaction processing system may require the services of a
log service:
» Transaction Service: during the dwphase comit protocol the Transaction
Service must log its state to ensure that the outcome of the committing transaction
can bedetermined should there béailure.
» Recoverable (transactional) objects: a log can be used to record old and new
versions of a recoverable object for the purposes of supporting recovery.
» Locking service: a log can be used to record the locks held on an object at prepare
time to facilitate recovery.

Since there arenultiple components within a distributed transaction processing system
that require the services of a log service, a single log service interface (and potentially
server) that is shared between the components is clearly advantageous.

The correctness of a transaction serdepends upon the services of a log senfize,
this reason, the log service must meet the following requirements:

1. Restart.

A restart facility allows rapid rexery from the coldstart of an appdiation. The
recovery service used by the application (indirectly through pipdication’s use of
recoverable objects) would use the rediactlity to establish a&heckpointa
consistent point in the execution state of the application from which the recovery
process can proceed. In the absence of a checkpoint the recovery service would
have to scan the erg log to ensure restart recovery occurs correctly.

General Design Principles Integration with Future Object Services July 1997 2-7

2. Buffering and forcing operations.

A log service should provide two classes of operation for writing log records:

a. An operation to buffer a log record (the record is not written directly to the
underlying storage medium). Used during the execution of a transaction. Since
the log record is buffered the write is inexpensive.

b. An operation to force a log record to the underlying storage medlsed
during the two-phaseommit protocol taguarantee the correctness of the
transaction. Forcing a log record also flushes all previously written, but buffered,
log records.

3. Robustness.

The log service should ensutee consistency of the underlying storage medium in
which log files are stored. This usually involves the log service employing protocols
that update the storage in a manner that would not result in the loss of any existing
data (i.e. careful updates), along with supportiiémoring the storage media to
tolerate media failures.

4. Archival.

A log service should provide support for archiving log records. Archival is
necessary to allow the log to be truncated to ensure that it does not grow without
bounds.

5. Efficiency.

Since the log service may be written tooultiple components whin a
transaction, the addition of log recomtsist be efficient t@avoid thebandwdth of
log from becoming a bottleneck in the system.

2.4.9 Recovery Service

Transaction Service.As recoverable objects are updated during a transaction, they (as
resource managers) keep a record of the changes made to their state that is sufficient tc
undo the updates should the transaction rollback. The component resptorsthls

task is termed the recovery service. Various different forms of recovery are possible,
however the most common form is called value logging involves the recoverable
object recording both the old and new values of the object. When a transaction is
recovered due to failure, the old value of an object is used to undo changes made to the
object during the transaction. Most recovery services employ the services of a logging
service (described in this section) to maintain the “undo” information. The definition

of a standard recovery service interface is one posadd@&ional CORBA-compliant

object service.

2.4.10 Replication Service

Persistent Object Service The Replication Service provides explicit replication of
objects in a distributed environment and manages the cansisté replicated copies.
This service could use the Persistent Object Service to manage persistent replicas.

CORBAservices: Common Object Services Specification

2.4.11 Startup Seice

Persistent Object Service The Startup Service supports bootstrapping and
termination of the Persiste@bject Service.

2.4.12 Data Interchange Service

Externalization Service.The Data Interchange Service enables objects to exchange
some or all of their associated state. This service could use the Object Externalization
Service to allow state to be exchanged regardless of whether the objeatssistipt.

2.5 Service Dependencies

The interface designs of all the services are general in natgrelo not presume or
require the existence of specific supporting software in order to implement them. An
implementation of thd&Name ®rvice, for instance, could use naming or directory
services provided in a general-purpose networking environment. For example, an
implementation may bbased on the naming services provided by ONC or DCE. Such
an implementation could provide enterprise-wide naming services to both object-based
and non-object-based clients. Object-based software would see such serviegis thro
the use of NamingContext objects.

Although the Object Services do not depenbn specific software, some
dependencies and relationships do exist between services.

2.5.1 Event Service

The Event Service does not depend upon other services.

2.5.2 Life Cycle Seice

Interfaces for the Life Cycle Service depend on the Naming Service.

The Life Cycle Service also defines compound operations that depend on the
Relationship Service for the definition of object graphs. Appendix A describes the
topic of compound life cycle, and its dependence on the Relationship Service, in detail.

2.5.3 Persistent Object Service

The Externalization Service provides functions that provide for the transformation of
an object into a form suitable for storage on an external media or for transfeehetw
systems.The Perstent Object Service uses this service as a POS protocol.

The Life Cycle Service provides operations for managing object creation, deletion,
copy and equivalence. Thersistent Object Service depends on this service for
creating and deleting all required objects.

General Design Principles Service Dependencies July 1997 2-9

The Naming Service provides mappings between user-comprehensible names and
CORBA object references. TheeRistent ObjecService depends ahis service to
obtain the object referenad, say, a PDS frorits name or id.

2.5.4 Relationship $ece

The Relationship Service does not depend on other services. Note especially that the
Relationship Service does not depend on any common storage service.

For guidelines about when to use thel®ionship Service and when to use CORBA
object referaces, refer to theection “The Relationship Service vs CORBA Object
References,” in Chapter 9.

2.5.5 Externalization Seice

The Externalization Service works with the Liycle Service in defining

externalization protocols for simptebjects, for artirarily relatedobjects, and for

graphs of related objects that support coomd operations. gcifically, this service

uses the Life Cycle Service to create and remove Stream and StreamFactory objects.
ORB services may be used in Stream implementations to identify Interfaaabef
ImplementationDef objects corresponding to an externalized olajedtio support

finding an appropriate factory for recreating that object at internalization time.

The Externalization Service can also work with the Relationship Service.
Implementations of Stream and StreamlO operations could use the Relationship
Service to ensure thatultiple references to the same object or circular references
don't result in duplication of objects at internalization time or in the external
representation.

In addition, the Externalization Service adds coommbexternatation semantics to
the containment and referenedationships in the Relationship Service. Detailed
information is provided in “Specific Externalization Relationships” on page 8-25.

2.5.6 Transaction Service

As concurrent requests are processed by an object a mechanism is requiegliate
access. This is necessary to provide the transaction property of isoldt@n.
Concurrency Control Service is one possibiplementation of a locking service.

The Transaction Service depends upon the Concurrency Control Service in the
following ways:

« Concurrency Control Service musipport transaction duration locks, which
provide isolation of concurrent requests by diffetteahsactions.

» Concurrency Control Service must record transaction duration locks on persistent
media, such as a log, as part of the prepare phasenuhitment.

« If nested transactions are supported by the Transaction Service then the
Concurrency Control Service must also support locks that praostddiation

between siblings in a traaction family angrovide inheritace of locks owned
by a subransaction to its parent when the subtransamiiomits.

2-10 CORBAservices: Common Object Services Specification

2

» Transactional clients of thed@currency Control Service are responsible for
ensuring that all locks held by a transaction are dropfied all reovery or
commitment operationisave taken place. The drop-licks operation is provided by
the LockCoordinator interface for this purpose.

The Transaction Service supports atomicity and durability properties through the
Persistent Object Service (POS). The Transa@envice can work wh the POS to

support atomic execution of operations on persistent objects. Transactions and
persistence arpot provided by the same service. When coordinatiomfiple state
changes are required to persistent data, a persistence service requires a transaction
service. The POS can provigersistence, but its implementatineeds to be changed

to support transactional behavior. There are no changes to the interfaces of the POS to
support transactions. The following discussion appliesipport ofpersistence wen a
transaction service is required.

Supportfor persistence can be built from other specialized services that can also be
shared by other object services. Examples include:
* Recovery service: this supports taemicity and durability properties.
» Logging service: this is used by the recovery servicassist insupporting the
atomicity and durabilityproperties. It is also used by the Transaction Service to
support the two-phassommitprotocol.

» Backup and restore service: this supportsisoéation property.

This view is consistent with the X/Open DTP (Distributed Transaction Processing)
model which separates the transaction manager service (i.e. the implementation of a
generalized two-phassmmit protocol) from aasource manager that provides
services for data with a life beyond process execution. @dnsits both transactions

on transient objects and on persistent objects without transactions.

2.5.7 Concurrency Contrdervice

The Concurrency Control Service does not depend on any other service per se.
Nevertheless, it is designed to work with the Transaction Service.

2.5.8 Query Service

The Query Service does not depend on other service but is closely related to these
Object Services: Life Cycle; Persistent Object; RelationshgmcGrrency ©ntrol;
Transaction; Propertygnd Mllection.

2.5.9 Licensing Service

The Licensing Service depends on the Event Service. It may depend on the Relationship,
Property, and Query Services for som@liementatns. This dependency is determined

by an implementation’s policy definition and entry daifiy. The Licensing Service also
depends on the Security Service, because the Licensing Service interface can use unforge
able and secure events. The Licensing Service will use Security Setgitacies to sup-

port the requirements addressed by the challenge misaina

General Design Principles Service Dependencies July 1997 2-11

2.5.10 Property Service

The Property Service does not depend upon atheiices; haever, it is closely
related to Collection Service.

2.5.11 Time Service

The Time Service does not depend upon other services.

2.5.12 Security Service

The Security Service does nagpend upon other services.

2.5.13 Trader Service

The Trader Servicdoes not depend upon other services.

2.5.14 Collections Service

The Collections Serviceads not depend upon othegrvices; however, itis closely
related to these servica&Soncurrency, Naing, Persistent Object, Properand Query.

2.6 Relationshipto CORBA

This section provides information about the relationship of other services to the
CORBA specification.

2.6.1 ORB Interoperability Considerations: Transactionvide

Someimplemenéations of the Transaction Service will support:

® The ability of a singlepplication to use both object and procedural interfaces to the
Transaction Service. This is described as part of the specification, particularly in the
sections “The User’s View” and’he Implementor’s View.”

® Theability for differentTransaction Service implementations to interoperate across
a single ORB. This is provided as a consequence of this specification, which defines
IDL interfaces for all interactions between Tsagtion Service implementations.

® The ability for the same Transaction Service to interoperate with another instance of
itself across different ORBs. (This ability is supported by the Interoperability
specification of CORBA 2.0.)

® The ability for different Transaction Services implementations to interoperate across
different ORBs. (This ability is qaported by the Interoperability specification of
CORBA 2.0.)

2-12 CORBAservices: Common Object Services Specification

2

® A critical dependency for Transaction Service interoperation across different ORBs

is the handling of theropagation_context between ORBs. This includes the

following:

« Efficient transformation beteen different ORB representations of the
propagation_context

» The ability to carry the ID information (typically an/@pen XID) between
interoperating ORBs.

» The ability to do interposition tonsure efficient local execution of the
is_same_transaction operation.

2.6.2 Life Cycle Seice

The Life Cycle Service assumes CORBA implementat&unsport object relocation.

2.6.3 Naming Swice

Entities thatare not CORBA objects - that is to say, not objects accessed via an Object
Request Broker - are used for names (in the guise of pseudo objects). In both cases the
interfaces to these entities conformcéssely as possible to OMG IDL while satisfying

the specific service design requirements, in order to emaéjemum flexibility in the

future. Specifically, in the Naming Service, name objects are psghjdots with

interfaces defined in pseudo IDPIDL). Theseobjects look like CORBA objects but

are specifically designed to becessed using a programming language binding. This is
done for reasons based on the expected use of these objects.

2.6.4 Relationship $ece

The Relationship Service requires CORBA Interface Repositories to suppalilibe
to dynamically determine if an InterfaceDef conforms to another Inefef; that is,
if it is a subtype. This is neededitoplement type constraints for particular
relationships.

2.6.5 Persistent Object Service

The Persistent Obje&ervice requires CORBA Interface Repositories.

2.6.6 General Interoperability Requirements

Interoperabilitybetween Object Services and users of Object Services implemented on
different ORBs requires common RepositorylDs be used to identify types in both
systems.The typesdentified by these RepositorylDs must also be consistently
defined. As described in Common Object Request Brokeghifectureand

Specification, Pragma Directives for Repositorys&ttion, all CORBAservice IDL
presented in this specificationimaplicitly preceded at filscope by the following
directive:

#pragma prefix “omg.org”

General Design Principles Relationshipto CORBA July 1997 2-13

Object Service Implementations that choose to extend the staindenfdces must do
so by deriving new interfaces rather than by modifying the standard interfaces.

2.7 Relationship to Object Model

All specifications contained in this manual conform to the OMG Object Model. No
additional components qrofiles are required bgny service.

2.8 Conformance to Existing Standards

In general, existing relevant standards do not have object-oriented interfaces nor are
they structured in a form that is easily mappedhlects. These specificatiohsve

been influenced by existing standards, and services have been designed which
minimize the difficulty of encapsulating supporting software. The naming service
specification is believed to be compatible with X.500, DCE GID8 ONC NIS and

NIS+.

These spcifications areébroadly conformant temerging ISO/IE/CCITT ODP
standards:
» CCITT Draft Recommendations X.900, IBBC 10746 Basic Reference Model
for Open Dstributed Computing
* ISO/IEC JTC1 SC21 WG7 N743dkking Document on Topic 9.1 - ODP Trader

2-14 CORBAservices: Common Object Services Specification

Time Service Specification 14

14.1 Introdudcion

14.1.1 Time Service Bairements

The requirements explicitly stated in the RFP ask for a service that enables the user to
obtain current time together with an ergstimate associated with it.

Additionally, the RFP suggests that the service also provide the folldailiies:
® Ascertain the order in which “events” occurred.
® Generatdime-based events based on timers and alarms.

® Compute the interval between two events.

Although the RFP mentions spcation of a synchronization mechanism, the
submitters deemed it inappropriate to specify a sisgtd mechanism as discussed in
Section 14.1.3, Source ofriie.

14.1.2 Representation of Time

Time is represented many ways in programs. For examplg/@egen DCE Time

Servie [1] defines three binary representations of absolute time, while the UNIX

SVID defines a different representation of time. Other systems use time represented in
myriads of different ways. It is not a goal of the service defined in this submission to
deal with all these different representations of time grropose a new unifying
representation of time.

To satisfy the set of requirements that are addressed, we have chosen to use only the
Universal Time Coordinated (UTC) representation fromXt@pen DCE Tim&ervice

Global clock synchronizatiotime sources, such as the UTC signals broadcast by the
WWV radio station of the National Bureau of Standards, detimee, which is

relatively easy to handle in this representation. Uir@etis defined as follows.

CORBAservices: Common Object Services Specification 14-1

14

14-2

Time units 100 nanoseconds (10 7 seconds)
Base time 15 October 1582 00:00:00.
Approximate range AD 30,000

UTC time in this service specificaticalways refers tdime in Greenwch Time Zone.
The corresponding binary representations of relative is the same one as for
absolute time, and hence with den characteristics:

Time units 100 nanoseconds (10 7 seconds)

Approximate range +/- 30,000 years

In order to ease implementation on existing systems, migration fromahem
interoperation with them, care hbsen taken to ensure that the representation of time
used interoperates witk/Open DCE Time Servid&], and that the operation for

getting current time is easy to implementX®pen DCE Time ServichTP [2] (and

for that matter any other reasonable distributed time synchronization algorithm that one
might come up with, e.g. ones presented in [3thwppropriate values for

inaccuracies.

14.1.3 Source of Time

The services defined in this chaptEpend on thavailability of an underlying Time
Service that obtains and synchronizes time as required to provide a reasonable
approximation of the current time to these services. The following assumptions are
made about the underlyingnte synchronization service:

® The TimeService is able to return current time with an associated error parameter.

® Within reasonable interpretation of the terms, the Time Service is available and
reliable. The ime provided by the underlying service can be trusted to be within the
inaccuracy window provided by the underlyiagstem.

®* The tme returned by the Time Service is from a monotonically increasing series.

Additionally, if the underlying Time Service meets ttréteria to befollowed for
secure time presented in AppendixlAplementaibn Guidelines, then the Time
Service object is able to provide trustaud.

No additional assumptions are made about how tlenying service obtains the time

that it delivers to this service. For example it couldize arange of techniques

whether it be using a Cesium clock attached to each node or some hardware/software
time synchronization method. It is assumed that theeulging service may fail
occasionally. This is accounted for by providing an appropriate exceptjuartsf the
interface.The availability and accuracy of trusted time dede on what is provided by

the underlying Time Service.

CORBAservices: Common Object Services Specification

14

14.1.4 General Object Model

The general architectural patteused is that a service object manages objects of a
specific categry as shown in Figure 14-1.

Instances nmeaged by

the Service Object Q

. \

Instance -
Interface ~

‘ Service
‘ > Object

Service Interface

Figure 14-1 General Object Model for Service

The service interface provides operations for creating the objects that the service
manages and, if appropriate, also providpsrations for getting rid of them.

The Time Service object consists of two services, and hence defines two service
interfaces:

®* Time Service manages Universal Time Object§ Q$) and Time Irdrval Objects
(T10s), and is represented by thieneServicenterface.

® Timer Event Service magas Timer Event Handler objecemnd is represented by
the TimerEventServicaterface.

The underlying facility that delivers time is associated withUheversalTime and
SecureUniversalTime operation of th&imeServicenterface as described in
Section 14.2, Basic Timee®vice.

Time Service:v1.0 Introduction July 1997 14-3

14

14.1.5 Conformance Points

There are two conformance points for this service.

® Basic Time ServiceThis service consists of all data types and interfaces defined in
the TimeBase and CosTime modules gcton 14.2, Basic Timeesvice. It
provides operations for getting tinaexd manipulating the. A complete
implementation of the TimeBase and the CosTime modules is necessary and
sufficient to conform tdhe Time Service object standard. An ispentation of the

CosTime module in which theniversal_time operation always raises the
TimeUnavailable exception is not acceptable for satisfying this conformance
point.

* Timer Event ServiceThis service consists of all data types and interfaces defined in
the CosTimerEvent module in Section 14.3n&i Event Service. It provides
operations for managing time-triggered event handlers and the events that they
handle. A complete implementation of this module is necessary to conform to the
optional Timer Event Service component of the Time Service object. Since the
CosTimerEvent module depends on the CosTime module, it is not possible to
conform just to the Timer Event Service without conforming to Basic Time Service.
To claim conformance to Timer Event ServicettbTimer Event Service and Time
Service must be provided.

14.2 Basic Time Service

14-4

All data structures pertaining to the basic Time Service, Universal Time Object, and
Time Interval Object are defined in the TimeBase module so that other services can
make use of these data structures without requiring the interface definittons.
interface definitions and associated enums and exceptions are encapsulated in the
CosTime module.

14.2.1 Object Model

The object model of this service is depicted in Figl4e2. TheTime Service object
manages Universalie ObjectUTOs)and Tme Interval Objects (0s). It does so

by providing methods for creating UTOs and TIOs. Each UTO represents a time, and
each TIO represents ine interval, and reference to each can be freely passed around,
subject to the caveats discussed in Appendix A, Implementation Guidelines.

CORBAservices: Common Object Services Specification

14

@ TIO interface
|

spans #
N time |
AN overlap
—’—» N time_interval | /
. N | /
UTO interface - N /
absolute _time ~_ N | y
compare_time ~ |
interval NN !
time \
inaccuracy
tdf
utc_time
{ -

TimeService interface
universé time
secure_universal_time
new_universal_time
uto_from_utc
new_interval

Figure 14-2 Object Model for Time Service

14.2.2 Data Types

A number of types and interfaces are defined and usedHi®gervice. All definitions

of data structures are placed in the TimeBase module. All interfaces, and associated
enum and exception declarations are placed in the CosTime module. This separation of
basic data type definitions from interface related definitions allows other services to
use the time data types without explicitly incorporatingititerfaces, while allowing

clients of those services to use the interfaces provided by the Time Service to
manipulate the data used by those services.

module TimeBase {

typedef unsigned long long TimeT;

typedef TimeT InaccuracyT,;
typedef short TdfT;
struct UtcT {
TimeT time; /I 8 octets
unsigned long inacclo; /I 4 octets
unsigned short inacchi; // 2 octets
TdfT tdf; /I 2 octets
/I total 16 octets.
3

struct IntervalT {
TimeT lower_bound;

Time Service:v1.0 Basic Time Service July 1997 14-5

14

TimeT upper_bound;

Type TmeT

TimeT represents a single tinvalue, which is 64 bits in size, and holds the number
of 100 nanoseconds that have passed since the base time. For absolute time the base
15 October 1582 00:00.

TypelnaccuracyT

InaccuracyT represents the value of inaccuracy in time in units of 100
nanoseconds. As per tldefinition of the inaccuracfield in the X/Open DCE Time
Service[1], 48 bits is sufficient to hold this value.

Type TdfT

TdfT is of size 16 bits short type and holds the time displacement factor farthe
of minutes of displacement from the&gnwich Meridian. Displacements East of the
meridian are positive, while those to the West are negative.

TypeUtcT

UtcT defines the structure of the time value thaised universally in this service.
The basic value of time is of tygeémeT that is held in the time field. Whether a
UtcT structure is holding a relative or absolute time is determined by its histare

is no explicit flag within the objedtolding thatstate information. Theiacclo and
inacchi fields together hold a 48-bit estimate of inaccuracy irtithe field. These
two fields together hold a value of typgaccuracyT packed into 48 bitsThe tdf

field holds time pneinformation. Implementation must place the time displacement
factor for the local time zone in this field whenever they create a UTO.

The contents of this structure are intended t@ba&gue, but in order to be able to
marshal it correctly, at least the types of fields need to be identified.

TypelntervalT

This type holds a time interval represented as TimeeT values corresponding to the
lower and upper bound of theterval. AnlintervalT structure containing a lower

boundgreater than the upper tiod is invalid. For the interval to be meaningful, the
time base used for the weer and upper bounthust be the same, and the time base

itself must not bespanned by the interval.

module CosTime {
enum TimeComparison {
TCEqualTo,
TCLessThan,

14-6 CORBAservices: Common Object Services Specification

14

TCGreaterThan,
TClindeterminate

k

enum ComparisonType {
IntervalC,
MidC

%

enum OverlapType {
OTContainer,
OTContained,
OTOverlap,
OTNoOverlap

k

Enum ComparisonType

ComparisonType defines the two types of time comparison thatsaygported.
IntervalC comparison does the comparison taking into account the error envelope.
MidC comparison just compares the base timeMidC comparison can never return
TClIndeterminate

Enum TimeComparison

TimeComparison defines the possible values that can be returned as a result of
comparing two UTOs. The values are self-explanatory. lim@mvalC comparison,
TClindeterminate value is returned if the error envelopes around the itwest
being compared overlap. For this purpose the error envelope is assumed to be
symmetricallyplaced around the base time coveriimge-inaccuracy to
time+inaccuracy. FointervalC comparison, two UTOare deemed to contain the
same time only if the Time atttitbe of the two objects are equal and the Inaccuracy
attributes of both the objects are zero.

Enum OverlapType

OverlapType specifies the type of overlagetween two time intervals. Figure 14-3
depicts the meaning of the four values of this enWhen interval A wholly contains
interval B, then it is a®TContainer of interval B and the overlap interval is the
same as the interval B. When interval B whollyntains interval A, then interval A is
OTContained in interval B and the overlap region is the same as interval A. When
neither interval is wholly contained in tlo¢gher but they overlap, then t@& Overlap

case applies and the overlap region is the length of interval that overlaps. Finally, when
the two intervals do not overlap, t@ETNoOverlap case applies.

Time Service:v1.0 Basic Time Service July 1997 14-7

14

Interval A

\ \ \ [\ —
Interval B | | 1 1 | 1 | 1
OTContaineiO TContained OTOverlap OTNoOverlap

Figure 14-3 lllustration of Interval Overlap

14.2.3 Exceptions

This service returns standard CORBA exceptions where specified in addition to the
service-specific exception described in this section.

module CosTime {
exception TimeUnavailable {};

}

TimeUnavailable

This exception is raised when the underlying trusit®e servicefails, or isunable to
provide time thameets theequired security assurance.

14.2.4 Universal Time Object (UTO)

The UTO provides various operations on basic time. These include the following
groups of operations:

® Construction of a UTO from piece parémd extraction of piece parfiom a UTO
(as read only attributes).

® Comparison of time.

® Conversion from relative to absolute time, ammhversion to an interval.

Of these, thdirst operation is required for completss, since in its absence it would
be difficult to provide a time input to the timer event handler, for example. The second
operation is required by the RFP, and the third is required for completeness and

usability.
module CosTime {
interface TIO; /I forward declaration
interface UTO {
readonly attribute TimeBase::TimeT time;

readonly attribute TimeBase::InaccuracyTinaccuracy;,
readonly attribute TimeBase::TdfT tdf;

readonly attribute TimeBase::UtcT utc_time;

UTO absolute_time();

TimeComparison compare_time(

14-8 CORBAservices: Common Object Services Specification

14

in ComparisonType comparison_type,
in uTo uto

);

TIO time_to_interval(
in uTo uto

);

TIO interval();

TheUTO interface corresponds to an object that contatos time, and is the means

for manipulating the time contained in the object. This interfeceorations for

getting aUtcT type data structure containing the current value of time in the object, as
well as operations for getting the values of individual fieldsitof time, getting

absolute time from relative timand comparing and doing bounds operations on
UTOs. TheUTO interface does not provide anperation for modifying the time in the
object. It is intended that UTOs are immutable.

Readonly attribute time

This is thetime attibute of a UTO represented as a value of tJjpeeT.

Readonly attribute inaccuracy

This is the inaccuracgttribute of a UTCOrepresented as a value of type
InaccuracyT

Readonly attribute tdf

This is the time displacement factor attribtdé of a UTO represented as a value of
type TdfT .

Readonly attribute utc_time

This attribute returns @roperly populatedJtcT structure with data corresponding to
the contents of the UTO.

Operation absolute_time

This attribute returns a UTO containittge absolute time corresponding to the relative
time in object. Absolute time = current time + time in the object. Raises
CORBA::DATA_CONVERSIOMNXxception if the attempt to obtain absoltitee

causes an overflow.

Time Service:v1.0 Basic Time Service July 1997 14-9

14

14-10

Operation compare_time

Compares the time contained in the objeithwhe tme given in the input parameter
uto using the comparison type specified in the parametecomparison_type
and returns the result. See the descriptioffliofeComparison in Section 14.2.2,
Data Types, for an explanation of the resBte the explanation of

ComparisonType in Section 14.2.2 for an explation of comparison pes. Note
that the time in the object is always used as itts¢ farameter in the comparison. The
time in theutc parameter is used as the sed parameter in the comparison.

Operation time_to_interval

Returns arlO representing the time intervhétween the¢ime in the objecand the

time in the UTOpassed in the parametatio . The interval returned is the interval
between the midpoints of the two UT@sd the inaccuracies in the UTOs are not taken
into consideration. The result is meaningless if the time base used by the two UTOs are
different.

Operation interval

Returns arlO representing the error interval aral the ime value in the UTO as a
time interval. TIO.uper_bound = UTO.time+UTO.inaccuracy. TIO.lower_bound =
UTO.time - UTO.inaccuracy.

14.2.5 Time Interval Object (TIO)

The TIO represents a time interval and contains operations relevamietintervals.
module CosTime {
interface TIO {
readonly attribute TimeBase::IntervalT time_interval;

OverlapType spans (

in UTO time,
out TIO overlap
);
OverlapType overlaps (
in TIO interval,
out TIO overlap
);
UTO time ();

Readonly attribute time_interval

This attribute returns amtervalT structure with the values of its fields filled in
with the correspnding values from the TIO.

CORBAservices: Common Object Services Specification

14

Operation spans

This operation returns a value of typeerlapType depending on how the interval
in the object and the time range represented by the paraudiE@overlap. See the
definition of OverlapType in Section14.2.2, [ata Types. The interval in the object
is interval A and the interval in the parametfrQOis interval B. IfOverlapType is
not OTNoOverlap , then theout parameter overlap contains the overlap interval,
otherwise theout parameter contains tlgap between the two intervals. The
exceptionCORBA::BAD_PARAMs raised if the UTO passed in is invalid.

Operation overlaps

This operation returns a value of tyPeerlapType depending on how the interval
in the object and interval in the parameté® overlap. See thdefinition of
OverlapType in Sectionl4.2.2, [ata Types. Théanterval in the object is interval A
and the interval in the paramefBEIO is interval B. IfOverlapType is not
OTNoOverlap , then theout parameter overlap contains the overlap interval,
otherwise theut parameter contains tlgap between the two intervals. The
exceptionCORBA::BAD_PARAMs raised if theTlO passed in is invalid.

Operation time

Returns a UTO in which the inaccuracy interval is equal to the time interval in the ITO
and time value is the midpoint of the interval.

14.2.6 Time Service

The TimeServicanterface provides operations for obtaining the current time,
constructing a UTO with specified values for each attribute, andtrecting a TIO
with specified uppeand lower bounds.

module CosTime {
interface TimeService {
UTO universal_time()
raises(TimeUnavailable
);
UTO secure_universal_time()
raises(TimeUnavailable

);
UTO new_universal_time(
in TimeBase::TimeT time,
in TimeBase::InaccuracyT inaccuracy,
in TimeBase:: TdfT tdf
);
UTO uto_from_utc(
in TimeBase::UtcT utc
);

Time Service:v1.0 Basic Time Service July 1997 14-11

14

14-12

TIO new_interval(
in TimeBase::TimeT lower,
in TimeBase::TimeT upper

Operation universal_time

Theuniversal_time operation returns the current time and an estimate of
inaccuracy in a UTO. It raisé@meUnavailable exceptions to indicate failure of

an underlying time provider. The time returned in the UTO by this operation is not
guaranteed to be secure or trusted. If any time is available at all, that time is returned
by this operation.

Operation secure_universal_time

Thesecure_universal_time operation returns the current time in a UTO only

if the timecan be guaranteed to have been obtained securely. In order to make such a
guarantee, the underlying Time Service must meet the criteria to be followed for secure
time, presented in ppendix A,Implementaibn Guidelines. If there is any uncertainty

at all about meeting any aspect of these criteria, then this operation must return the
TimeUnavailable exception. Thus, time obtained throutiis operation can

always berusted.

Operation new_universal_time

Thenew_universal_time operation is used for ostructing a new UTO. The
parameters passed in are the time of JipeeT andinaccuracy of type

InaccuracyT . This is the only way to create a UTO with an arbitrary time from its
components. This is expected to be used for building UTOs that can be passed as the
various time arguments to the Timer Event Service, for example.
CORBA::BAD_PARANMs raised in the case of an out-of-range parameter value for
inaccuracy

Operation uto_from_utc

Theuto_from_utc operation is used to create a UTO given a time irltted

form. This has a singl|m parameter UTC, which contains a time together with
inaccuracy andtdf . The UTOreturned is initialized with the values from the UTC
parameter. This operation ised to comert a UTC received over the wire into a UTO.

Operation new_interval

The new_interval operation is used to construct a new TIBe parameters are
lower andupper , both of typeTimeT, holding the lower and upper bounds of the
interval. If the value of théwer parameter is greater than the value ofupper
parameter, then @ORBA::BAD_PARAMXxception is raised.

CORBAservices: Common Object Services Specification

14

14.3 Timer lzent Service

The module CosTimerEvent encapsulates all data ayjkinterface definitions
pertaining to the Timer Event Service.

14.3.1 Object Model

The TimerEventService object managésdr Event Handlers represented by Timer
Event Handler objects ahown inFigure 14-4. Each Timer Event Handler is
immutably associated with a specific evehainnel at the time of itsreation. The
Timer Event Handler can be passed around as any other object. It can be used to
program the time and content of the events that will be generated on the channel
associated with it. The user of a Timevent Handler is expected to notify themBr
Event Service when it has no further use for the handler.

Timer Events Timer Event Handler Objects

OO0

‘ N \ |
—
Timer Event Handler ~
Interface ~
set_timer ~
cancel_timer
set_data
status
time_set

- Timer Event Service

Timer Event Service Interface

register
unregister
event_time

Figure 14-4 Object Model of Timer Event Service

14.3.2 Usage

In a typical usage scenario of this service, the user must first create an event channel of
the “push” type (se€ORBA Service: Event Service Specifica{iGhapter 4]). The

user must then register this event channel as the sink for events generatedrbgrthe t
event handler that is returned by tegistration operation. The usean then use the

Time Service:v1.0 Timer Event Service July 1997 14-13

14

14-14

timer event handler object to set up timer events as desired. The service will cause
events to be pushed through the event channel within a reasamablal around the
requested event time. The implementor of the service will document what the expected
interval is for their implementation. The data associated with the event includes a
timestamp of the actuavent time with the error envelope including the requested
event time.

14.3.3 Data Types

All declarations pertaining to this service is encapsulated in the CosTimerEvent
module.

module CosTimerEvent{
enum TimeType {

TTAbsolute,
TTRelative,
TTPeriodic
k
enum EventStatus {
ESTimeSet,
ESTimeCleared,
ESTriggered,
ESFailedTrigger
k
struct TimerEventT{
TimeBase::UtcT utc;
any event_data;
k
3
Enum TimeType

TimeType is used to specify whether a timeTi$Relative , TTAbsolute , or
TTPeriodic in operations for setting timer intervals for neent-triggering
mechanismThe TTRelative value is used to specify that the time provided is
relative to current time[TAbsolute is used to spcify that the timgorovided is

absolute, and TPeriodic is used to spcify that the time pvided is a period (and
hence a relativéime) between successive eventsTIFPeriodic is used, then the

same event continues to be triggered repeatedly at the completion of the time interval
specified, until the timer is reset.

Enum EventStatus

EventStatus defines the state of BEimerEventHandler object. The state
ESTimeSet means that the event has been set wiima in the future, and will be
triggered when that timarrives.ESTimeCleared means that the event is not set to
go off, and the time waseadred before the previously set triggering tiamgved.

CORBAservices: Common Object Services Specification

14

ESTriggered means that the event has already triggered and the appropriate data
has been sent the event chan&SFailedTrigger means that the event did
trigger, but data could not be delivered over the event channel.

In case ofT TPeriodic events, the statusSTriggered never occurs. Upon
successful triggering of @TPeriodic event, the status is setESTimeSet .

Type TmerEventT

This is the structure that is returned to the event requester by the time-driven event-
triggering mechanism. It has two fields. The first fialt;; , contains the actual time at
which the event was triggered. This value is set in the time fieldcof The

inaccuracy fieldsnacclo andinacchi of utc are set to the difference between
the requested event time and the actual event time.

The second fieldevent_data , contains the data that the requester of the event had
asked to be sent when the event was triggered.

14.3.4 Exceptions

Timer Event Service raises standard CORBA exceptions as specified in OMG IDL for
the service. It does not have any service-gjpeekceptions.

14.3.5 Timer Event Handler

Timer Event Handlersare created and managed by theédr Event Service. A
TimerEventHandler object holds information about an event that is to be
triggered at a specific time and action that is to be takemnvthe event is triggered. It
provides oprations for setting, resetting, and canceling the tement associated with
it, as well as for changing the event data that is sack bs a part of @imeEventT
structure on the event channglon the triggering of the event. The only thing that
cannot be changed is the event channel associated with that event handleibaie at
namedstatus holds the current status of the event handler.

module CosTimerEvent {
interface TimerEventHandler {

readonly attribute EventStatus status;
boolean time_set(
out CosTime::UTO uto
);
void set_timer(
in TimeType time_type,
in CosTime::UTO trigger_time

boolean cancel_timer();
void set_data(
in any event_data

Time Service:v1.0 Timer Event Service July 1997 14-15

14

Attribute status

status is a readonly attribute that reflects the current state of the
TimerEventHandler . See thalefinition of EventStatus enumerator in Section
14.3.1, bject Model, for details.

Operation time_set

ReturnsTRUE:If the timehas been set for an event that is yet to be trigg&dSE
otherwise. In addition, it always returns the current value ofithertin the event
handler as theut uto parameter.

Operation set_timer

Sets the triggering time for the event to the time specified byttheparameterwhich
may containTTRelative , TTAbsolute or TTPeriodic time. Thetime_type
parameter specifies what type of time is contained irutbe parameter. The previous
trigger, if any, is cancelednd a new trigger is enabled at the timedfed if

absolute , or at current time + time specifiedri¢lative . If arelative time
value of zero is specified (i.e. the time attributeitwf= OLL), thenthe lastrelative
timethat was specified is reused. If redative time was previously sgified, then

a CORBA::BAD_PARAMXxception igaised. If aperiodic time is specified
(time_type == periodic), then the time parameter is interpretedelatave time
and the time trigger is set at the periodicity defined by the time (i.e. at current time +
time, current time + 2 * time, etc.).

Operation cancel_timer
Cancels the trigger if one had been set and had not gone off yet. RERUWESf an
event is actually canceleBALSE otherwise.
Operation set_data
The data that will be passed back through the event channdlimeaEventT
structure for all future triggering of the event handler is sevent_data
14.3.6 Timer Event Service
The TimerEventService provides operations for registering and unregistering events.

module CosTimerEvent {
interface TimerEventService {

TimerEventHandler register(
in CosEventComm::PushConsumer event_interface,

in any data
);
void unregister(
in TimerEventhandler timer_event_handler

14-16 CORBAservices: Common Object Services Specification

14

14.4 Conformance

);
CosTime:UTO event_time(
in TimerEventT timer_event

Operation register

Theregister operation registers the event handler specified bylthe and the
event_interface parameters. When the event handler is triggered, the data is
delivered using th@ush operation (of thePushConsumeinterface inChapter 4,

Event Service SpecificationeStion 4.3, ©sEventComm Module) specified in the
event_interface parameter. Only thBushModelis supported for timer event
delivery. Note that the event handler needs to be primed with a triggemiagsing

the set_time operation of thelimerEventHadler interface in order for an actual
event to be triggered. Anitialization, the time in the handler is set to current time and
its state is set t&STimeCleared , and no event is scheduled. Raises
CORBA::NO_RESOURCE&xception if lack of resources causes it to fail to register the
event handler.

Operation unregister

The unregister operation notifies the service that ttimer_event_handler
will not be used any more and all resources associaitdditwcan be destroyed.
Subsequent attempts to use that object reference will C&BA::INV_OBJREF

Operation event_time

Theevent_time operation returns a UTO containing the timevhich the event
contained in thdimer_event structure was triggered.

It is sufficient to provide just theiffie Service (module TimeBase and CosTime) to
claim conformance with the Time Service object as described in Sdetihrb,
Conformance Points. To claim conformance with the Timer Event Service, both Time
Service and Timer Event Service (mod@esTimerEvent) must be provided.

In order to conform to the Basic Time Service, the semantics of the
secure_universal_time operation must be strictlgdhered to. In order to return
a valid time from this operation, the vendor must provide a statesbent how the
security assuranagriteria specified in Apendix A, Implementation Guidelines, are
met in their praluct. To conform to the objecirie Service, inall other cases, i.e.
when the security assuranceteriaare notsatisfied, the

secure_universal_time operation must raise tiEmeUnavailable

exception.

Time Service:v1.0 Conformance July 1997 14-17

14

Appendix A

Al

Introduction

Implementation Guidelines

This appendix contains advice to implementors. Appropriate documented handling of
the criteria presented here is mandatory for conformance to the Basic Time Service
conformance point.

A.2 Ciriteriato Be Folbwed for Secure Time

14-18

The following criteria must be followed in order to assure that the time returned by the
secure_universal_time operation is in fact secure time. If these criteria are not
satisfactorily addressed in an ORB, then it must returimeUnavailable

exception upon invocation of treecure_universal_time operation of the
TimeServicenterface.

Administration of Time

Only administrators authorized by the system security policy may sétithend
specify the source of time for time synchronization psgs.

Protection of Operations and Mandatory Audits

The following types of operations must be protected against unauthorized invocation.
They must also be mandatorily audited:

® OQOperations that set or reset the curteme
® OQOperations that designate a tis@urce as authoritative

® Operations that modify the accuracy of tiee service or the uncertainty interval
of generated timestamps

Synchronization of Time

Synchronization of time must kensmitted over thaetwork. This presents an
opportunity for unauthorized tampering with time, which must be adequately guarded
against. Time Service implementors must state how time vakess fortime
synchronization are protected while they are in transit oveneheork.

Time Service implementors must state whether or not their implementation is secure.
Implementors of secure time services must state how their system is secured against
threats documented i@hapter 15, 8curity Service Specificatiom.hey must also
document how the issues memigal inthis section are addressed adequately.

CORBAservices: Common Object Services Specification

14

A.3 Proxiesand Time Uncedinty

Caller

gettime

The Time Service object returns a timestamp, which contains both amighen

associated uncertainty interv@hese values are considered valid at the instant they are
returned by the Time Service object; however, if these values are not delivered to the

caller immmediately, they may no longer be reliable by iime the caller receives them.

In a CORBA system, the use of proxy objects can renner values unreliable by
introducing unpredictabland uncorrected latency between the time the time server
object generates a timestamp and the timectiler’s time serveproxy receives the
timestampand returns it to thealler (see~igure 14-5 below).

Time=x;intervak3sec
(delivered at timex+y -- y may be greater than 3sec)

~
\ Time=x;interval=3sec

(delivered at time x)
N

Time
Service

Figure 14-5 Time Service and Proxies
Implementors of the Time Service must prevent gingblem from occurring. Two
possible ways of preventimgoxy latencyare:

® Prohibit proxies of the time server object (i.e. require a Time Service
implementation in every address space that will need to miake Service calls).

® Create a special time serveroxy, which measures latency between the Time
Service object and the proxy, recalculates the time interval's uncertdtgdjusts
the interval value before returning ttimestamp tahe caller.

Other approaches probably sixithe two above are intended as examplds.

Time Service:v1.0 Conformance July 1997 14-19

14

Appendix B

B.1 Introduction

B.2 Time Service

14-20

Consolidated OMG IDL

This appendix contains a summary of the OMG IDL defined in this document.

This section contains the OMG IDL definitions pertaining to the Time Service, which
is encapsulated in the TimeBase and CosTime modules. The TimeBase module
contains the basic data type declarations that can be used by others without pulling in
the Time Service interfaces. THene Servicenterfaceand associated enums and

exceptions are declared in the CosTime module.

module TimeBase {

typedef unsigned long long

typedef TimeT

typedef short

struct UtcT {
TimeT
unsigned long
unsigned short

TdfT

3

struct IntervalT {
TimeT
TimeT

module CosTime {

enum TimeComparison {
TCEqualTo,
TCLessThan,
TCGreaterThan,
TClIndeterminate

b

enum ComparisonType{
IntervalC,
MidC

k

enum OverlapType {
OTContainer,
OTContained,
OTOverlap,
OTNoOverlap

TimeT;
InaccuracyT,
TdfT;
time; /I 8 octets
inacclo; // 4 octets
inacchi; // 2 octets
tdf; Il 2 octets
// total 16 octets.
lower_bound,;

upper_bound;

CORBAservices: Common Object Services Specification

14

exception TimeUnavailable {};
interface TIO; /I forward declaration

interface UTO {

b

readonly attribute TimeBase::TimeTtime;

readonly attribute TimeBase::InaccuracyTinaccuracy;
readonly attribute TimeBase::TdfT tdf;

readonly attribute TimeBase::UtcT utc_time;

UTO absolute_time();

TimeComparison compare_time(

in ComparisonType comparison_type,
in uTo uto
);
TIO time_to_interval(
in uTo uto
);
TIO interval();

interface TIO {

b

readonly attribute TimeBase::IntervalT time_interval;
boolean spans (

in UTO time,
out TIO overlap
);
boolean overlaps (
in TIO interval,
outTIO overlap
);
UTO time ();

interface TimeService {

UTO universal_time()
raises(TimeUnavailable
);

UTO secure_universal_time()
raises(TimeUnavailable

);

UTO new_universal_time(
in TimeBase::TimeT time,
in TimeBase::InaccuracyT inaccuracy,
in TimeBase:: TdfT tdf

);

UTO uto_from_utc(
in TimeBase::UtcT utc

);

TIO new_interval(
in TimeBase::TimeT lower,
in TimeBase::TimeT upper

);

Time Service:v1.0 Conformance July 1997

14-21

14

B.3

14-22

Timer Bvent Service

This section contains all the OMG IDL definitions pertaining to the Timer Event
Service, which are encapsulated in the CosTimerEvent module. This module depends
on TimeBase, CosTim&osEventComm and CORBA.

module CosTimerEvent{
enum TimeType {
TTAbsolute,
TTRelative,
TTPeriodic
|3

enum EventStatus {
ESTimeSet,
ESTimeCleared,
ESTriggered,
ESFailedTrigger
h

struct TimerEventT {
TimeBase::UtcT utc;
any event _data;

h

interface TimerEventHandler {
readonly attribute EventStatus status;
boolean time_set(

out CosTime::UTO uto

);

void SetTimer(
in TimeType time_type,
in CosTime::UTO trigger_time

);
boolean cancel_timer();
void set_data(
in any event_data
);
3

interface TimerEventService {
TimerEventHandler register(
in CosEventComm::PushConsumer event_interface,

in any data
);
void unregister(
in TimerEventHandler timer_event_handler
);
CosTime:UTO event_time(
in TimerEventT timer_event
);

CORBAservices: Common Object Services Specification

14

Appendix C Notefer Users

C.1 Introduction

This appendix contains notes covering the followingterat
® Guarding against proxy-related inaccuraciesirime contained in UTO.

®* How to transmit time and time intervals across the network and recover the
corresponding UTO and TIO at the other end.

C.2 Proxiesand Time

As explained in Apendix B, Caisolidated OMG IDL, indiscriminate use of remote
proxies to obtain value of current time can lead to obtaining values of time in which
the inaccuracy is incorrect due to transmission delays. Consequently, care should be
taken to ensure that the local Time Service is used to obtain the value of current time.

C.3 Sending Time Across the Network

When passingmall objectssuch as UTO and TIO fromne location to another, one
should be aware that eatime thepassed object reference is used by the recipient it
causes an object invocation to take place across the network and is inherently
inefficient. The preferredvay of dealing with this problem is to pasmall objects by
value instead of by reference. Unfortunately, due to various reasons, OMG IDL does
not allow specification of passing of object parameters by valaesé&jently, the

user has to explicitly take action to avoid this problem.

The interfaces defined contain features that make it possible for the user to explicitly
send the value of time, and time interval across from one location to aaothénen
reconstruct th@ppropriate object at the receivingde This is done as follows:

® The sigrature of the operation that pass@se or time interval as a parameter
across the network should specify thiate is passed as the data type and not as an
object reference. For example, for passing universal time, a signature such as

void foo(in TimeBase::UtcT);

should be used instead of

void foo(in CosTime:UTO);

® The invoker should use the dattribute ofthe UTO as thén parameter. In
pseudo-code, something such asftilmwing should be done by the invoker:

CosTime::UTO uto = CosTime::universal_time();
foo(uto.data);

Time Service:v1.0 Conformance July 1997 14-23

14

14-24

® At the server end, the time data received can be converted to a UTO as follows:

foo(in TimeBase::UtcT utc) {
CosTime::UTO uto = CosTime:TimeService::uto_from_utc(utc);

3
It would be nice to say in the definition of the operation something such as:
foo(in byvalue UTO uto);

and have the system take care of doing essentially what is described Hiowever,
there are difficult model- and paradigm-related issues that need resolution before such
a change can be coherently proposed.

CORBAservices: Common Object Services Specification

14

Appendix D Extension Examples

D.1 Introduction

The process of constructing the contents dfraeBase::TimeT value can be quite
tedious, involving many 64-bihultiplicationsandadditions.The CORBAFacility for
Time Representation is going to provide u@mdly ways of creatinglimeT data
and displaying them. However, if one is planning to use only the Tenac®, it will
be necessary to construct some rudimentary facility to @uiteeT things. This
appendix shows one way of doing this as an example of how to etktisngkrvice in
useful ways.

D.2 Object Model

Following the desigmpatternused in the rest of this service definition, the basic
extension is to define @imel object corresponding to tAémeT structure, and
extendTimeService to provide an operation for creatisgch objects. Th&imel
object hasttributes corresponding to the uggendly representation ofrhe such as
year, month, day, hour, minute, sado microsecond, etc.

D.3 Summary of Extensions

The additions are encapsulated in the FriendlyTime modlile.changesre as
follows:

® Data type declaration for componentstiofe.
® Definition of theTimelinterface, consisting mostly of attributes.

® Definition of theFriendlyTime::TimeServicanterface derived from the
CosTire::TimeServicenterface, for adding the operation to cregifmel objects.

D.4 Data Types

The data types are self-explanatory for the purposes of setting up this example. A
complete specification should state more specific properties of each of these data
types.

module FriendlyTime {
typedef unsigned short YearT; // must be > 1581
typedef unsigned short MonthT; // 1 - 12
typedef unsigned short DayT; //1-31
typedef unsigned short HourT; // 0- 24
typedef unsigned short MinuteT; // 0 - 59
typedef unsigned short SecondT; // 0 - 59
typedef unsigned short MicrosecondT;

Time Service:v1.0 Conformance July 1997 14-25

14

D.5 Excepions

No exceptions are defined in this module.

D.6 Friendly Time Object

The time object provides a friendly interface to the various components usually used to
represent time in normal human discourse. The sattdbutes used in this example
are by no means exhaustive, and is used onliflfmstrative purposes.

module FriendlyTime {
interface Timel {

attribute YearT year;
attribute MonthT month;
attribute DayT day;
attribute HourT hour;
attribute MinuteT minute;
attribute SecondT second;
attribute MicrosecondT microsecond;

attribute TimeBase::TimeT time;
void reset(); // set all attributes to zero

h

TheTimel object can be viewed as a representation emignobject. The general
technique for using it is to create one using theration
CosFriendlyTime::TimeService::time introduced in Section D.7, Extended
Time Service. This createsTamel object withtime set to zero in itThen the_set
operationcan be used to set the values of the various attributes. Finally, the attribute
time can be used to get the correspondiiigeT value.

Conversely, one can sahy TimeT value in the timattribute and then get the year,
month, etc. from the appropriadtributes.

Thereset operation facilitateseuse of time objects.

D.7 Extended Time Service

14-26

CosTime::TimeService
creatingTimel objects.

is extended by derivation to provide areogtion for

module FriendlyTime {
interface TimeService : CosTime::TimeService {
Timel time();

b

CORBAservices: Common Object Services Specification

14

D.8 Epilogue

The extension provided in this appendix makes tiheeTService defined in the

normative part of the document more easily usable. This leads one to wond#nisvhy
extension is not part of the main body of this submission. The reason is that there is no
agreement on what the most useful representative components of tirmadatbe

feeling that in general this should beadtwith at the Common &cilities level in

general. We 4t felt that it would be useful tollustrate howeasy it is to extend the

basic service to provide this ease-of-use€ility, thus thisappendix.

Time Service:v1.0 Conformance July 1997 14-27

14

Appendix E

14-28

References

X/Open DCE Time Service, X/Open CAE SpecificatioB10, November 1994.
RFC 1119 Netwrk Time Protocol, D. Mills, Sstember1989.

Probabilistic ClockSynchramization,Flaviu Cristian, Distributed Computing (1989)
3: Pg. 146-158.

OMG IDL type Extensions RFP, Andrew Watson Ed., OMG Doc. No. 95-1-35.

CORBAServices: Common Object Service Specification, OMG Doc. No. 95-3-31,
March 31 1995evision, Chapter 4£vent Service Sgcification, Section 4.2
Pg. 4-6.

CORBAServices: Common Object Service Specification, OMG Doc. No. 96-10-1,
October 1996 revison, Chapter 15c8gty Service Specification.

CORBAservices: Common Object Services Specification

Object Collection Specification 17

This chapter provides complete documentation for tbe@ Collection Service
specification.

Contents

This chapter contains thfellowing sections.
Section Title Page
“Overview” 17-2
“Service Structure” 17-2
“Combined Collections” 17-10
“Restricted Access Collections” 17-14
“The CosCdlection Module” 17-15
Appendix A, “OMG Object Query Service” 71124
Appendix B, “Relationship to Other Relevant Standards” 17-133
Appendix C, “References” 17-138

CORBAservices: Common Object Services Specification 17-1

17

17.1 Overview

Collectionssupport the grouping of objects and support operations for the
manipulation of the objects as a group. Comrooltection types argueues, sets,

bags, maps, etc. Collection types differ in the “nature of grouping” exposed to the user.
“Nature of grouping” is reflected in the operations supported for the manipulation of
objects as members of a group. Collections, for example, can be oedel¢laus

support access to an element at position "i” while ottwlections maysupport
associativeaccess to elements via a key. Collections may guarantee the uniqueness of
elements while others allomultiple accurrences of elements. A user chooses a
collection type that matches the application requirements based on manipulation
capabilities.

Collectionsare foundation classes used in a broad range of applications; therefore, they
have to meet the general requirement to be able to collect elements of arbitrary type.
On the other hand, a collection instance usually is a homogendtiastion in the

sense thaall elements collected are of the same typesumport the same single
interface.

Sometimes yomay not want to do something to all elements in a collection, but only
treat an individual object or traverse a collection explicitly (mgtlicitly via a

collection operation). To enable this, a pointer abstraction often called an iterator is
supported with collections. For example, an iterator points to an element in a collection
and processes the element pointed to. Iterators can be moved and used to visit element
of a collection in an application defined manner. Thee be many iterators pointing

to elements of the same collection instance.

Normally, when operating on all elements of a collectigny want to pasaser-

defined information to the collection implementat®mout what to do with the
individual elements or hich elements are to be processed. To entide function
interfaces are used. A collectiomplementatiorcan rely on and use the defined
function interface. A user has to specialarel mplement these interfaces to pass the
user-defined information to the implementation. A function interfzarebe used to

pass element type specific information such as how to compare elements or pass a
“program” to be applied to all elements.

17.2 Service Structure

17-2

The purpose of an Object Collection Service is to provide a uniform way to
create and manipulate the ma@simmon collectiongeneically. The Object Service
defines three categories of interfaces to serve this purpose.

1. Collection interfacesandcollection factories A client chooses aollection
interface which dérs grouping prperties that match the client’s needs. A client
creates a collection instance of the chosen interface using a collection fedtery.
creating a collection, a client has to pass element type specific information such as
how to compare elements, how to test element equality, or the type checking
desired. A client uses collections to manipukdements as group. When a

CORBAservices: Common Object Services Specification

17

collection is no longeused it may be destroyed - this includes removing the
elements collected, destroying element type specific informatased, and the
iterators pointing to this collection.

2. Iterator interfaces. A client creates an iterator using the collection for which it is
created as factory. A client uses an iterator to traverse the collection in an
application defined manner, process elements pointed to, mark ranges, etc. When a
client no longer uses an iterator, it destroys the iterator.

3. Function interfaces A client creates user-defined specializations of these
interfaces using user-defined factories. Instances are passed to a collection
implementation when theollection is created (element type specific information)
or as a parameter of an operation (for example, code ¢éxdxmited for each
element of the collection). Instances of function interfaces are used by a collection
implementation rather than by a client.

17.2.1 Combined Property Collections

The Object Collection Service (or simply Collection Service) defined in this
specification aims at being a complete and differentiated offering of interfaces
supporting the grouping of objects. It enables a user to make a choicdaollbaring
the rule “pay only for what you use.” Withis goal in mind, a very systematic
approach was chosen.

Groups, or collections of objects, support operations and exhibit specific behaviors that
are mainly related to the nature of the collection rather than the type of objects they
collect.

“Nature of the collectiontan be expressed tarms of well defined properties.

Ordering of elements
A previousor nex relationship exists between the elements obm@iered collection
which is exposed in the interface.

Ordering can be sequential or sorted. A sequential ordering can be explicitly
manipulated; however, a sorted ordering is to be maintained implcitigd on gort
criteria to be defined and passed to ithplementation by the user.

Access by key

A keycollectionallows associative access to elements Vi@wA key can be
computed from an element value via a user-defkedoperation. Furthermorekey
collections require key equality to be defined.

Element equality

An equality collectionexploits the property that a test for elemequaity is defined
(i.e., it can be tested whether an element is equal to anottesmin of a user-defined
element equality operation). This enables a test on containment, for example.

Object Collection Servicerl.0 Service Structure July 1997 17-3

17

17-4

Unigueness of entries
A collection withuniqueentries allows exactlpne occurrence of an element key
value, notmultiple occurrences.

Meaningful combinations of these basic properties define “collectiod#fefing
nature of grouping.” Table 17-1 provides an overview of meaningful combinations.
The listed combinations are described in more detail in the following section.

Table 17-1 Interfaces derived from combinations of collection properties

Ordered
Unordered Se
Sorted quen-
tial
Unique Multiple Unique Multiple Multiple
El .
Key (Key quur;:?t;t Map Relation | Sorted Map Rsecl);tt(iac()jn
equality
must be
o No Element Key Sorted Key
specified) K KeyB
P) Equality eyset eysag Set SortedBag
Elemgnt Set Bag SortedSet| Sorted Bag Equality
Equality Sequence
No Key
No Element Hea Sequence
Equality P q

Properties are mapped to interfaces - each interface assembling operations that exploit
these properties. These interfaces are combinethultiple inheritanceand form an
abstract interface hierarchyAbstract means that no instancesath a class can be
instantiated, an attempt to do so may raise an exception at run-time. Leaves of this
hierarchy represent concretgerfaces listed in the tab&bove and can be instantiated

by a user. Theyorm a complete and differentiated offering of collection interfaces.

Restricted Access Collections

Common data structures based on these properties sometistiist accessuch as

gueues, stacks, or priority queues. They can be consideredtasted access variants

of Sequence or KeySortedBag. These interfaces formeir own hierarchy of

restricted access interfaceghey are not incorporated into the hierarchy of combined
properties because a user of restricted access interfaces should not be bothered with
inherited operations which cannot be used in these interfacesrtheless, to support
several “views” on an interface,rastricted users view of gueue and an unrestricted
system administrators view to the same queue instance, the restricted access collection:
are defined in a way that allows combining them with the combined properties
collections via multiple inheritance.

CORBAservices: Common Object Services Specification

17

All collections are ubounded (there is nexplicit bound set) and controlled by the
collections; however, it depends on the quality of service delivered whether there are
“natural” limits such as the size of the paging space.

Collection Factories

For each concrete collection interface specified in this specification there is
correspondingollection factory definedEach such factory fdrs a typed create
operation for the creation of collection instances supporting the respective collection
interface.

Additionally, a generic extensible factory is specified to enable the usage of many
implementation variants for the same collection interface. This extensible generic
factory allows the registration of implementation variants and their user-controlled
selection at collection creation time.

Information to be passed to a collection at creation time is the element and key type
specific information that a collection implementation reliesTmat is, one passes the
information how to compare element keys, how to test equaligtesfientkeys, type
checking relevant information, etc. Which type of information needs to be passed
depends on the respective collectiaterface.

17.2.2 lterators

Iterators, as defined in this specification, are more than just simple “pointing devices.”

Iterator hierarchy
The service defines a hierarchy of iteratatsich parallels the collection hierarchy.

The top level iterator is generic in the sense that it allows iteration over all collections,
independent of the collection type because it is supported lopliEttion types. The
orderediteratoradds some capalties useful for all kinds of ordered collections.
Iterators further down in the hierarchy add operations exploiting the capabilities of the
correspondingollection type Not. Bchiteratortype is supported by each collection
type. For example, Keylterator is supported only bgollection interfaces derived

from KeyCollection.

Iterators are tightly intertimed with collections. An iterator cannot exit independently
of a collection(i.e., the iterator life time cannot exceed that of the collection for which
it is created). A collection is the factory fits iterators. An iterator is created for a
given collection and can be used for this, and only this, collection.

Generic and iterator centric programming

Iterators on th@ne hand are pointer abstractions in the sensérgdle pointing
devices. They dér the basic capabilities yaaan expect from a pointer abstraction.
One can reset an iterator to a start position for iteration and move or position it in
different ways depending on the iterator type.

There are essentially two reasons to embellish an iterator with more capabilities.

Object Collection Servicerl.0 Service Structure July 1997 17-5

17

17-6

1. To support the processing of very laggglections to allow for delayed instantiation
or incremental query evaluation in case of very large query results. These are
scenarios where the collection itself may never exist as instantiated main memory
collection but is processed in “fine grains” via an iterg@ssed to a client.

2. To enrich the iterator with more capidi@s is to straigthen the support for the
generic programming model agroduced with ANSI STL to the C++ world.

One carretrieve, replace, remove, and adéments via an iterator. Oean test
iterators for equality, compare ordered iterators, cloniesator,assign iterators, and
destroy them. Furthermore, an iterator can havenst designation which iset when
created. Aconst iterator can be used for access only.

Thereverse iterator semantics is supported. No extra interfaces are specified to
support this but aeverse designation is set at creation time. An ordered iterator for
which thereverse designation is set reinterprets the operations of a given iterator type
to work in reverse.

Iterators and grformance
To reduce networkraffic, combined operations and bullp@rations are offered.

® Combined operations are combinations of simple iterator operations often used in
loops.

® Bulk operations support retrieving, replacing, and adding many elements within one
operation.

Managed Iterators

All iterators are managed in the sense that iterators never become undefined; therefore,
they do not lead to undefined behavior. Common behavior of iterators in class libraries
today is that iteratorbecome undefined when tleellection content is cnged. For
example, if an element is added the sideatfon iterators of the collection is

unknown. lerators do not “know” whether they ardlispointing to the same element

as beforestill pointing to anelement at all, or pointintputside” the collection. One
cannot even test the state. This is considered unacceptable behaviistibated
environment.

The iterator model used in this specification is a managed iteratoradéd terators
are “robust” to modifications of the collection. A managed iterator is always in one of
the following defined testable states:

® valid (pointing to an element of the collection)
® invalid (pointing to nothing; comparable to a NULL pointer)

® in-between(not pointing to an element, butlis"remembering" eough state to be
valid for most operations on it).

A valid managedterator remains valid dsng as the element it points to remains in
the collection. Asoon as the element is removed, the according managed iterator
enters a so-callemh-betweerstate. Than-betweerstate can beiewed as a vacuum
within the collectionThere is nothing the managed iterator can point to. Nevertheless,

CORBAservices: Common Object Services Specification

17

managedterators remember the next (and for ordered collection, also the previous)
element in iteration order. It is possible to continue using the geatigerator (in a
set_to_next_element() for example) without resetting it first. For more information,
see “The Managed lterator Model” on page 17-85.

17.2.3 Function Interfaces

The Object Collection service specifies function interfaces used to pass user-defined
information to the collection implementation (either at creation time or as parameters
of operations). The most important is Bperations interface discussed in more

detail below.

Collectible Elements and/ppe Safety

Collections are foundation classes used bmaad range of applications. They have to
be able to collect elements of arbitrary tygrel support keys of arbitrary type.
Instances of collections are usually homoges collections in the sense tlzdit
elements have the same element type.

Because there is no template support in CORBA IDL today, the requirement
“collecting elements of arbitrary type” is met by defining glementype and the key
type as a CORBAny. In doing so, compile time type checking for element and key
type is impossible.

As collections are often used as homogenous collections, dynamic type
checking is enabled by passing relevant information to the collection at
creation time. This is done by specialization of the function interface
Operations. This interface defines attributelement_type andkey_type as well as
defines operationsheck_element_type() andcheck_key type() which have to be
implemented by the user. Implementations may range frmntype checking at all,”
“type code match,” “checking an interface to be supported,” up to “checking
constraints in addition to a simple typede checking.” Using th®perations
interface allows user-defined customization of the dynamic type checking.

Collectible Elements and the Operations Inhe

The function interfac®perations is used to pass a humber of other user-defined
element type specific information to the collectiomplementaibn.

The type checking of relevant information is one sample.

Depending on the propérs represented by a collection interface, a respective
implementation relies on someerlent type specific or key type specific information
passed to it. For example, one has to pass the information “element comparison” to
implement aSortedSet or “key equality” to guaranteainiqueness of keys in a

KeySet. TheOperations interface is used to pass this information.

Object Collection Servicerl.0 Service Structure July 1997 17-7

17

17-8

The third use of this interface is to pass elemerkegrtype specifianformation that
the different categories of implementations rely on. For example, tree-like
implementations for &eySet rely on the “key comparison” information and hashing
basedmplementdbns rely on the iformation how tchash key values. This
information is passed via ti@perations interface.

A user has to customize ti@perations interface and to iplement the appropriate
operationgdependent on theollection interface to based. An instance of the
specializedOperations interface ipassed at collection creation time to the collection
implementation.

Collectible Elements d¢fey Collections

Key collections offer associative access to collection elements via a key &

computed from the element value and is user-defined element type specific information
to be passed to a collectiofihe Operations interface has an operatigey() which

returns the user-definday of a given element.

For a specific element type, a user has to implement the element ggfcdey()
operation in an interface derived frd@perations. The key type is a CORBAny.
Again this is designed to accommodate galitgr Computablekeys reflect the data
base view on elements of key collections as “keglkeinents” where a key is a
component of a tuple or is “composed” from el components of a tuple.

17.2.4 List of Interfaces Defined

The Obiject Collection service offers thalowing interfaces:

Abstractinterfaces representing cldction properties andheir combinations

® Collection

® OrderedCollection

® KeyCollection

® EqualtyCollection

¢ SortedCollection

® SequentialCollection

® EqualtySequentialCollection
® EqualityKeyColection

* KeySortedCollection

® EqualtySorted@llection

® EqualityKeySorted®llection

CORBAservices: Common Object Services Specification

17

Concrete collections antheir factories

® CollectionFactory, CollectionFactories
® KeySet, KeySetFactory

* KeyBag, KeyBagFactory

® Map, MapFactory

® Relation, RelationFactory

® Set, SetFactory

® Bag, BagFactory

* KeySortedSetKeySortedSetFactory

* KeySortedBag, KeySortedBagFactory
®* SortedMap, SortedMapFactory

® SortedRelation, SortedRationFatory

® SortedSet, SortedSetFactory

® SortedBag, SortedBagFacy

® Sequence, SequenceFactory

® EqualtySequenceEquaitySequenceFactory
® Heap, HeapFactory

Restricted access dettions and theirfactories

* RestrictelAcces€ollection, RACollectimFactory
® Stack, StackFactory

® Queue, QueueFactory

® Deque, DequeFactory

® PriorityQueue PriorityFactory

Iterator interfaces

® lterator

® Orderedierator

® Sequentiallterator
® Sortedlterator

* Keylterator

® Equaltylterator

® EqualityKeylterator

Object Collection Servicerl.0 Service Structure July 1997

17-9

17

® KeySortedlterator
® EqualtySortedliterator
® EqualtySequentiallterator

® EqualityKeySortedlterator

Function interfaces

® Operations
® Command

® Comparator

17.3 Combinefollections

17-10

The overview introducegropertiesand listed the meaningful combinations of these
properties that result in consistently defined collection interfaces forming a
differentiated offering. In the following sections, the semantics of each combination
will be described in more detaihd demonstrated by an example.

17.3.1 Combined Collections Usage Samples

Bag, SortedBag

A Bag is an unordered collection of zero or more elements with ndvayiple
elements are supported. As element equality is supported, operations which require the
capability “test of element equality®.g.,test on containment) can befared.

Example The mplementation of a text file compression algorithm. The algorithm

finds the most frequently occurring words in sample files. During compression, the
words with a high frequency are replaced by a code (for example, an eseapetath
followed by a one character code). During re-installation of files, codes are replaced by
the respective words.

Several types of collections may bsed in this context. A Bag can be used during the
analysis of the sample text files to collect isolated words. After the analysis phase you
may ask for the number of occurrences for eaohd to castruct a structure with the

255 words with the highest word counts. A Bag offers an operation for this, you do not
have to “count by hand,” which is less efficient. To find the 255 words with the highest
word count, a SortedRelation is the appropriate structure (see “Relation,
SortedRelation” on page 17-13). Finally, a Map may be used to maintain a mapping of
words to codes and vice versa. (See “Map, SortedMap” on page 17-12).

A SortedBag(as compared to a Bag) exposes and maintaswtad order of the
elements based on a user-defined element comparison. Maintained elements in a sorte
order makes sense when printing or displaying the collection content in sorted order.

CORBAservices: Common Object Services Specification

17

EqualitySequence

An EqualitySequence is an orderedllection of elements with no key. There is a first

and a last element.deh element, except thast one, has a next element and each
element, except the first one, has a previous element. As element equality is supported,
all operations that rely on the capability “test on element equality” can be offered, for
example, locating arlement or test for containment.

Example An application that arranges wagons ttvaan. Theorder of the wagons is
important. The trailcar has to be thiest wagon,thefirst classwagonsare arranged

right behind the trailcar, the restaurant has to be arranged right affinstiobass and

before the second class wagons, and so on. To check whether the wagon has the correc
capacity,you may want to ask: “How many open-plan carriages are itrahe” or

“Is there a bistro in the train already?”

Heap

A Heap is an unordered collection of zero or more elements without Mkiiple
elements are supported. Mement equality isupported.

Example A “trash can” on a desktop which memoriztlsobjects moved to the

trashcan as long as it is nemptied Whenever you move an object to the trashcan it is
added to the heafgometimes you move an object accidentally to the trashcan. In that
case, you iterate in some order through the trashcan to find the object - not using a test
on element equality. Wheyou find it, you remove it from the trashcaometimes

you empty the trashcan and remalkobjects from the trashcan.

KeyBag, KeySortedBag

A KeyBag is an unordered collection of zero or more elemenththat a key.
Multiple keys are supported. As no element equality is assunpedationssuch as
“test on collectiorequality” or “set theoretical operation” are not offered.

A KeySortedBag isorted by key. In addition to the operaticupported for a
KeyBag, all perations related to ordering are offered. For example, operations
exploiting the ordering such dset to_previous / set_to_next” and “access via
position” aresupported.

A license server maintaining floating licenses on a network may be implemented using
a KeyBag to maintain thécknses in use. The key may be the Licenseld and additional
element data may be, for example, the user who requested the license. As usual, more
than one floating license is availalger product; therefore, many licenses for the same
product may be in use. A Licenseld may occur more than once. A user may request a
license multiple times, it may also occur that the same Licenseld with the same user
occursmultiple times. If a user of the product requests and receives the license, the
Licenseld, together with the request data, is added to the licenses in use. If the license
is released, it is deleted from the Bag of licenses in usmeSmes you may want to

ask for the number of licenses of a product in use, that is ask for the number of the
licenses in use with a given Licenseld.

Object Collection Servicerl.0 Combined Collections July 1997 17-11

17

17-12

Access to licenses in use is via the key Licenseld. This sample application does not
require operations such sesting two collections for equality or set theoretical
operations on collections. It is not exploiting element equality; therefore, isma
KeyBag instead of a Relation (which would force the user to define element equality).

If you want to list the licenses in usdtiwthe users holding the licenses sorted by
Licenseld, you could make use of a KeySoBag instead of a Key&y.

KeySet, KeyStedSet

A KeySet is an unordered collection of zero or more elements that have a key. Keys
must be unique. Defined element equality is not assumed; therefore, opeaations
semantics which require the capability “element eyusdst" arenot offered.

A KeySortedSet is sorted by key. In addition to the operasapported for &eySet,
all operations related to ordering are offeredr example, operations exploiting the
ordering, such as “set_to_previous / set_to_next’ and “accegmsition” are
supported.

Example A program that keeps track of aailed creditcard numbers and the

individuals to whom they are issued. Each card number occurs only once and the
collection is sorted by card number. When a merchant entarstamer’s card number

into the point-of-sales terminal, the collection is checked to determine whether the card
number is listed in the collection of cancelled cards. If it iméhuhe name of the
individual isshown andhe merchant is given directions for contacting the card
company. If the card number is not found, the transactionproceed because the card

is valid. A list of cancelleatards is printed out each month, sorted by card number, and
distributed to all merchants who do not have an automatic point-ofesatnal

installed.

Map, SortedMap

A Map is an unordered collection of zero or melements that have a key. Keys must
be unique. As defined, element equality is assumed access via the elemeandalue
all operations which need to test on element equality, such as a testtaineent for
an element, test farquality, andset theoretical operations can be offered for maps.

A SortedMap is sorted by key. In addition to the operations supported for aaMap,
operations related to ordering are offered. For example, operations exploiting the
ordering like “set_to_previous / set_to_next” and “access via position” are supported.

Example Maintaining nicknames foyour mailingfacility. The key is thenickname.

Mailing information includes addresfi;st name, last name, etc. Nicknames are

unique; therefore, adding a nickname/mailing inforation entry with a nickname that is
already available shoulgil, if the maling information to be added is different from

the available information. If it is exactly the same informatioshiuld just be

ignored. You may define more than one nickname for the same person; therefore, the
same element data may be stored with different keysoufwant to update address

CORBAservices: Common Object Services Specification

17

information for a given nickname, use the replace_element_with_key() operation. To
create a new nickname file from two existing filase a union operation which
assumes element equality to be dedin

Relation, SortedRelation

A Relation is an unordered collection of zero or more elements with akatjple
keys are supported. As defined element equality is assumed, test for equality of two
collections is offered as well as the set theoretical operations.

A SortedRelation is sorted by key. In addition to the operations supported for a
Relation, all operations related to ordering are offeFent.example, operations that
exploit ordering such as “set_to_previous / set_to_nartf “access viposition” are
supported.

A SortedRelation may be used in the tibet compression algorithm mentioned
previously in theBag, Soted Bag example to find the 255 words with the highest
frequency. The key is the word count and #uklitional element data is the word. As
words may have equal countspltiple keys have to be supported. Thedering with
respect to the key is used to find the 255 highest keys.

Set, SortedSet

A set is an unordered collection of zero or more elements without a key. Element
equality is supported; therefore, operations that require the capability “tettmant
equality” such as intersection or union can be offered.

A SortedSet is sorted with respect to a user-defined element comparison. In addition to
the operations supported for a Set, all operations related to ordering are difared.
example, operations that exploit ordering such as “set_to_previous / set_to_next’ and
“access via position” are supported.

Example A program that creates a packingt for a box of free samples to be sent to

a warehouse customer. The program searches a database of in-stock merchandise, an
selects ten items at rdam whose price is below a threshold level. Eiaeim is added

to the set. The set does not allowiem to beadded if it already is present in the
collection; this ensures that a customer does not get two samples of a single product.

Sequence

A Sequence is an orderedllection of elements without a keVhere is a fist and a
last element. Bch element (except thast one) has a next elemeartd each element
(except thdirst one) has a previous element. Blement equality isupported;
therefore,multiplesmay occur and access to elements via the element value is not
possible. Access to elements is possible via positioexind

Object Collection Servicerl.0 Combined Collections July 1997 17-13

17

Example A music editor.The Sequence is used to mainttokens representing the
recognized notes. The order of the notes is obviously importafrtber processing

of the melody. A note may occur more than once. During editing, notes are accessed by
posifon and are removed, added, or replaced at a giesiign. To print the result,

you may iterate over the sequerarel print note by note.

A Sequence may also be used to represent how a book is consfrastativerse
documents. It is obvious that ordering is important. It may be the case that a specific
document is used multiplemes within the sambook (for example, apecific

graphic). Reading the book, youay want to access a specific document by position.

17.4 Restricted AccesS®llections

17-14

17.4.1 Restricted Access Collections Usage Samples

Deque

A double ended queue may be considered as a sequenaestittted access. It is an
ordered collection of elements without a key and no element equality. As there is no
element equality, an elemevelue may occur multiple times. There is a fasd a last
element. You can only add an elemenfiest or last elemenand only remove therft

or the last element from theeue.

A Deque may be used in the implementation patern matching algorithm where
patterns are expressed as regular expmessiuch an algahm can be described as a
non-deterministic finite state machigenstructed from the regular expression. The
implementation of the regular-pattern matching machine usaya deque to keep track

of the statesinder consideration. Processing a null state requistack-like data
structure - one of two things to be done is postponed and put at the front of the not
being postponed forever list. Processing the other states requiresielike data
structure, since you do not want to examine a state for the next given character until
you are finished with the current character. Combining the twoaglteristics results in

a Deque.

PriorityQueue

A PriorityQueue may be considered as a KeyS@agpdwith restrictedaccess. Itis an
ordered collection with zero or more elememsiltiple key values arsupported. As

no element equality is defined, multiple element values may occur. Access to elements
is via key only andsorting is maintained by key. Accessing a PrioritgQe is

restricted. You can add an element relative to the ordering relation defined for keys and
remove only the fst elemente.g., the one with highepriority).

PriorityQueues may be used fonplementing a printer ques. A printjob’s priority

may depend on the number of pagésgetof queuing, and other characteristics. This
priority is the key of the print jobWhen a user adds a print job it is added relative to
its priority. The printedaemon always removes the job with the higlpestrity from

the queue.

CORBAservices: Common Object Services Specification

17

PriorityQueues also may be used as special queues in workflow management to
prioritize workitems.

Queue

A queue may be considered as a sequencerestiictedaccess. It is an ordered

collection of elements with nkey and no element equality. There is a first atasa
element. You can only add (enque) an element as last element and only remove (deque;
the first element from the @gue. That is, a queue expo&#B0O béeavior.

You would use a queue in tree traversal to implement a bréesitsearch algorithm.

Queues may be used for the implementation of all kinds of buffered communication
where it is important that the receiving side handles messages in the same order as the)
were sent. Queues may be used in workflow management environments where queues
collect messages waiting for processing.

Stack

A Stack may be considered as a sequence nedtricted acess. It is an ordered

collection of elements with nkey and no element equality. There is a first aasa
element. You can only add (push) an element as last eldatethe top)and only

remove (pop) the last element from the Stack (from the Wt is, a Stack exposes

LIFO behavior. The elssical application for a stack is the simulation of a calculator

with Reverse Polish Notation. The calculator engine may get an arithmetic expression.
Parsing the expression operands arghpd on to the stack. When areagtor is
encountered, the appropriate number of operands is popped off the stack, the operatior
performed, and theesult pushed on the stack.

A Stack also may be used in the implementation winalow manager to maintain the
order in which the windows are gerimpased.

17.5 The CosCollection Module
17.5.1 Interface Hierarchies

Collection Interface Hierarchies

The collection interfaces of the Collection Services are organizedoirseparate
hierarchies, ashown inFigure 17-1 on page 17-17 and Figure 17-2 on page 17-17.
The inner nodes of the hierarchy may be thought of as abstract Vibessrepresent
the basic properties and their combinations. Leaf nodes mtybght of as cotrete
interfaces for which implementations are provided &inth which instances can be
created via a collection factory. The organization of the interfaces as a hierarchy
enables reuse and the polymorphic usage o€dllections from tped languages such
as C++.

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-15

17

17-16

Each abstract view is defined terms ofoperations antheir behavior. The most
abstract view of a collection is a contaiwdthout any ordering or angpecific
element or key preerties. This view allows addingiements tanditerating over the
collection.

In addition to the common collection operations, collectionssghelements define
equality orkey equality provide operations for locatirmgnd retrieving elements by a
given element or key value.

Ordered collections provide the notion of well-defined explicit positioning of elements,
either by element key orderinglation or by positional elemeatcess.

Sorted collections provide no further operaipbut introduce a new semast
namely, that their elements are sorted by element or key value. Thesdipsoper
combined througimultiple inherfance.

The fourth property, uniquenessiitiplicity of elementsand keys, is not represented
by a separate abstract view for combination with offteperties. This was done to
reduce the complexity of the hierarchy. Instead, operations related tiplioityy are
provided in the base interface from which the interface specializations witiplnoitit
are derived.

CORBAservices: Common Object Services Specification

17

Collection
Ordered
Collection
A
! | ‘
Key Equality Sorted Seqﬁential
Collection Collection Collection Collection
\ [I
| : T
Equality Key Sorted Equalit Equality
Key Collection Sorte Sequential
Collection Collection Collection
‘E Ii
quali
Key So%—:‘d
Collection
Key Sorted
Key Set Map Set ySet S'\c;'r;gd Sorted Set Sequence Heap
i KeySorted Sorted Equality
Key Bag Relation Bag Bag Relation Sorted Bag Sequence

Figure 17-1 Collections Interfaces Hierarchy

The restrictechccess collectionform their own hierarchy ashown inFigure 17-2 on

page 17-17. This abstract view defines the operations that all restricted access
collections have in common.

Restricted
Access

Collection

Priority Stack

Q Queue Deque
ueue

Figure 17-2 Restricted Access Collections Interface Hierarchy

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-17

17

17-18

Iterator Hierarchy

The iterator interface hierarchy parallels the Collection interface hierarchy shown in
Figure 17-3 on page 17-18. The definaterfaces support the fine-grain processing of
very large collections via an iterator ordpd support a generprogramming model
similar to whatwas introduced with ANSI STL tthe C++ world. Concepts like
constness of iterators, reverse iterators, bulk amdbined operations are offered to
strengthen the support for the generic programming model.

Iterator

Ordered
Iterator
|
‘ |
Key Equality Sorted Sequential
Iterator Iterator Iterator Iterator
\ [‘
M
ey Key Sorted “dore Sequential
Iterat)c/)r Iterator Iterator Iterator

| ‘ﬁ‘ —

Equality
Key Sorted
Iterator

Figure 17-3 Iterator Interface Hierarchy

The top levelterator interface represents a geneiterator thatcan be used for
iteration over and manipulation of abllections irdependent ofheir type.The top
level iterator allows/ou to add, retrieve, replace, and remeleaments. There are
operations to clone, assigand test iterators forqeiality. There argéests orthe iterator
state and you can check whether an iterataoisst created for a given collection, or
created for the same collection as another iterator.

The Orderediterator interface adds those operations which are useful on collections
with an explicit notion of ordering (all those collections inheriting from the
OrderedCollection interface). An ordered iterator can be moved forward and
backwardset to a position, and its positi@an be computed. Only ordered iterators

can be used with “reverse” semantics. Begjuentiallterator is used with

sequentially ordered collections where it is possible to add elements at a user-defined
posifon so that the iterator offers the capabilityaild elements relative to its position.

CORBAservices: Common Object Services Specification

17

The Keylterator and Equalitylterator interface add oprations for positioning an
iterator by key or element value. The sorted versions of these intedddesspective
backward movements and the capability to define loaed upper bounds in sorted
collections.

An iterator is always created for a collection using ¢bélection as iterator factory.

Each iterator type is supported by eadlection type. Thelterators and the

Collections that are supported by all interfaces derived from those collections are listed
in Table 17-2 on page 17-19.

Table 17-2 Iterators and Collections

Supported by all interfacesderived from:

Iterator

Collection

Orderedlterator

OrderedCollection

Sequentiallterator

SequentialCollection

EqualitySequentiallterator

EqualitySequentialCollection

Keylterator

KeyCollection

Equalitylterator

EqualityCollection

EqualityKeylterator

EqualityKeyCollection

Sortedlterator

SortedCollection

KeySortedlterator

KeySortedCollection

EqualitySortedliterator

EqualitySortedCollection

EqualityKeySortedIterator

EqualityKeySortedCollection

17.5.2 Exceptions and Type Definitions

The following exceptions are used by the subsequently defined interfaces.

module CosCollection {
Il Type definitions

typedef sequence<any> AnySequence;

typedef string Istring;

struct NVPair {Istring name; any value;};

typedef sequence<NVPair> ParameterList;

/I Exceptions
exception EmptyCollection{};

Object Collection Servicerl.0

The&osCollection Module

July 1997

17-19

17

exception PositionInvalid{};

enum IteratorinvalidReason {is_invalid, is_not_for_collection,
is_const};

exception Iteratorinvalid {lteratorinvalidReason why;};
exception IteratorinBetween{};

enum ElementinvalidReason {element_type_invalid,
positioning_property_invalid, element_exists};

exception Elementinvalid {ElementinvalidReason why;};
exception Keylnvalid {};
exception Parameterinvalid {unsigned long which; Istring why};

AnySequence
A type definition for a sequence of values of tyyy used in bulk operations.
Istring

A type definitionused as place holder for a future IDL internationalized string data
type.

ParameterList

A sequence of name-valpairs of typeNVPair and used as a generic parameter list in
a generic collection creation operation.

EmptyCollection
Raised when an operation to removeedement is inoked on an emptgollection.
Positioninvalid

Raised when an operation on an ordered collection pagsesitmnout of the allowed
range, that is less than 1 aregter than the number of elements in the collections.

Iteratorinvalid

Raised when an operation usesitenator pointing to nothing, that is, using iawvalid
iterator (in_valid) or vaen an operation uses aerator whichwas notcreated for the
collection (is_not_for_collection) or if oneids to modify a collection via an iterator
that is created witleonst designation (is_const).

IteratorinBetween

Raised when an operation uses t@naitor in a way that does not allow thtatein-
betweensuch as all “..._at” perations.

17-20 CORBAservices: Common Object Services Specification

17

Elementinvalid

Raised when one of the operations passes an element that is for oneraf s=msons
invalid. It is raised

* when the element is not of the expected element type (element_type_invalid).

® if onetries to replace an element by another elensbahging the positioning
property (positioning_property_invalid).

®* when an element is added to a Map and the key alreashs églement_exists).
Keylnvalid

Raised when one of the operations passes aHatyig not of the expected type.
Paramete rinvalid

Raised when a parameter passed to the geo@llaction creation operation of the
genericCollectionFactory is invalid.

17.5.3 Abstract Collection Interfaces

The Collection Interface

The Collection interface represents the most abstract view of a collection. Operations
defined in this top level interface can be supporte@lbgollection interfaces in the
hierarchy. Each concrete collection interface offers the appropriate operationisemant
dependent on theollection properties. It defines operatidios:

® adding elements

®* removing elements

® replacing elements

® retrieving elements

® inquiring collection information

® creating iterators

/I Collection
interface lterator;
interface Command;

interface Collection {

Il element type information
readonly attribute CORBA::TypeCode element _type;

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-21

17

/I adding elements
boolean add_element (in any element) raises (Elementinvalid);

booleanadd_element_set_iterator(inany element, in Iterator where)
raises (lteratorinvalid, Elementinvalid);

void add_all_from (in Collection collector) raises (Elementinvalid);

/I removing elements

voidremove_element_at (in Iterator where) raises (Iteratorinvalid,
IteratorinBetween);

unsigned long remove_all ();

Il replacing elements

void replace_element_at (in Iterator where, in any element)
raises(IteratorInvalid, IteratorinBetween, Elementinvalid);

/I retrieving elements

boolean retrieve_element_at (in Iterator where, out any element)
raises (lteratorinvalid, IteratorinBetween);

/I iterating over the collection

boolean all_elements_do (in Command what) ;

Il inquiring collection information
unsigned long number_of_elements ();

boolean is_empty ();

/I destroying collection
void destroy();

/Il creating iterators

Iterator create_iterator (in boolean read_only);

3
Type checking information

readonly attribute CORBA::TypeCode element_type;

Specifies the element type expected in the collecta®. also “The @erations
Interface” on page 17-118.

17-22 CORBAservices: Common Object Services Specification

17

Adding elements

boolean add_element (in any element) raises (Elementinvalid);

Description

Adds an element to the collection. The exact semantics aidtieperations
depends on the properties of the caate interfacelerived from theCollection that
the collection is an instance of.

If the collectionsupports unique elements or keys and the element or key is already
contained in the collection, adding is ignoredsémential collectiams, the element

is always added dast element. Irsorted collections, the elementadded at a

position determined by the element or key value.

If the collection is a Mafand catains an element with the same key as the given
element, then this element has to be equal to the given element; otherwise, the
exceptionElementlinvalid is raised.

Return value
Returnstrue if the element is added.

Exceptions

The element must be of the expected type; otherwise, the excEpioantinvalid
is raised.

Side effects
All iteratorskeep their state.

boolean add_element_set_iterator(in any element, in Iterator where) raises
(Iteratorinvalid, Elementinvalid);

Description

Adds an element to the collectiamd sets the iterator to the addddment. The
exact semantics of the add operatidepends on the properties of the concrete
interface derived from th€ollection that the collection is an instance of.

If the collectionsupports unique elements or keys and the element or key is already
contained in the collection, adding is ignor@ad the tierator is just set to the

element or key already contained. In segfial collections, the elementadwvays

added agast element. Irsorted collections, the element is added at a position
determined by the element key value.

If the collection is a Mafand catains an element with the same key as the given
element, then this element has to be equal to the given element; otherwise, the
exceptionElementlnvalid is raised.

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-23

17

17-24

Return value
Returnstrue if the element isadded.

Exceptions

The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

The giveniterator mustbelong to the collection; otherwise, the exception
Iteratorinvalid is raised.

Side effects

All other iteratorskeep their state.

void add_all_from (in Collection elements) raises (Elementinvalid);

Adds all elements of the given collection to this collectibine elements are added in
the iteration order of thgiven collection and consistent with the semantics otttk
operation. Essentially, this operation iseqjuence ofdd operations.

Removing elements

void remove_element_at (in Iterator where) raises(lteratorinvalid);

Description

Removes the elemenbmted to by the given iterator. The given iterator is setto
between

Exceptions
The terator must belong to the collection and must point to an element of the
collection; otlerwise, the exceptiotteratorinvalid is raised.

Side effects

Iterators pointing to the removed elementilgdetween Iterators which do not
point to the removed element keep their state.

unsigned long void remove_all();

Description
Removes all elements from tleellection.

Return value
Returns the number of elements removed.

CORBAservices: Common Object Services Specification

17

Side effects

Iterators pointing to removed elementsigdetweenAll other iterators kep their
State.

Replacing elements

void replace_element_at (in Iterator where, in any element) raises
(Iteratorinvalid, IteratorinBetween, Elementinvalid)

Description

Replaces the element pointed to by the iterator by the given elehengiven
element must have the sampesitioning property as the replacetément.

 For collections organized according to elempraperties such as ordering
relation, the replace operation musit change this element perty.

« For key collections, the new key must be equal to the key replaced.

» For non-key collections ith element equality, the new element must be equal to
the replacectlement aslefined by the element equality relation.

Sequential collectionsave a user-defined positioning property and heaps do not
havepositioningproperties. Element values in sequences and heaps can be replaced
freely.

Exceptions

The givenelement must nothlange thepositioning property; otherwise, the
exceptionElementlinvalid is raised.

The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

The terator must belong to the collection and must point to an element of the
collection; otterwise, the exceptiolleratorinvalid or IteratorinBetween is raised.

Retrieving elements

boolean retrieve_element_at (in Iterator where, out any element) raises
(Iteratorinvalid, IteratorinBetween);

Description

Retrieves the element pointed to by the given iterator and returns it via the output
parameter element.

Return value
Returnstrue if an element is retrieved.

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-25

17

17-26

Exceptions

The given igrator must belong to the collection and must point to an element of the
collection;otherwise, the exceptidteratorinvalid or lteratorinBetween is raised.

Note —Whether a copy of the element is returned or the eleitssit dgpends on the
element type represented by tay. If it is an object, a reference to the object in the
collection is returned. If the element type is a non-object type, a copy of the element is
returned. In case of element type object, do not manipulate the element or the key of
the element in the collection in a way tlchianges the positioning property of the
element.

Iterating over acollection

boolean all_elements_do (in Command what);

Description

Calls the “do_on()” operation of the giv&lommand for each element of the
collection until the‘do_on()” operation returnfalse. The elements are visited in
iteration order (see “The Command and Comparator Interface” on page 17-122).

* The “do_on()” operation must not remove elements froradst elements to the
collection.

» The “do_on()” operation must not manipulate the element in the collection in a
way that changes the positioning property of the element.

Return value

Returnstrue if the “do_on()” operation returntsue for eachelement it is applied
to.

Inquiring collection information

The collection operations dwmave preconditions which when violated raiseeptions.
There are operations féesting tlose preconditions to enable the user to avoid raising
exceptions.

unsigned long number_of elements ();

Return value
Returns the number of elementstained in the collection.

boolean is_empty ();

Return value
Returnstrue if the collection is empty.

CORBAservices: Common Object Services Specification

17

Destroying a collection

void destroy();

Description
Destroys the collection. This includes:
» removing all elements from the collection
« destroying all iterators created for this collection

« destroying the instance @perations passed at creatidime to the collection
implementation.

Note —Removing elements in case of objects means removing object references, not
destroying the collected objects.

Object references to iterators of the collections become invalid.

Creating iterabrs

Iterator create_iterator (in boolean read_only);

Creates and returns an iterator instance for this colleciiba.type ofiterator that is
created depends on tirdgerface type of this collectiomhe followingtable describes
the type of iterator that is created for the type of concrete collection.

Table 17-3Collection interfaces and the iterator interfaces supported

Ordered Collection Interfaces Supported Iterator Interface
Bag Equalitylterator

yes SortedBag EqualitySortedlterator

yes EqualitySequence EqualitySequentiallterator
Heap Iterator
KeyBag Keylterator

yes KeySortedBag KeySortedlterator
KeySet Keylterator

yes KeySortedSet KeySortedlterator
Map EqualityKeylterator

yes SortedMap EqualityKeySortedlterator
Relation EqualityKeylterator

yes Sequence Sequentiallterator

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-27

17

17-28

Table 17-3Collection interfaces and the iterator interfaces supported

yes SortedRelation EqualityKeySortedlterator
Set Equalitylterator

yes SortedSet EqualitySortedIterator

yes Sequence Sequentiallterator

After creation, the iterator igitialized with the statenvalid, that is, “pointing to
nothing.”

If the given mrameteread_only istrue, the iterator is created wittonst designation
(i.e., atrial to modify the collection content via thiterator is regcted and raises the
exceptionlteratorinvalid).

Note —Collections serve as factories fibieir iterator instages. An iterator is created
in the same address space as the collection for which it is created. An iterator instance
can only point to elements of the collection for whiclwés created.

The OrderedCollection Inteaite

interface Orderedlterator;
/I OrderedCollection
interface OrderedCollection: Collection {

/I removing elements

void remove_element_at_position (in unsigned long position) raises
(Positioninvalid);

void remove_first_element () raises (EmptyCollection);
void remove_last_element () raises (EmptyCollection);

Il retrieving elements

booleanretrieve_element_at_position (inunsignedlongposition,out
any element) raises (Positioninvalid);

boolean retrieve_first_element (out any element) raises
(EmptyCollection);

boolean retrieve_last_element (out any element) raises
(EmptyCollection);

/I creating iterators

Orderedlterator create_ordered_iterator(in boolean read_only, in
boolean reverse_iteration);

k

CORBAservices: Common Object Services Specification

17

Ordered collectiongxpose the ordering @lements in their interfaces. Elemenss

be accessed at a position and forward and backward movements are possible (i.e.,
ordered collection can support ordeigztators).Ordering can be iplicitly defined

via the ordering relationship of the elements or keys (as in sorted collections) or
ordering can be user-controlled (as in safial collections).

In addition to those inheriteflom theCollection Interface, which all ordered
collections have in common, tl@rderedCollection interface provides operations for

® removing elements,
® retrieving elements, and

® creating ordered iterators.
Removing elerants

void remove_element_at_position (in unsigned long position) raises
(Positioninvalid);

Description

Removes the element from thellection at a given positiorThe irst element of
the collection has gsiton 1.

Exceptions

The value of position" must be a valid position in the collection; otherwise, the
exceptionPositionInvalid is raised. A position is valid if it is greater than or equal
to 1 and less than or equalrtamber_of _elements().

Side effects

All iterators pointing tadhe removed element go-between Iterators that do not
point to the removed element keep their state.

void remove_first_element () raises (EmptyCollection);

Description
Removes the first element from the collection.

Exceptions

The collection must not be empty; otherwise, the excepiormptyCollection is
raised.

Side effects

All iterators pointing tahe removed element go-between Iterators that do not
point to the removed element keep their state.

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-29

17

17-30

void remove_last_element () raises (EmptyCollection);

Description
Removes théast element from the collection.

Exceptions

The collection must not be empty; otherwise, the excepliomptyCollection is
raised.

Side effects

All iterators pointing tahe removed element go-between Iterators that do not
point to the removed element keep their state.

Retrieving elements

boolean retrieve_element_at position (in unsigned long position, out any
element) raises (Positionlnvalid);

Description

Retrieves the element at the given position in the collection and returns it via the
output parameteglement. Position 1 specifies the first element.

Return value
Returnstrue if an element is retrieved.

Exceptions

The value of position" must be a valid position in the collection; otherwise, the
exceptionPositionlnvalid is raised.

boolean retrieve_first_element (out any element) raises (EmptyCollection);

Description

Retrieves the first element in the collection and returns it via the output parameter
element.

Return value
Returnstrue if an element is retrieved.

Exceptions

The collection must not be empty; otherwise, the excepiomptyCollection is
raised.

CORBAservices: Common Object Services Specification

17

boolean retrieve_last_element (out any element) raises (EmptyCollection);

Description

Retrieves the last element in the collectionrd returns it via the output
parameter element.

Return value
Returnstrue if an element is retrieved.

Exceptions

The collection must not be empty; otherwise, the excepEorptyCollection is
raised.

Creating iterabrs

Orderedlterator create_ordered_iterator (in boolean read_only, in boolean
reverse_iteration);

Description
Creates and returns an ordered iterator instance for this collection.
Which type of ordered iterator actually is creatigpends on the interface type of

this collection. Table7-1 on page 17-4a$cribes which type of orderégrator is
created for which type of concrete ordered collection.

After creation, the iterator imitialized with the state invalid, that is, “pointing to
nothing.”

Exceptions

If the given parameteread_only is true, the iterator is created wittonst
designation (i.e., a trial to modify the collection content via this iterator is
rejected and raises the exceptltaratorinvalid).

Side effects

If the given @mrametereverse_iteration is true, the iterator is created with reverse
iteration semantics. Only order@dratorscan be created with reverse semantics.

The SequentialCollection Interface

interface Comparator;

interface SequentialCollection: OrderedCollection {

/I adding elements

void add_element_as_first (in any element) raises (Elementlinvalid);

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-31

17

voidadd_element_as_first_set iterator (inany element, inIterator
where) raises (Elementinvalid, Iteratorinvalid);

void add_element_as_last (in any element) raises (Elementinvalid);

void add_element_as_last_set_iterator (in any element, in Iterator
where) raises (Elementinvalid, Iteratorinvalid);

void add_element_as_next (in any element, in Iterator where) raises
(Elementlnvalid, Iteratorinvalid);

void add_element_as_previous (in any element, in lterator where)
raises (Elementinvalid, lteratorinvalid);

void add_element_at_position (in unsigned long position, in any
element) raises(Positioninvalid, Elementinvalid);

void add_element_at_position_set_iterator (in unsigned long
position, in any element, in Iterator where) raises
(Positioninvalid, Elementinvalid, Iteratorinvalid);

Il replacing elements

void replace_element_at_position (inunsigned long position, in any
element) raises (PositionInvalid, Elementinvalid);

voidreplace_first_element (in any element) raises (Elementinvalid,
EmptyCollection);

void replace_last_element (in any element) raises (Elementinvalid,
EmptyCollection);

/I reordering elements
void sort (in Comparator comparison);
void reverse();

h

Sequenal collections expse user-controlled sequetordering. Determine where
elements are added by comparing to sorted collections where the “where an element is
added" is determinedniplicitly by the defined element or kepmparison.

The SequentialCollection interface addsll those operations to the
OrderedCollection interface. “The SequentialCollection Interface” page 17-31
describes operators that are unique for positional element access for

® adding elements,
® replacing elements, and

® re-ordering elements.
Adding elements

void add_element_as_first (in any element) raises (Elementinvalid);

17-32 CORBAservices: Common Object Services Specification

17

Description
Adds the element to the collection as fitet element in sequential order.

Exceptions

The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

Side effects
All iteratorskeep their state.

void add_element_as_first_set iterator (in any element, in Iterator where)
raises (Elementinvalid,lteratorinvalid);

Description

Adds the element to the collection as finst element in sequential order and
sets the iterator to the added element.

Exceptions

The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

The giveniterator musbelong to the collection; otherwise, the exception
Iteratorinvalid is raised.

Side effects
All iteratorskeep their state.

void add_element_as_last (in any element) raises (Elementlinvalid);

Description
Adds the element to the collection as kst element in sequential order.

Exceptions
The givenelement must be of the expected type; otherwise, the exception

Elementinvalid is raised.

Side effects
All iteratorskeep their state.

void add_element_as_last_set_iterator (in any element, in Iterator where)
raises (Elementinvalid,lteratorinvalid);

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-33

17

Description

Adds the element to the collection as the last elemesgduential order. Sets the
iterator to theadded element.

Exceptions
The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

The giveniterator mustbelong to the collection; otherwise, the exception
Iteratorinvalid is raised.

Side effects
All other iteratorskeep their state.

void add_element_as_next(in any element, in Iterator where) raises
(Elementinvalid, Iteratorinvalid);

Description

Adds the element to the collection after the element pointed tebgiven iterator.
Sets the iterator to the dédd element. If thetérator is in the stat@-betweenthe
element is added before therator’s “potential next” element.

Exceptions
The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

The terator must belong to the collection andvadid; otherwise, the exception
lteratorinvalid is raised.

Side effects

All iteratorskeep their state.

void add_element_as_previous (in any element, in Iterator where) raises
(Iteratorinvalid, Elementinvalid);

Description

Adds the element to the collection as the element previous to the element pointed to
by the given iteratoiSets the iterator to the ded element. If thetérator is in the
statein-betweenthe element is added after the éior's “potential previous”

element.

Exceptions

The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

17-34 CORBAservices: Common Object Services Specification

17

The terator must belong to the collection and mustvakd; otherwise, the
exceptionlteratorinvalid is raised.

Side effects
All iteratorskeep their state.

void add_element_at_position (in unsigned long position, in any element)
raises(PositionInvalid, Elementinvalid);

Description

Adds the element at the given position to the collection. If an element exists at the
given position, the new element is added as the element preceding the existing
element.

Exceptions
The podion must be valid (i.e., greater than or equal snd less than or equal to
number_of elements() +1); otherwise, the exceptidPositioninvalid is raised.

The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

Side effects
All iteratorskeep their state.

void add_element_at_position_set_iterator (in unsigned long position, in any
element, in Iterator where) raises (Positioninvalid, Elementinvalid
Iteratorinvalid);

Description

Adds the element at the given position to the collectind sets the iterator to the
added element. If an elemestists at the givengsiion, the new element is added
as the element preceding the existing element.

Exceptions

The podion must be valid (i.e., greater than or equal nd less than or equal to
number_of elements() +1); otherwise, the exceptidPositioninvalid is raised.

The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

Theiterator must belong to the collection; otherwise, the excejptéoatorinvalid
is raised.

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-35

17

Side effects

All iteratorskeep their state.
Replacing elements

void replace_element_at_position (in unsigned long position, in any
element) raises (PositionInvalid, Elementinvalid);

Description

Replaces the element at a given position with the galement. Thagiven position
must be valid (i.e., greater than or equal to 1 and less than or equal to
number_of _elements()).

Exceptions

The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

void replace_first_element (in any element) raises (Elementinvalid,
EmptyCollection);

Description
Replaces the first element with the givelement.

Exceptions
The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

The collection must not be empty; otherwise, the excepEorptyCollection is
raised.

void replace_last_element (in any element) raises (Elementinvalid,
EmptyCollection);

Description
Replaces théast elementith the given element.

Exceptions

The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

The collection must not be empty; otherwise, the excepEorptyCollection is
raised.

17-36 CORBAservices: Common Object Services Specification

17

Re-ordering elements

void sort (in Comparator comparison);

Description

Sorts the collection so that the elements occur in ascending ordenel@tien of

two elements is defined by the “compare” method, which a user provides when
implementing an interface derived from Comparasee “The Command and
Comparator Interface” on page 17-122.

Side effects
All iterators inthe staten-betweergo invalid.

All other iteratorskeep their state.
void reverse ();

Description
Orders elements in reverse order.

Side effects
All iterators inthe staten-betweergo invalid.

All other iteratorskeep their state.

The SortedCollection Inteate

interface SortedCollection: OrderedCollection{};

Sorted collections currently do not provide further operations but define a more
specific behavior; namely, that the elements or theyskare sorted with respect to a
user-defined element or key compare. See “Oh@eredCollectionnterface” on

page 17-28.

The EqualityCollection Interface

interface EqualityCollection: Collection {
/I testing element containment

boolean contains_element (in any element) raises(Elementinvalid);

boolean contains_all_from (in Collection collector)
raises(Elementinvalid);

/I adding elements

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-37

17

17-38

boolean locate_or_add_element (in any element) raises
(Elementinvalid);

boolean locate_or_add_element_set iterator (in any element, in
Iterator where) raises (Elementinvalid, Iteratorlnvalid);

Il locating elements

booleanlocate_element (in any element, in Iterator where) raises (
Elementinvalid, Iteratorinvalid);

boolean locate_next_element (in any element, in Iterator where)
raises (Elementinvalid, Iteratorinvalid);

boolean locate_next_different_element (in Iterator where) raises
(Iteratorinvalid, IteratorinBetween);

/I removing elements
boolean remove_element (in any element) raises (Elementinvalid);

unsigned long remove_all_occurrences (in any element) raises
(Elementinvalid);

/I inquiring collection information
unsigned long number_of_different_elements ();

unsigned long number_of_occurrences (in any element)
raises(Elementinvalid);

h

Collections vhose elements define equalititroduce operations which exploit the
defined element equality. These operations are for finding elemerteimgntvalue
(and adding if not found), for testing containment giveen element, and inquiring the
collection about how many elements of a given value were collected.

Testing element containment

boolean contains_element (in any element) raises (Elementinvalid);

Return value
Returnstrue if the collection contains aelementequal to the given element.

Exceptions

The givenelements must be of the expected type; otherwise, the exception
Elementinvalid is raised.

boolean contains_all_from (in Collection collector) raises (Elementinvalid);

CORBAservices: Common Object Services Specification

17

Return value

Returnstrue if all the elements of the given collection are contained in the
collection. The definition of containment is given in “contains_element.”

Exceptions

The eéments in the givenollection must be of thexpected type; otherwise, the
exceptionElementinvalid is raised.

Adding elements

boolean locate_or_add_element (in any element) raises (Elementinvalid);

Description

Locates an element in the collection that is equal to the given element. If no such
element is found, thelement is added as describedhdd.

Return value
Returnstrue if the element was found.

Returnsfalse if the elementad to be added.

Exceptions

The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

Side effects
All iteratorskeep their state.

boolean locate_or_add_element_set _iterator (in any element, in Iterator where)
raises (Elementlinvalid, Iteratorinvalid);

Description

Locates an element in the collection that is equal to the given element. If no
such element is found, the element is added as descritzetdlirfThe iterator is
set to the found or added element.

Return value
Returnstrue if the element was found.

Returnsfalse if the element had to be added.

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-39

17

17-40

Exceptions
The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

The giveniterator musbelong to the collection; otherwise, the exception
Iteratorinvalid is raised.

Side effects
All other iteratorskeep their state.

Locating elements

boolean locate_element (in any element, in Iterator where) raises
(Elementinvalid, Iteratorinvalid);

Description

Locates an element in the collection that is equal to the given element. Sets the
iterator to point to the element in the collectioninmalidates the iterator if no such
element exists. If the collection contains several such elementsrsthelément in
iteration order is located.

Return value
Returnstrue if an element is found.

Exceptions

The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

Theiterator must belong to the collection; otherwise, the exceptératorinvalid
is raised.

Side effects
All iteratorskeep their state.

boolean locate_next_element (in any element, in Iterator where) raises
(Elementinvalid, Iteratorinvalid);

Description

Locates the next element in iteration order in the collection thatis equal to the given

element, starting at the element next todhe pointed to by the givaterator. Sets
the iterator to point to the located elameThe iterator is invalidated if the end of

the collection is reached and no more occurrences of the given element are left to be

visited. If theiterator is in the statm-between]ocating is started at the iterator’s
“potential next” element.

CORBAservices: Common Object Services Specification

17

Return value
Returnstrue if an element was fou.

Exceptions
The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

The terator must belong to the collection and mustakd; otherwise, the
exceptionlteratorinvalid is raised.

boolean locate next_different_element (in Iterator where) raises
(Iteratorinvalid, IteratorinBetween);

Description

Locates the next element in iteration order that is different from the element pointed
to by the given iterator. If no more elements are left to be visited, the given iterator
will no longer be valid.

Return value
Returnstrue if the next different element was found.

Exception

Theiterator mustelong to thecollection and point to an element of the collection;
otherwise, the exceptiolteratorinvalid or IteratorinBetween is raised.

Removing elerants

boolean remove_element (in any element) raises (Elementinvalid);

Description

Removes amrlement in the colleiin that is equal to the given element. If no such
element exists, the collection remaunschanged. In collections with non-unique
elements, an arbitrary occurrence of the given element will be removed.

Return value
Returnstrue if an element was removed.

Exceptions
The givenelement must be of the expected type; otherwise, the exception

Elementinvalid is raised.

Side effects
If an element was removed, all iterators pointing to ¢ésnent gdan-between

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-41

17

17-42

All other iteratorskeep their state.

unsigned long remove_all_occurrences (in any element) raises
(Elementinvalid);

Description

Removes all elements from tlgellection that are equal to tlggven element and
returns the number of elements removed.

Exceptions

The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

Side effects
All iterators pointing to elementesmoved gdn-between

All iteratorskeep their state.
Inquiring collection information

unsigned long number_of_different_elements ();

Return value
Returns the number of different elements in the collection.

unsigned long number_of_occurrences (in any element) raises
(Elementinvalid);

Return value
Returns the number of occurrences of the given element in the collection.

Exceptions

The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

The KeyCollection Interface

interface KeyCollection: Collection {
Il Key type information
readonly attribute CORBA::TypeCode key_type;

/I testing containment

CORBAservices: Common Object Services Specification

17

boolean contains_element_with_key (in any key) raises(Keylnvalid);

boolean contains_all_keys_from (in KeyCollection collector)
raises(Keylnvalid);

/I adding elements

boolean locate_or_add_element_with_key (in any element)
raises(Elementinvalid);

boolean locate_or_add_element_with_key_set_iterator (in any
element, in Iterator where) raises (Elementinvalid,
Iteratorinvalid);

/I adding or replacing elements

boolean add_or_replace_element_with_key (in any element)
raises(Elementinvalid);

boolean add_or_replace_element_with_key_set_iterator (in any
element, in Iterator where) raises (Elementinvalid,
Iteratorinvalid);

/I removing elements
boolean remove_element_with_key(in any key) raises(Keylnvalid);

unsigned long remove_all_elements_with_key (in any key)
raises(Keylnvalid);

Il replacing elements

boolean replace_element_with_key (in any element)
raises(Elementinvalid);

boolean replace_element_with_key set_iterator (in any element, in
Iterator where) raises (Elementinvalid, Iteratorinvalid);

Il retrieving elements

boolean retrieve_element_with_key (in any key, out any element)

raises (Keylnvalid);
/I computing the keys
void key (in any element, out any key) raises (Elementinvalid);

void keys (in AnySequence elements, out AnySequence keys) raises
(Elementlnvalid);

/I locating elements

boolean locate_element_with_key (in any key, in Iterator where)
raises (Keylnvalid, Iteratorinvalid);

booleanlocate_next_element_with_key(inanykey, inIterator where)
raises (Keylnvalid, Iteratorinvalid);

boolean locate_next_element_with_different_key (in Iterator where)
raises (lteratorinBetween, Ilteratorinvalid);

Object Collection Servicerl.0 Thé&osCollection Module July 1997

17-43

17

17-44

/I inquiring collection information
unsigned long number_of_different_keys ();

unsigned long number_of_elements_with_key (in any key)
raises(Keylnvalid);

h

A KeyCollection is a collection which offers associative accesist@lements via a

key. All elements of such a collection are keygedments (i.e they do have a key

which is computed from the element value). How to compute the key from an element
value is user-defined. A user specializes@merations interface and implements the
operationkey() as desired (see “The Operations Interface” on page 17-118). This
information is passed to the collection at creation time.

Type checking information

readonly attribute CORBA::TypeCode key_type;

Specifies thekey type expected in the collection. See al§hé’ (perations Interface”
on page 17-118.

Testing containment

boolean contains_element_with_key (in any key) raises (KeyInvalid);

Return value

Returnstrue if the collection contains an element with the same key as the given
key.

Exceptions

The given key has to be of the expected type; otherwise, the exdéptibrvalid is
raised.

boolean contains_all_keys from (in KeyCollection collector) raises(Keylnvalid);

Return value
Returnstrue if all of the keys of the given collection are contained in the collection.

Exceptions

The keys of the given delction have to be of the expected typaho$ collection;
otherwise, the exceptiokeyInvalid is raised.

CORBAservices: Common Object Services Specification

17

Adding elements

boolean locate_or_add_element_with_key (in any element)
raises(Elementinvalid);

Description

Locates an element with the same key as the key in the given element. If no such
element exists the elementadded; otherwise, theollection remainsinchanged.

Return value
Returnstrue if the element is located.

Exceptions

The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

Side effects
All iteratorskeep their state.

boolean locate_or_add_element_with_key set iterator (in any element, in
Iterator where) raises (Elementinvalid, Iteratorinvalid);

Description

Locates an element with the same key as the key in the given element and sets the
iterator to the located elements (d¢eeate_element_with_key()). If no such
element exists, the elementadded and the iterator et to the element added.

Return value
Returnstrue if the element is located.

Exceptions

The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

The giveniterator mustbelong to the collection; otherwise, the exception
lteratorinvalid is raised.

Side effects
All iteratorskeep their state.

boolean add_or_replace_element with_key (in any element) raises
(Elementinvalid);

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-45

17

17-46

Description

If the collection contains an element with tkey equal to the key in the given
element, the element is replaced with the given element; otherwise, the given
element is added to tlomllection.

Return value
Returnstrue if the elementvas added.

Exceptions

The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

Side effects
All iteratorskeep their state.

boolean add_or_replace_element_with_key set iterator (in any element, in
Iterator where) raises (Elementinvalid, Iteratorinvalid);

Description

If the collection contains an element with tkey equal to the key in the given
element, the iterator is set to that element and the element is replaced with the given
element; otherwise, the given element is added tedhlection, and the iterator set

to the added element.

Return value
Returnstrue if the elementvas added.

Exceptions

The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

The giveniterator mustbelong to the collection; otherwise, the exception
Iteratorinvalid is raised.

Side effects
All iteratorskeep their state.

Removing elements

boolean remove_element_with_key (in any key) raises (Keylnvalid);

CORBAservices: Common Object Services Specification

17

Description

Removes an element from the collection with the same key as the given key. If no
such element exists, tlmllection remainsinchanged. Ircollections with non-
unique elements, an arbitrary occurrence of such an element will be removed.

Exceptions

The given key must be of the expected type; otherwise, the excé&@yonvalid is
raised.

Side effects
If an element was removed, all iterators pointing to the elemeirt-getween

All other iteratorskeep their state.

unsigned long remove_all_elements_with_key (in any key) raises(Keylnvalid);

Description
Removes all elements from tloellectionwith the same key as the given key.

Exceptions

The given key must be of the expected type; otherwise, the excé@ydnvalid is
raised.

Side effects
Iterators pointing to elements removed igebetween

All other iteratorskeep their state.
Replacing elements

boolean replace_element_with_key (in any element) raises (Elementinvalid);

Description

Replaces an element with the same key as the given element by the given element.
If no such element exists, the collection remains unchanged. In collectitns w
non-unique elements, an arbitrary occurrence of suakleanent will be replaced.

Return value
Returnstrue if an element was replaced.

Exceptions

The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-47

17

boolean replace_element_with_key set iterator (in any element, in Iterator
where) raises (Elementinvalid, Iteratorinvalid);

Description

Replaces an element with the same key as the given element by the given element,
and sets theérator to this element. If no suetlement exists, thitgerator is
invalidatedand thecollection remainsinchanged. Ircollections with non-unique
elements, an arbitrary occurrence of such an element will be replaced.

Return value
Returnstrue if an element was replaced.

Exceptions
The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

The giveniterator mustbelong to the collection; otherwise, the exception
Iteratorinvalid is raised.

Computingkeys

void key (in any element, out any key) raises(Elementinvalid);

Description
Computes the key of the givehement and returns it via the outparametekey.

Exceptions

The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

void keys (in Any Sequence elements, out Any Sequence keys)
raises(Elementinvalid);

Description

Computes the keys of the given elements and returns them via the output parameter
keys.

Exceptions

The givenelements must be of the expected type; otherwise, the exception
Elementinvalid is raised.

17-48 CORBAservices: Common Object Services Specification

17

Side effects

An implementation may rely on the keyeamation of a user supplied interface
derived fromOperations. An instance of this interface passed to a collection
at creation timeand can be used in the collectianplementation.

Locating elements

boolean locate_element_with_key (in any key, in Iterator where) raises
(Keylnvalid, Iteratorinvalid);

Description

Locates an element in the collection with the same key as the given key. Sets the
iterator to point to the element in the collectioninmalidates the iterator if no such
element exists.

If the collection contains severslich elements, ther$t element in iteratioorder
is located.

Return value
Returnstrue if an element was found.

Exceptions
The given key must be of the expected type; otherwise, the excé&@ydnvalid is
raised.

The giveniterator mustbelong to the collection; otherwise, the exception
Iteratorinvalid is raised.

boolean locate_next_element_with_key (in any key, in Iterator where) raises
(Keylnvalid, Iteratorinvalid);

Description

Locates the next element inriggion order with the key equal to the given key,
starting at the elememext to the one pointed to by the giveéarator. Sets the
iterator to point to the element in the collection. The given iteratovaidated if

the end of the collection is reachadd no more occurrences of such an element are
left to be visited. If the iterator is in the-betweerstate locating starts at the
iterator’s “potential next” element.

Return value
Returnstrue if an element was found.

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-49

17

17-50

Exceptions

The given key must be of the expected type; otherwise, the excéydnvalid is
raised.

The giveniterator mustbelong to the collection anthust be validptherwise, the
exceptionlteratorinvalid is raised.

boolean locate_next_element_with_different_key (in Iterator where)
raises(lteratorinvalid, lteratorinBetween)

Description

Locates the next element in thellection in iteration order with key different
from the key of the element pointed to by the giitemator. If no such element
exists, the given iterator is no longer valid.

Return value
Returnstrue if an element was found.

Exceptions
The giveniterator mustbelong to the collection anthust point to an element;
otherwise, the exceptiolteratorinvalid respectivelylteratorinBetween is raised.

Inquiring collection information

unsigned long number_of_different_keys ();

Return value
Returns the number of different keys in the collection.

unsigned long number_of _elements_with_key (in any key) raises(Keylnvalid);

Return value
Returns the number elements with key specified.

Exceptions

The keymust be of the expected type; otherwise, the exceptynvalid is
raised.

The EqualityKeyCollection Interface

interface EqualityKeyCollection : EqualityCollection, KeyCollection{};

CORBAservices: Common Object Services Specification

17

Description

This interface combines the interfaces representing the prop&eiesccess” and
“element equality."See “The EqualityCollection Interface” on page 17-37 and
“The KeyCollection Interface” on page 17-42.

The KeySortedCollection Intexde

interface KeySortedCollection : KeyCollection, SortedCollection {
/I locating elements

boolean locate_first_element_with_key (in any key, in Iterator
where) raises (Keylnvalid, Iteratorinvalid);

booleanlocate_last_element_with_key(in anykey, in Iterator where)
raises (Keylnvalid, Iteratorinvalid);

boolean locate_previous_element_with_key (in any key, in Iterator
where) raises (Keylnvalid, Iteratorinvalid);

boolean locate_previous_element_with_different_key(in Iterator
where) raises (IteratorinBetween, Iteratorinvalid);

h

This interface combines the interfaces representing the propémiesccess” and
“ordering.” See “The KeyCollection Interface” on page 17-42 and “The
SortedCollection Interface” on page 17-37.

Locating elements

boolean locate_first_element_with_key (in any key, in Iterator where)
raises (Keylnvalid, Iteratorinvalid);

Description

Locates the first element in iteration order in the collection with the same key as the
given key. Sets the iterator to the locagtement, or invalidates the iterator if no
such element esis.

Return value
Returnstrue if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the excé@ydnvalid is
raised.

The giveniterator musbelong to the collection; otherwise, the exception
lteratorinvalid is raised.

boolean locate last_element_with_key(in any key, in Iterator where) raises
(Keylnvalid, Iteratorinvalid);

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-51

17

17-52

Description

Locates the last element in iteration order in the collection with the same key as the
given key. Sets the given iterator to the located element, or invalidates the iterator if
no such element exists.

Return value
Returnstrue if an element was found.

Exceptions
The given key must be of the expected type; otherwise, the excé@yonvalid is
raised.

The giveniterator musbelong to the collection; otherwise, the exception
Iteratorinvalid is raised.

boolean locate_previous_element_with_key (in any key, in Iterator where)
raises (Keylnvalid, Iteratorinvalid);

Description

Locates the previous element in iteration order with a key equal to the given key,
beginning at the element previous to the specified by the given

iterator and moving in reverse iteration order through the elements. Sets the
iterator to the located element or invalidates the iterator if no such element
exists. If theiterator is inthe statan-between]ocating begins at the iterator’s
“potential previous” element.

Return value
Returnstrue if an element was found.

Exceptions
The given key must be of the expected type; otherwise, the excé&@yonvalid is
raised.

The giveniterator mustbelong to the collection and be valid; otherwise, the
exceptionlteratorinvalid is raised.

boolean locate previous_element_with_different_key(in lterator where) raises
(IteratorinBetween, Iteratorinvalid);

Description

Locates the previous elementiiaration ordewith a key different from the key of

the element pointed to, beginning at the element previous to the one pointed to and
moving in reverse iteration order through the elements. Sets the iterator to the
located element, or invalidates the iterator if no such element exists.

CORBAservices: Common Object Services Specification

17

Return value
Returnstrue if an element was found.

Exceptions

The given key must be of the expected type; otherwise, trepanKeylnvalid is
raised.

The giveniterator must point to an element; otherwise, ¢leeption
IteratorinBetween or Iteratorinvalid is raised.

The EqualitySortedCollection Intexde

This interface combines the interfaces representing the properties “element equality”
and “ordering.” See “The EqualityCollection Interface” on page 17-37 ahe “
SortedCollection Interface” on page 17-37. It adds those methods which exploit the
combination of both properties.

interface EqualitySortedCollection : EqualityCollection,
SortedCollection {

/I locating elements

boolean locate_first_element (in any element, in Iterator where)
raises (Elementinvalid, Iteratorinvalid);

boolean locate_last_element (in any element, in Iterator where)
raises (Elementinvalid, Iteratorinvalid);

boolean locate_previous_element (in any element, in Iterator where)
raises
(Elementlnvalid, Iteratorinvalid);

booleanlocate_previous_different_element (in Iteratorwhere)raises
(Iteratorinvalid);

%
Locating elements

boolean locate_first_element (in any element, in Iterator where) raises
(Elementinvalid, Iteratorinvalid);

Description

Locates the fst element in iteration order in the collection that is equal to the
given element. Sets thierator tothe located element or invalidates the iterator if
no such element exists.

Return value
Returnstrue if an element was found.

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-53

17

17-54

Exceptions
The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

The giveniterator musbelong to the collection; otherwise, the exception
Iteratorinvalid is raised.

boolean locate last_element (in any element, in lterator where) raises
(Elementinvalid, Iteratorinvalid);

Description

Locates the last element in iteration order in the collection that is equal to the
given element. Sets thierator tothe located element or invalidates the iterator if
no such element exists.

Return value
Returnstrue if an element was found.

Exceptions
The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

The giveniterator musbelong to the collection; otherwise, the exception
lteratorinvalid is raised.

boolean locate previous_element (in any element, in Iterator where) raises
(Elementinvalid, Iteratorinvalid);

Description

Locates the previous element in iteration order that is equal to the given
element, beginning at the element previous to the one specified by the given
iterator and moving in reverse iteration order through the elements. Sets the
iterator to the located element, or invalidates the iterator if no such element
exists. If theiterator is inthe statén-betweenthe search begins at the iterator’s
“potential previous” element.

Return value
Returnstrue if an element was found.

Exceptions

The givenelement must be of the expected type otherwise the exception
Elementinvalid is raised.

The giveniterator musbelong to the collection; otherwise, the exception
lteratorinvalid is raised.

CORBAservices: Common Object Services Specification

17

boolean locate_previous_different_element (in Iterator where) raises
(IteratorinBetween, Iteratorinvalid);

Description

Locates the previous element in iteration order with a value different from the
element pointed to, beginning at the element previous to the one

pointed to and moving in revergerationorder through the elements. Sets the
iterator to the located element or invalidates the iterator if no such element
exists.

Return value
Returnstrue if an element was found.

Exceptions

The giveniterator must point to an element; otherwise, éReeption
lteratorinBetween or Iteratorinvalid is raised.

The EqualityKeySortedCollection Interface

interface EqualityKeySortedCollection: EqualityCollection, KeyCollection,
SortedCollection {};

This interface combines the interface representing the properties “element equality,
“key access,” and “ordering.”

The EqualitySequentialCollection Intade

This interface combines the interface representing the properties “element equality”
and “(sequential) orderingdnd ofers additional operations which exploit this
combination.

interface EqualitySequentialCollection: EqualityCollection,
SequentialCollection

{

Il locating elements

booleanlocate_first_element_with_value (inanyelement,inlterator
where) raises (Elementinvalid, Iteratorinvalid);

booleanlocate_last_element_with_value (inany element, in Iterator
where) raises (Elementinvalid, Iteratorinvalid);

boolean locate_previous_element_with_value (in any element, in
Iterator where) raises (Elementinvalid, Iteratorinvalid);

>

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-55

17

17-56

Locating elements

boolean locate_first_element_with_value (in any element, in Iterator where)
raises (Elementlinvalid, Iteratorinvalid);

Description

Locates the fst element in iteration order in the collection that is equal to the
given element. Sets thierator tothe located element or invalidates the iterator if
no such element exists.

Return value
Returnstrue if an element was found.

Exceptions
The element must be of the expected type; otherwise, the excEfgimentinvalid
is raised.

The giveniterator mustbelong to the collection; otherwise, the exception
Iteratorinvalid is raised.

boolean locate last_element_with_value (in any element, in Iterator where)
raises (Elementinvalid, Iteratorinvalid);

Description

Locates the last element in iteration order in the collection that is equal to the
given element. Sets thierator tothe located element or invalidates the iterator if
no such element exists.

Return value
Returnstrue if an element was found.

Exceptions

The element must be of the expected type; otherwise, the excEfdimentinvalid
is raised.

Theiterator must belong to the collection; otherwise, the excefigoatorinvalid
is raised.

boolean locate previous_element_with_value (in any element, in Iterator
where) raises (Elementinvalid, Iteratorinvalid);

CORBAservices: Common Object Services Specification

17

Description

Locates the previous element in iteration order that is equal to the given
element, beginning at the element previous to the one specified by the given
iterator and moving in reverse iteration order through the elements. Sets the
iterator to the located element or invalidates the iterator if no such element
exists. If theiterator is inthe statdn-between]ocating begins at the iterators
“potential previous” element.

Return value
Returnstrue if an element was found.

Exceptions
The element must be of the expected type; otherwise, the excEfdimentinvalid
is raised.

The terator must belong to the collection andvadid; otherwise, the exception
lteratorinvalid is raised.

17.5.4 Concrete Collectionaterfaces

The previously listed “abstract views” on collections combine the propekies “
access,” “element equality,” and“ ordering relationship” on elementsThe
subsequent interfaces addniqueness” support for ‘multiples.” To reduce the
complexity of the hierarchy, this fourth property is not represented by a separate
interface.

The KeySet Interface
interface KeySet: KeyCollection {};

The KeySet offers an interface representing the property “key access” with the
semantics of “unique keys required.” See “The KeyCollection Interface” on
page 17-42.

The KeyBag Interface
interface KeyBag: KeyCollection {};

The KeyBag offers the interface representing the propékiy access” withmultiple
keys allowed. See “The KeyCollection Interface” on page 17-42.

The Map Interface

interface Map : EqualityKeyCollection {
I/l set theoretical operations
void difference_with (in Map collector) raises (Elementinvalid);

void add_difference (in Map collectorl, in Map collector2)raises
(Elementinvalid);

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-57

17

17-58

void intersection_with (in Map collector) raises (Elementinvalid);

void add_intersection (in Map collectorl, in Map collector2) raises
(Elementlnvalid);

void union_with (in Map collector) raises (Elementinvalid);

void add_union (in Map collectorl, in Map collector2)raises
(Elementinvalid);

Il testing equality

boolean equal (in Map collector) raises (Elementinvalid);

boolean not_equal (in Map callector) raises(Elementinvalid);

%

The Map offers the interface representing the combination of the properties “element
equality testableand “key access” and supports the semantics “unique keys required”

(which implies uniqueslements)See “The EqualityKeyCollection Interface” on
page 17-50.

With element equality defined,tast on equality for colleins of the same type is
possible as well as a meaningful definition of the set theoretical operations.

Settheoretical operations

void difference_with (in Map collector) raises(Elementinvalid);

Description

Makes this collection the difference between this collectiod the given
collection. The difference of And B (A minus B) is theet of elements that are
contained in A but not in B.

The same operation is defined for other collections, ¥ followingrule applies

for collections with multiple elements: ¢follection P contains the element X m
times and collection Q contains the element X n times, the difference of P and Q
contains the element X m-n times if “m > n,” and zero times if “m <= n.”

Exceptions

Elements of the given collection must have the expected type of this collection;
otherwise, the exceptioBlementinvalid is raised.

Side effects

Valid iterators pointing to removed elementsigdoetweenAll other iterators keep
their state.

void add_difference (in Map collectorl, in Map collector2) raises
(Elementinvalid);

CORBAservices: Common Object Services Specification

17

Description

Creates the difference between the two given collections and adds the difference to
this collection.

Exceptions

Elements of the given collections must be of the expected type in this collection;
otherwise, the exceptioBlementinvalid is raised.

Side effects

Adding the difference takes place one by one saémantics foadd applies here
for raised exceptions artkrator state.

void intersection_with (in Map collector) raises (Elementinvalid);

Description

Makes this collection the intersection of this collectand the given collection.
Theintersection of A and B is the set of elements that is contained in both A and B.

The same operation is defined for other collections, ¥d® followingrule applies
for collections with multiple elements: tfollection P contains the element X m
times and collection Q contains the element X n times, the intersectioarad B
contains the element X “MIN(m,n)” times.

Exceptions

Elements of the given collection must have the expected type of this collection;
otherwise, the exceptioBlementinvalid is raised.

Side effects
Valid iterators of this collection pointing to removed elementingoetween

All other iteratorskeep their state.

void add_intersection (in Map collectorl, in Map collector2) raises
(Elementinvalid);

Description

Creates the intersection of the two given collections and adds the intersection to this
collection.

Exceptions

Elements of the given collections must have the expected type of this collection;
otherwise, the exceptioBlementinvalid is raised.

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-59

17

17-60

Side effects

Adding the intersection takes place one by one so the seméartadd apply here
for raised exceptions antkrator state.

void union_with (in Map collector) raises (Elementinvalid);

Description

Makes this collection the union of this collection and the given collection. The
union of A and B are the elementsmt are members of A or B or both.

The same operation is defined for other collections, i followingrule applies
for collections with multiple elements: ¢follection P contains the element X m
times and collection Q contains the element X n timesuttien of P and Q
contains the element X m+n times.

Exceptions
Elements of the given collection must have the expected type of this collection;

otherwise, the exceptioBlementinvalid is raised.

Side effects

Adding takes place one by one so the seiparfior add applies here for raised
exceptions anderator sate.

void add_union (in Map collectorl, in Map collector2) raises (Elementinvalid);

Description
Creates the union of the two givenleations and adds the union to the collection.

Exceptions
Elements of the given collections must have the expected type of this collection;
otherwise, the exceptioBlementlinvalid is raised.

Side effects

Adding the intersection takes place one by one; therefore, the semantickifor
applies here for validity of iterators and raised exceptions.

Testing equality

boolean equal (in Map collector) raises(Elementinvalid);

Return value
Returnstrue if the givencollection is equal to the collection.

CORBAservices: Common Object Services Specification

17

This operation is defined for other collections, too. Two collections are equal if the
number of elements in each collection is the same and if the following conditions

(depending on theollection properties) are fulfilled.

 Collections with unique elements If the collections have unique elements, any
element that occurs in one collectionst occur in the other collections, too.
 Collections with non-unique elements If an element has n occurrences in one
collection, it mustave exactly n occurrences in the other collection.

» Sequential collections They are sequentiabllections if they are

lexicographically equal based on element equality defined for the elements of the

sequenal collection.

Exceptions

Elements of the given collections must have the expected type of this collection;

otherwise, the exceptioBlementinvalid is raised.

boolean not_equal (in Map collector) raises (Elementinvalid);

Return value
Returnstrue if the given collection is not equal to this collection.

The Relation Interface

interface Relation : EqualityKeyCollection {

Il equal, not_equal, and the set-theoretical operations as defined
for Map

k

The Relation interface offers the interface representing the combination of the
properties “element equality testable” arkey access” and supports the semantics
“multiple elements allowed.” See “The EqualityKeyCollection Interface” on

page 17-50. For a definition of the set-theoretical opmredee “The Map Interface”
on page 17-57.

The Set Interface

interface Set : EqualityCollection {

Il equal, not_equal, and the set theoretical operations as defined
for Map

h

The Set offers the interface representing the property “element equality testable” with

the semantics of “uniquelementsrequired.” See “The EqualityCollection Interface”
on page 17-37.

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-61

17

The Bag Interface

interface Bag : EqualityCollection {

/I equal, not_equal, and the set theoretical operations as defined
for Map

h

The Bag offers the interface representing the property “element equality testable” with
the semantics of “multiplesllowed.” See “The EqualityClelction Interface” on
page 17-37.

The KeySortedSet Interface

interface KeySortedSet : KeySortedCollection {
long compare (in KeySortedSet collector, in Comparator comparison);

h

The KeySortedSet offers the sorted variant of KeySegee “The
KeySortedCollection Interface” on page 17-51.

The sorted variant dfeySet introduces a new operati@ompare which can be
supported only when there is “ordering.” This operation takes an instancesef-a
definedComparator as given parameteiSee “The Command ando@parator
Interface” on page 17-122.

The Comparator defines the comparison to beed for the elements in the context of
thiscompare operation. Comparison on tvikeySortedSets then is a lexicographical
comparison based on this element comparison.

long compare (in KeySortedSet collector, in Comparator comparison) raises
(Elementinvalid);

Description
Compares this collection with the given collection. Comparison yields:
e <0 if this collection is less than the given collection,
« 0 if the collection is equal to the given collection, and
« >0 if the collection is greater than the given collection.

Comparison is defined by thist pair of corresponding elements, in both
collections, that are naqual. If such a pair exists, the collection with the greater
element is the greater one. If such a pair does not exist, the colledtiomere
elements is the greater one.

The “compare” opration of the user’s comparator (interface derived from
Comparator) must return a result according to ttedlowing rules:

>0 if @lementl > element?2)

0 if €lementl = element2)

17-62 CORBAservices: Common Object Services Specification

17

<0 if elementl < element?2)

Return value
Returns the result of the collection comparison.

The KeySortedBag Interface

interface KeySortedBag : KeySortedCollection {

long compare (in KeySortedBag collector, in Comparator comparison);

¥

TheKeySortedBag is the sorted variant of theeyBag. See “The

KeySortedCollection Interface” on page 17-biie additional operatiowompare is
offered. See “The KeySortedSet Interface” on page 17-62.

The SortedMap Interface

interface SortedMap : EqualityKeySortedCollection {

/I equal, not_equal, and the set theoretical operations

long compare (in SortedMap collector, in Comparator comparison);

¥

The SortedMap interface is the sorted variant oMap. See “The

EqualityKeySortedCollection Interface” on page 17-55. The additionatation
compare is offered. See “The KeySortedSet Interface” on page 17-62.

The SortedRelation Interface

interface SortedRelation : EqualityKeySortedCollection {
/I equal, not_equal, and the set theoretical operations

long compare (in SortedRelation collector, in Comparator
comparison);

h
The SortedRelation interface is the sorted variant of a Relation. See “The

EqualitySortedCollection Interface” on page 17-53. The additional operation
compare is offered. SeeThe KeySrtedSet Interface” on page 17-62.

The SortedSet Interface

interface SortedSet : EqualitySortedCollection {

/I equal, not_equal, and the set theoretical operations

long compare (in SortedSet collector, in Comparator comparison);

%

The SortedSet interface is the sorted variant of a Set. The additional operation
compare is offered. See “The KeySortedSaterface” on page 17-62.

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-63

17

17-64

The SortedBag Interface

interface SortedBag: EqualitySortedCollection {

/I equal, not_equal, and the set theoretical operations

long compare (in SortedBag collector, in Comparator comparison);

¥

The SortedBag interface is the sorted variant of a Bag. S€he"

EqualitySortedCollection Interface” on page 17-53. The additional operation
compare is offered. See “The KeySortedSet Interface” on page 17-62.

The Sequenceterface

interface Sequence : SequentialCollection {

/I Comparison

long compare (in Sequence collector, in Comparator comparison);

%

The Sequence supports the interface representing the propsdguenial ordering.”
This property enables the definition of comparisortwa Sequenes; therefore, the

operationcompare is offered. See “The SequentialCollection Interface” on
page 17-31.

The EqualitySequencetérface

interface EqualitySequence : EqualitySequentialCollection {
/I test on equality

boolean equal (in EqualitySequence collector);

boolean not_equal (in EqualitySequence collector);

/I comparison

long compare (in EqualitySequence collector, in Comparator
comparison);

h

The EqualitySequence supports the combination of the properties “seqaknt
ordering” and “element equality testable.” See “The EqualitySequentialCollection
Interface” on page 17-55. This allows thgeoationsequal, not_equal andcompare.

The Heap Interface
interface Heap : Collection {};

TheHeap does not support any property 8t & just delivers the basi€ollection
interface. See “The @lection Interface” ompage 17-21.

CORBAservices: Common Object Services Specification

17

17.5.5 Restricted Access Collection Interfaces

Common data structures, such as a stack, mestyict access to the elements of a
collection. The regticted access collectiorsipport these data structur&sack,
Queue, andDequeue are essentiallyestrcted access Sequenc®siorityQueue is
essentially a restricted accaésySortedBag. For convenience, the seterfaces offer
the commonlyused operation names suchpash, pop, etc. rather than
add_element, remove_element_at. Although the restricted access collectidosm
their own hierarchy, the namingasformed in a way that allows mixing-in with the
hierarchy of the combined property collections.

This may be useful to support several views on the same instanamlécion. For
example, a “user view” to a job queue wittstrictedaccess of ®riorityQueue and
an “administrator view” to the same print jobiepe with thdull capablities of a
KeySortedBag.

17.5.6 Abstract RestrictedAccessCollection Interface

The RestrictedAccessCollection Interface

/I Restricted Access Collections

interface RestrictedAccessCollection {

/I getting information on collection state
boolean unfilled ();

unsigned long size ();

/I removing elements

void purge ();
|3

boolean unfilled ();

Return value
Returnstrue if the collection is empty.

unsigned long size ();

Return value
Returns the number of elements in the collection.

void purge ();

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-65

17

Description

Removes all elements from tleellection.See “The Collection Interface” on
page 17-21.

17.5.7 Concrete Restricted Access Collection Interfaces

The Queue Interface

interface Queue : RestrictedAccessCollection {

/I adding elements
void enqueue (in any element) raises (Elementlinvalid);

/I removing elements
void dequeue () raises (EmptyCollection);
boolean element_dequeue (out any element) raises (EmptyCollection);

h

A Queue may be considered agestrictedaccessSequence. Elements are added at
the end of the queue only and remov¥eain thebeginning of the queudIFO
behavior is delivered.

Adding elements

void enqueue (in any element) raises (Elementinvalid);

Description
Adds the element dast element to the G@ue.

Exceptions
The givenelement must be the expected type; otherwise, the exception
Elementinvalid is raised.

Removing elerants

void dequeue () raises (EmptyCollection);

Description
Removes the first element from thaeaye.

Exceptions
The queuenmust not be empty; otherwise, the exceptionptyCollection is raised.

17-66 CORBAservices: Common Object Services Specification

17

boolean element_dequeue(out any element) raises (EmptyCollection);

Description

Retrieves the first element in theeye, returns it via the outpuammeter
element, and removes itrom the queue.

Return value
Returnstrue if an element was retned.

Exceptions
The queueanust not be empty; otherwise, the exceptionptyCollection is raised.

The Dequeue Interface

interface Deque : RestrictedAccessCollection {

/I adding elements
void enqueue_as_first (in any element) raises (Elementinvalid);
void enqueue_as_last (in any element) raises(Elementinvalid);

/I removing elements
void dequeue_first () raises (EmptyCollection);

boolean element_dequeue_first (out any element) raises
(EmptyCollection);

void dequeue_last () raises (EmptyCollection);

boolean element_dequeue_last (out any element) raises
(EmptyCollection);

h

TheDequeue may be considered agestricted accesSequence. Adding and

removing elements is only allowed at both ends of the double-ended qineue.
semantics of th®equeue operation is comparable to the operations described for the
Queue interface. SeeThe Queudnterface” onpage 17-66.

The Stack Interface

interface Stack: RestrictedAccessCollection {

/I adding elements

void push (in any element) raises (Elementinvalid);
/I removing and retrieving elements

void pop () raises (EmptyCollection);
boolean element_pop (out any element) raises (EmptyCollection);

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-67

17

17-68

boolean top (out any element) raises (EmptyCollection);

3

The Stack may be considered agestrcted accesSequence. Adding and removing
elements is only allowed at the end of the quélieO behavior is delivered.

Adding elements

void push (in any element) raises (Elementinvalid);

Description
Adds the element to the stack as the last element.

Exceptions

The givenelement must be of the expected type; otherwise, the exception
Elementinvalid is raised.

Removing elements

void pop () raises (EmptyCollection);

Description
Removes théast element from the atk.

Exceptions
The stackmust not be empty; otherwise, the exceptionptyCollection is raised.

boolean element_pop (out any element) raises (EmptyCollection);

Description
Retrieves the last element from the stackl returns it via the output @aneter
element and removes it from the stack.

Return value
Returnstrue if an element is retrieved.

Exceptions
The stackmust not be empty; otherwise, the exceptionptyCollection is raised.

Retrieving elements

boolean top (out any element) raises (EmptyCollection);

CORBAservices: Common Object Services Specification

17

Description

Retrieves the last element from the stackl returns it via the output @aneter
element.

Return value
Returnstrue if an element is retrieved.

Exceptions
The stack must not be empty; otherwise, theept@mnEmptyCollection is raised.

The PriorityQueue Interface

interface PriorityQueue: RestrictedAccessCollection {
/I adding elements
void enqueue (in any element) raises (Elementinvalid);

Il removing elements
void dequeue () raises (EmptyCollection);
boolean element_dequeue (out any element) raises (EmptyCollection);

h

The PriorityQueue may be considered as a restricted act@ssSortedBag. The
interface is identical to that of an ordina@ueue, with a slightly different semantics
for adding elements.

Adding elements

void enqueue (in any element) raises (Elementinvalid);

Description
Adds the element to the priorityjugue at gosition determined by the ordering
relation provided for the key type.

Exceptions

The Elemenmust be the expected type; otherwise, the excepiiementinvalid is
raised.

Removing elerants

void dequeue () raises (EmptyCollection);

Description
Removes the first element from the collection.

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-69

17

17-70

Exceptions

The prioity queuemust be not be empty; otherwise, the exception
EmptyCollection is raised.

boolean element_dequeue (out any element) raises (EmptyCollection);

Description

Retrieves the first element in the priority quearal returns it via the output
parameteelement, removes it from the priority qaue, and returns the copy to the
user.

Return value
Returnstrue if an element is retrieved.

Exceptions

The priority queuenust not be empty; otherwise, the excepfianptyCollection is
raised.

17.5.8 Collection Factory Interfaces

There is one collection factory defined per concrete collection interface which offers a
typed operation for the creation of collection instamsiggporting the respective
collection interface as its principal interface.

The information passed to a collection implementation at crettionis:

1. Element type specific information required to implement the correct semantics. For
example, to implement Set semantics one has to pass the information how to test the
equality of elements.

2. Element type specific information that can be exploited by the specific
implementation variants. For example, a hashtable implementation of a Set would
exploit the information how the hash value for collected elements is computed.

This elementype specific information is passed to the collection implementation
via an instance of a user-defined specialization ofGperations interface.

3. An implementabn hint about the expected number of elements collected. An array
basedmplementation may use this hint as an estimate foinitial size of the
implementation array.

To enable the support for, and a user-controlled selection of implementation variants,
there is a generic extensible factalgfined. This allows for registration of
implementation variants and their user-defined selection at creation time.

CORBAservices: Common Object Services Specification

17

The CollectionFactory and CollectionFactories Interfaces

interface Operations;
interface CollectionFactory {

Collection generic_create (in ParameterList parameters) raises
(Parameterinvalid);

h

CollectionFactory defines a generic collection creation operation which enables
extensibility and supports thereation of collection instances with the very basic
capabilities.

Collection generic_create (in ParameterList parameters) raises
(Parameterinvalid);

Returns a new collection instance which supports the inte@faection and does not
offer any type checking. A sequence of name-value pairs is passed to the create
operation. The only processed parameter in the gigemst‘'expected_size,” of type
“unsigned long.”

This parameter is optional and gives an estimate of the expected number of elements to
be collected.

Note —All collection interface specific factories defined in this specification inherit
from the interfaceCollectionFactory to enable their registration with the extensible
genericCollectionFactories factory specified below.

interface CollectionFactories : CollectionFactory {

boolean add_factory (in Istring collection_interface, in Istring
impl_category, in Istring impl_interface, in CollectionFactory
factory);

booleanremove_factory (in Istring collection_interface, in Istring
impl_category, in Istring impl_interface);

h

The interfaceCollectionFactories specifies a generic extensible collection creation
capability. It maintains a registry of collection factoriébe createoperation of the
CollectionFactories does not create collection instances itself, but passes the requests
through to an appropriate factory registered with it and passes the result through to the
caller. Note that only factories derived frdbmllectionFactory can beregistered with
CollectionFactories.

boolean add_factory (in Istring collection_interface, in Istring impl_category, in
Istring impl_interface, in CollectionFactory factory);

Registers the factory with three pieces of information:

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-71

17

1. collection_interface specifies the collection interface (directly or indirectly derived
from Collection) supported by the given factory. That issa@lection instance
created via the given factory has to support the given interface
collection_interface.

2. impl_interface specifies the implementation interface (directly or indirectly derived
from the interface specified icollection_interface) supported by the registered
factory. Collection instances created via this factory are instances of this
implementation interface.

3. impl_category specifies a named group of equivalent implementation interfaces to
which the implememttion interface supported by the registered factory belongs. A
group of implementation interfaces of a givemilection interface are equivalent if
they:

* rely on the same user-defined implementation support, that is, the same operations
defined in the user-defined specialization of @gerations interface.

 are based on essentially the same data structure and deliver comparable
performance characteristics.

The following table listexanplesof implementation categories (representing common
implementations).

Table 17-4Implementation Category Examples

Implementation Description
Category
ArrayBased User-defined implementation specific operations do not have to be

defined. The basic data structure used is an array.

LinkedListBased User-defined implementation specific operations do not have to be
defined. The basic data structure used is a simple linked list.

SkipListsBased A compare operation has to be defined for the key element values
that depend on whether or not the collection kegCollection
derived fromKeyCollection. The basic data structure are skgidi

HashTableBased A hash-function has to be defined for key element values that
depend on whether or not the interface implemented is a
KeyCollection derived fromKeyCollection. The basic data
structure is a hashtable based on the hash-function defined.

AVLTreeBased A compare operation has to be defined for the key element values
that depend on whether or not the collection kegCollection
derived fromKeyCollection. The basic data structure is an AVL
tree.

BStarTreeBased A compare operation has to be defined for kagsvdlhe basic
data structure is a B*tree.

The operation does not check the validity of tbgistration request in the sense that it
checks any of theestrictions on the parameters describedvabbutjust registers the
given information with the factory. It is the responsibility of the user to ensure that the
registration is valid.

17-72 CORBAservices: Common Object Services Specification

17

The entry is added if there is not already a factory registered with the same three pieces
of information; otherwise, the registrationigmored. Returnsrue if the factory is
added.

boolean remove_factory (in Istring collection_interface, in Istring impl_category,
in Istring impl_interface)

Description

Removes the factory registered with the given three piecegasfmation from the
registry.

Return value
Returnstrue if an entry with that name existad is removed.

create (ParameterList parameters) raises (Parameterinvalid)

The create operation of tieollectionFactories interface does not creaitestances

itself, but passes through creation requests to factories registered with it. The factory is
passed a sequence of name-value pairs of which the only mandatory one is
collection_interface” of type Istring.

collection_interface” of type A string which specifies the name of the

Istring collection interface (directly or indirectly
derived fromCollection) the collection
instance created has to support.

This name-value pair corresponds to the
collection_interface parameter of the
add_factory() operation.

The following name-value pairs are optional:

“impl_category” of typelstring A string which denotes the desired
implementation category. This name-value
pair corresponds to thienpl_category
parameter of thadd_factory() operation.

“impl_interface” of typelstring A string which specifies a desired
implementation interface. This name-value
pair corresponds to thenpl_interface
parameter of thadd_factory() operation.

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-73

17

If one or both of these name-value pairs are given, it is searched for a best matching
entry in the factory registry and the request is passed through to the respective factory.
“Best matching” means that if an implementation interface is given, itis searched for a
factory supporting an exact matching implementation interfiase If no factory

supporting the desired implementation interface is registered, it is searched for a
factory supporting an implementation interface of the sempéementationcategory.

If none of the two name-valygairs are given, the request is passed to a factory
registered as default factory for a giveroliection_interface.” For each coorete
collection interface specified in this specification, there is one collection specific
factory defined which serves as default factory and is assumed to be registered with
CollectionFactories.

There must be a name-value pair with naroelléction_interface” given and a
factory must be registered focdllection_interface;” otherwise, the
exceptionParameterinvalid is raised.

If a desired implementation interfaemd/or an implementation category is given, a
factory with matching characteristics must be registered; otherwise, the exception
Parameterinvalid is raised.

For factories specified for each concrete collection interface in this specification, the
following additional name-value pairs are relevant:

“operations” of type An instance of a user-defined specialization of
Operations Operations which specifies element- and/or
key-type specific operations.

“expected_size” of type is anunsigned long and gives amstimate
unsigned long about the expected number of elements to be
collected.

Those parameters are not processed by the create opera@otiexftionFactories
itself, but just passed through to a registered factory.

The RACollectionFactory and RACollectionFactories Interfaces

interface RACollectionFactory {

RestrictedAccessCollection generic_create (in ParameterList
parameters) raises (Parameterinvalid);

h

The interfaceRACollectionFactory corresponds to the interface
CollectionFactory, but defines an abstract interface.

interface RACollectionFactories : RACollectionFactory {

17-74 CORBAservices: Common Object Services Specification

17

boolean add_factory (in Istring collection_interface, in Istring
impl_category, in Istring impl_interface, in RACollectionFactory
factory);

booleanremove_factory (in Istring collection_interface, in Istring

impl_category, in Istring impl_interface);

3

The interfaceRACollectionFactories corresponds to th€ollectionFactories
interface. It enables the registratiand deregistration of collections with restricted

access as well as control over thglementationchoice for a givemestricted access
collection at creation time.

The KeySetFactory Interface

interface KeySetFactory : CollectionFactory {

KeySet create (in Operations ops, in unsigned long expected_size);

%
KeySet create (in Operations ops, in unsigned long expected_size);

Creates and returns an instanceKef/Set. The given instance @perations passes
user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the eldmgnt
operations to be implemented.

Table 17-5Required element and key-type specific user-defined information for
KeySetFactory. []- implied by key_compare.

KeySet
equal compare hash | key | key_equal | key_compare | key_hash

X x] X

The KeyBagFactory Interface

interface KeyBagFactory : CollectionFactory {
KeyBag create (in Operations ops, in unsigned long expected_size);

h

KeyBag create (in Operations ops, in unsigned long expected_size);

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-75

17

Creates and returns amstance ofKeyBag. The giveninstance ofOperations passes
user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the eldmgnt
operations to be implemented.

Table 17-6Required element and key-type specific user-defined information for
KeyBagFactory. []- implied by key_compare.

KeyBag

equal compare hash | key | key_equal| key_compare | key_hash

X [X] X

The MapFactory Interface

interface MapFactory : CollectionFactory {
Map create (in Operations ops, in unsigned long expected_size);

%
Map create (in Operations ops, in unsigned long expected_size);

Creates and returns an instancéMafp. The given instance @perations passes user-
defined element and key-typeegjfic information to the collection implementation.
The following table defines the requirements for the element key operations to be
implemented.

Table 17-7Required element and key-type specific user-defined information for
MapFactory. []- implied by key_compare.

Map
equal compare hash | key | key_equal| key_compare | key_hash
X X [x] X

The RelationFactory Inteaice

interface RelationFactory : CollectionFactory {

Relation create (in Operations ops, inunsigned long expected_size);

h

Relation create (in Operations ops, in unsigned long expected_size);

17-76 CORBAservices: Common Object Services Specification

17

Creates and returns an instancdRefation. The given instance @perations passes
user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the eldmgnt
operations to be implemented.

Table 17-8Required element and key-type specific user-defined information for
RelationFactory]- implied by key_compare.

Relation
equal compare hash | key | key_equal| key_compare | key_hash
X X [X] X

The SetFactory Interface

interface SetFactory : CollectionFactory {

Set create (in Operations ops, in unsigned long expected_size);

%
Set create (in Operations ops, in unsigned long expected_size);

Creates and returns an instanceésef. The given instance @perations passes user-
defined element and key-typeegjfic information to the collection implementation.

The following table defines the requirements for the element key operations to be
implemented.

Table 17-9Required element and key-type specific user-defined information for SetFactory.[]-
implied by compare.

Set
equal compare hash | key | key_equal| key_compare | key_hash
[x] X

The BagFactory Interface

interface BagFactory {
Bag create (in Operations ops, in unsigned long expected_size);

k

Bag create (in Operations ops, in unsigned long expected_size);

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-77

17

Creates and returns an instanceBafj. The giveninstance ofOperations passes user-
defined element and key-typeejfic information to the collection implementation.
The following table defines the requirements for the element key operations to be
implemented.

Table 17-10 Required element and key-type specific user-defined information for
BagFactonjf]- implied by compee.

Bag
equal compare hash | key | key_equal| key_compare | key_hash
[x] X

The KeySortedSetFactory Interface
interface KeySortedSetFactory {

KeySortedSet create (in Operations ops, in unsigned long
expected_size);

I3
KeySortedSet create (in Operations ops, in unsigned long expected_size)

Creates and returns an instancé&Kef/SortedSet. The giveninstance ofOperations
passes user-defined elemantd key-type sgcific information to the collection
implementation. The following table defines the requirements for the eldmgnt
operations to be implemented.

Table 17-11 Required element and key-type specific user-defined information for
KeySortedSetFactory.[]- implied by key_compare.

KeySortedSet
equal compare | hash| key | key_equal | key_compare | key_hash

X [x] X

The KeySortedBagFactory Intade

interface KeySortedBagFactory : CollectionFactory {

KeySortedBag create (in Operations ops, in unsigned long
expected_size);

%
KeySortedBag create (in Operations ops, in unsigned long expected_size);

Creates and returns an instanc&ef/SortedBag. The given instance dperations
passes user-defined elemantd key-type sgcific information to the collection
implementation.

17-78 CORBAservices: Common Object Services Specification

17

The following table defines the requirements for the element key operations to be
implemented.

Table 17-12 Required element and key-type specific user-defined information for
KeySortedBagFactory.[]- implied by key_compare.

KeySortedBag

equal compare hash | key | key_equal | key_compare | key hash

X] X

The SortedMapFactory Interface

interface SortedMapFactory : CollectionFactory {

SortedMap create (in Operations ops, in unsigned long
expected_size);

%
SortedMap create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance&softedMap. The given instance @perations
passes user-defined elemantd key-type sgcific information to the collection
implementation. The following table defines the requirements for the eldmgnt
operations to be implemented.

Table 17-13 Required element and key-type specific user-defined information for
SortedMapFactorf]- implied by key_compare.

SortedMap
equal compare hash | key | key_equall key_compare | key_hash
X X [x] X

The SortedRelationFactory Interface

interface SortedRelationFactory : CollectionFactory {

SortedRelation create (in Operations ops, in unsigned long
expected_size);

>

SortedRelation create (in Operations ops, in unsigned long expected_size);

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-79

17

17-80

Creates and returns an instanc&oftedRelation. The given instance @perations
passes user-defined elemantd key-type sgcific information to the collection
implementation. The following table defines the requirements for the eldmgnt
operations to be implemented.

Table 17-14 Required element and key-type specific user-defined information for
SortedRelationFactofy- implied by key_compare.

SortedRelation

equal compare hash | key | key_equal|l key_compare | key_hash

X X [x] X

The SortedSetFactory Interface

interface SortedSetFactory : CollectionFactory {

SortedSet create (in Operations ops, in unsigned long
expected_size);

I3
SortedSet create (in Operations ops, in unsigned long expected_size);

Creates and returns an instanceSoftedSet. The given instance @perations
passes user-defined elemantd key-type sgcific information to the collection
implementation. The following table defines the requirements for the eldmgnt
operations to be implemented.

Table 17-15 Required element and key-type specific user-defined information for
SortedSetFactory. []- implied by compare.

SortedSet
equal compare | hash| key | key_equal| key_compare | key_hash
[x] X

The SortedBagFactory Interface

interface SortedBagFactory {

SortedBag create (in Operations ops, in unsigned long
expected_size);

%
SortedBag create (in Operations ops, in unsigned long expected_size);

Creates and returns an instanceSoftedBag. The giveninstance ofOperations
passes user-defined elemantd key-type sgcific information to the collection
implementation.

CORBAservices: Common Object Services Specification

17

The following table defines the requirements for the element key operations to be
implemented

Table 17-16 Required element and key-type specific user-defined information for
SortedBagFactory. []- implied by compare.

SortedBag
equal compare hash | key | key_equall key_compare | key_hash
[x] X

The Sequenceietory Interice

interface SequenceFactory : CollectionFactory {
Sequence create (in Operations ops, inunsigned long expected_size);

%
Sequence create (in Operations ops, in unsigned long expected_size);

Creates and returns an instanceSefjuence. No requirements on the element
respectively key perations to be implemented is specified f@eguence.
Nevertheless onstill has topass an instance @perations as type checking
information has to be passed to the collection implementation.

Note —As theSequence interface represents array as well as linksd

implementation of sequentially ordered collections, a service provider should offer at
least two implementains tomeet the performance requirements of the two most
common access patterns. That is, a service provider should offer an array based
implementatiorand a linkedist based implementation.

The EqualitySequené@ctory Interaice

interface EqualitySequenceFactory : CollectionFactory {

EqualitySequence create (in Operations ops, in unsigned long
expected_size);

h

EqualitySequence create (in Operations ops, in unsigned long expected_size);

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-81

17

Creates and returns an instanceegfialitySequence. The giveninstance of
Operations passes user-defined elemand key-type sgcific information to the
collection implementation. The following table defines the requirements for the
element key operations to be implemented

Table 17-17 Required element and key-type specific user-defined information for
EqualitySequenceFactory.

Equality
Sequence

equal compare hash | key | key_equall key_compare | key_hash

X

Note —As theEqualitySequence interface represents array as well as linksd
implementations of sequentially ordered collections, a service provider should offer at
least two implementains tomeet the performance requirements of the two most
common access patterns. That is, a service provider should offer an array based
implementatiorand a linkedist based implementation.

The HeapFactory Inteaice

interface HeapFactory : CollectionFactory {
Heap create (in Operations ops, in unsigned long expected_size);

%
Heap create (in Operations ops, in unsigned long expected_size);

Returns an instice of aHeap. No requirements for the element key operations to be
implemented is specified forkeap. Nevertheless, one still has to pass an instance of
Operations as type checking formation musipass to the collection implementation.

The QueueFactory Inteate

interface QueueFactory : RACollectionFactory {
Queue create (in Operations ops, in unsigned long expected_size);

%
Queue create (in Operations ops, in unsigned long expected_size);

Returns an instance of@ueue. No requirements for the element key operations to be
implemented is specified for @ueue. Nevertheless, ongtill has topass an instance

of Operations as type checking information must pass to the collection
implementation.

17-82 CORBAservices: Common Object Services Specification

17

The StackFactory Interface

interface StackFactory : RACollectionFactory {

Stack create (in Operations ops, in unsigned long expected_size);

3
Stack create (in Operations ops, in unsigned long expected_size);

Returns an instance ofStack. No requirements for the element key operations to be
implemented is specified for3tack. Nevertheless, oneilfhas to pass an instance of
Operations as type checking formation muspass to the collection implementation.

The DequeFactory Intesite

interface DequeFactory : RACollectionFactory {
Deque create (in Operations ops, in unsigned long expected_size);

b
Deque create (in Operations ops, in unsigned long expected_size);

Returns an instance oflzeque. No requirements on the element key operations to be
implemented is specified for @eque. Nevertheless, one still has to pass an instance
of Operations as type checking information must pass to the collection
implementation.

The PriorityQueueFactory Interface

interface PriorityQueueFactory : RACollectionFactory {

PriorityQueue create (in Operations ops, in unsigned long
expected_size);

%
PriorityQueue create (in Operations ops, in unsigned long expected_size);

Returns an instece of aPriorityQueue. The given instance d@perations passes
user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the eldmgnt
operations to be implemented.

Table 17-18 Required element and key-type specific user-defined information for
PriorityQueueFactory. [] - implied by key_coeue.

PriorityQueue

equal compare hash | key | key_equall key_compare | key_hash

X [x] X

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-83

17

17-84

17.5.9 lIterator Interfaces

Iterators as pointer abstraction

An iteratoris in a first approximation of a pointer abstraction. It is a movable pointer
to elements of a collection. Iterators are tightly intertwined with collections. An
iterator cannot exist aeepenantly of a collection (i.e., the iterator life tincannot

exceed that of the collection for which it is createdxolection is the factory foits
iterators. An iterator is created for a given collection and can be used for this and only
this collection.

The iterators specified in this specification form an interface hierasttigh parallels
the collection interface hierarchy. Thapported iterator movements reflect the
capabilities of the corresponding collection type.

The top levelterator interface defines a geneiiteratorusable foriterationover all
types of collections. It can be set tgtart positiorfor iteration and moved via a series
of forward movements through the collectiaisiting each element exactynce.

The Orderedilterator is supported by ordered collections only‘Khows about
ordering;" therefore, it can be moved in forward and backward direction.

The Keylterator exploits the capabiies of key collections. Itcan be moved to an
element with a given key value, advanced to the next element with the same key value,
or advanced to the next element with a different key value in iteration order.

TheKeySortedlterator is created for key collections sorted by key. The iterator can be
advanced to the previous element with the same key value or the previous element with
a different key value.

The Equalitylterator exploits the capabilities of equality collectionscéin be moved
to an element with a given value, advanced to the next element with the same element
value, or advanced to the next element with a different element value in iteration order.

TheEqualitySortedlterator is created for equality collections sorted by element value.
The iterator can be adweed to the previous elemenitiwthe same value or the
previous element with a different value.

Iterators and support for generic programming

Iterators go far beyond being simple “pointing devices.” There are essehtially
reasons to extend the capabilities of iterators.

1. To support the processing of very large collections which allows for delayed
instantiation or incrementalugry evaluation in case of very large quesgults.
These are scenarios where twdlection itself may never exist as instantiated main
memory collection but is processed in “finer grains” via an itenpéssed to a
client.

2. To enrich the iterator with more capabilities strengthensupeort for the geeric
programming model, as introduced witiN&I STL tothe C++ world.

CORBAservices: Common Object Services Specification

17

You can retrievereplace, remove, and add elements vidt@mtor. Youcantest
iterators for equality, compare ordered iterators, clonigesator,assign iterators, and
destroy them. Furthermore an iterator can hagerest designation which is set when
created. Aconst iterator can be used for access only.

Thereverse iterator semantics is supported. No extra interfaces are specified to
support this, but aeverse designation is set at creation time. An ordered iterator for
which thereverse designation is set reinterprets the operations of a given iterator type
to work in reverse.

Iterators and performance

To reduce networkraffic, combinedoperationsand batchor bulk operations are
offered.

Combinedoperations are combinations of simple iterator operations afted in

loops. These combinations support generic algorithms. For example, a typical
combination is “test whetheange end is reached; if not retrieve_element, advance
iterator to next element.”

Batchor bulk operations support the retrieval, replacement, addition, and removal of
many elements within one operation. In these operations, the “many elements” are
always passed asGORBA::sequence of elements.

The Managed Iterator Model

All iterators are managedhe realbenefit of being managed is that these iterators
never become undefined. Note that “undefined” is diffefiemh “invalid.” While

“invalid” is a testable state and means the iterator points to nothing, “undefined” means
you do not know where thigerator points to andannot inquiry it. Changing the

contents of a collection by adding or deleting elements woalde an unmanaged
iterator to become “undefined.” The iterator may still point to the same element, but it
may also point to another element or even “outside” the collection. As you do not
know the iterator statand cannot inquiry whichtate the iterator hagou are forced

to newly position the unmagediterator, for example, via set_to_first_element().

This kind of behaviorcommon in collection class libraries today, seems unacceptable
in a distributed multi-user environment. Assume one client removes and adds elements
from a collection with side effects on themanagedterators ofanother clientThe

other client is not able to test whether thhaewe been side effects ds unmaraged
iterators, but would only notice them indirectly when observing strange behavior of the
application.

Managedterators aréntimately related to the collection they belong to, and thus, can
be informed about the changes taking place within the collection. They are always in a
defined state which allows them to be used even thelgynentshave been added or
removed from the collection. An iterator may be in the statalid, that is pointing to
nothing. Before it can be used it has to be set to a validgn. An iterator in the state

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-85

17

17-86

valid may either point to an element (anduadid for all operations on it) or it may be
in the statén-betweenthat is, not pointing to an element but still “remembering"
enough state to be valid for maxierations on it.

A valid managedterator remains valid deng as the element it points to remains in
the collection. Assoon as the element is removed, the according managed iterator
enters a so-callem-betweerstate. Than-betweerstate can beiewed as a vacuum
within the collectionThere is nothing the managed iterator can point to. Nevertheless,
managedterators remember the next (and for ordered collection, also the previous)
element in iteration order. It is possible to continue using the geatigerator (in a
set_to_next_element() for example) without resetting first.

There are soménhitations. Once a managed iterator no longer points to an element, it
remembers the iteration order in which the element stood before it was deleted.
However, it does not remember the element itself. Thus, there are some operations
which cannot be performed even though a managed iterator is used.

Consider an iteration overBag, for example. If you iterate over all different elements
with the iterator operatioget_to_next_different_element(), then removing the
element the iterator points to leads to aefined behavior of theollection lateron.

By removing the element, the iterator becorimbetween The
set_to_next_different_element() operation then has no chance to find the next
different element as the collection does koow what is different in terms of the
current iterator state. Likewise, for a managed iterator irsthein-betweenall
operations ending with “..._at” are not defindthe reason isimple: There is no
element at the iterator’s position - nothingrétrieve, toreplace, or to remove in it.
This situation ishandled by raising an exceptidteratorinvalid.

Additionally, all operations that (potentially) destroy iterationorder of a collection
invalidate the corresponding managed iterators that have beendtatbim-between
before the operatiowas invoked. Thesare the sort() and the reverse() opierat

The Iterator Interface

/I lterators
interface Iterator {

Il moving iterators
boolean set_to_first_element ();
boolean set_to_next _element() raises (lteratorinvalid);

boolean set_to_next_nth_element (in unsigned long n) raises
(Iteratorinvalid);

Il retrieving elements

booleanretrieve_element(outany element) raises (lteratorinvalid,
IteratorinBetween);

CORBAservices: Common Object Services Specification

17

boolean retrieve_element_set_to_next (out any element, out boolean
more) raises (Iteratorinvalid, IteratorinBetween);

boolean retrieve_next_n_elements (in unsigned long n, out
AnySequence result, out boolean more) raises (Iteratorlnvalid,
IteratorinBetween);

boolean not_equal_retrieve_element_set_to_next (in Iterator test,
out any element) raises (lteratorinvalid, IteratorinBetween);

/I removing elements
void remove_element() raises (Iteratorlnvalid, IteratorinBetween);

boolean remove_element_set_to_next() raises (lteratorinvalid,
IteratorinBetween);

boolean remove_next_n_elements (in unsigned long n, out unsigned
long actual_number) raises (Iteratorinvalid, IteratorinBetween);

boolean not_equal_remove_element_set_to_next (in Iterator test)
raises (lteratorinvalid, IteratorinBetween);

/I replacing elements

void replace_element (in any element) raises (Iteratorinvalid,
IteratorinBetween, Elementinvalid);

boolean replace_element_set_to_next (in any element)
raises(IteratorInvalid, IteratorinBetween, Elementinvalid);

boolean replace_next_n_elements (in AnySequence elements, out
unsigned long actual_number) raises (Iteratorinvalid,
IteratorinBetween, Elementinvalid);

boolean not_equal_replace_element_set_to_next(inIteratortest,in
any element) raises(Iteratorinvalid,lteratorinBetween,
Elementinvalid);

/I adding elements

boolean add_element_set_iterator (in any element)raises
(Elementinvalid);

boolean add_n_elements_set_iterator (in AnySequence elements, out

unsigned long actual_number) raises (Elementinvalid);

Il setting iterator state

void invalidate ();

/I testing iterators

boolean is_valid ();

boolean is_in_between ();

boolean is_for(in Collection collector);

boolean is_const ();

boolean is_equal (in Iterator test) raises (lteratorinvalid);

/I cloning, assigning, destroying an iterators

Object Collection Servicerl.0 Thé&osCollection Module July 1997

17-87

17

17-88

Iterator clone ();

void assign (in Iterator from_where) raises (lteratorinvalid);
void destroy ();

%

Moving iterators

boolean set_to_first_element ();

Description

The terator is set to the first element in iteratiomler of the collection it belongs
to. If the collection is empty, that is, if no first element exists, the iterator is
invalidated.

Return value
Returnstrue if the collection it belongs to is not empty.

boolean set_to_next_element () raises (Iteratorinvalid);

Description

Sets the iterator to the next element in the collection in iteration order or invalidates
the iterator if no more elements are to be visited. If the iterator is in tharstate
betweenthe iterator is set to its “potentiaéxt” element.

Return value
Returnstrue if there is a next element.

Exceptions
The terator must be valid; otliwise, the exceptiolieratorinvalid is raised.

boolean set_to_next nth_element (in unsigned long n) raises (lteratorinvalid);

Description

Sets the iterator to the elementmovements away in collection iterationder or
invalidates the iterator if there is sach element. If thigerator is in the statm-
betweenthe movement to the “potential next” element isfirg of then
movements.

Return value
Returnstrue if there is such an element.

CORBAservices: Common Object Services Specification

17

Exceptions
The terator must be valid; otltwise, the exceptiolieratorinvalid is raised.

Retrieving elements

boolean retrieve_element (out any element) raises (Iteratorinvalid,
IteratorinBetween);

Description
Retrieves the element pointadd returns it via the outpparameteelement.

Return value
Returnstrue if an element was retned.

Exceptions

The terator must point to an element of the collection; otherwise, the exception
lteratorinvalid or IteratorinBetween is raised.

Note —Whether a copy of the element is returned or the eleitssit dgpends on the
element type represented by #hay. If it is an object, a reference to the object in the
collection is returned. If the element type is a non-object type, a copy of the element is
returned. In case of element type object, do not manipulate the element or the key of
the element in the collection in a way tlchianges the positioning property of the
element.

boolean retrieve_element_set_to_next (out any element) raises (lteratorinvalid,
IteratorinBetween);

Description

Retrieves the element pointed to and returns it via the output parastestemt.
The terator is moved to the next element in iteration order. If there is a next
elementmore is set totrue. If there are no more next elements, the iterator is
invalidatedand more is set taofalse.

Return value
Returnstrue if an element was resved.

Exceptions

The terator must be validnd point to an ement; otherwise, the exception
Iteratorinvalid or lteratorinBetween is raised.

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-89

17

17-90

boolean retrieve_next_n_elements (in unsigned long n, out AnySequence
result, out boolean more) raises (lteratorinvalid, IteratorinBetween);

Description

Retrieves at most the nentelements in iteration order of tliterator’s collection

and returns them aequence of anys via the output parametegsult. Counting

starts with the element the iterator pointsTbe iterator is moved behind tHast
element retrieved. If there is an element behind the last element retmewesljs

set totrue. If there are no more elements behind the last element retrieved or there
are less than elements for retrievathe iterator is invalidatednd more is set to

false. If the value oh is 0, all elements in the collection aetrieved untithe end

is reached.

Return value
Returnstrue if at least one element is retried.

Exceptions

The terator must be validnd point to an elment; otherwise, the exception
Iteratorinvalid or IteratorinBetween is raised.

boolean not_equal_retrieve_element_set to_next (in Iterator test, out
any element) raises (lteratorinvalid, IteratorinBetween);

Description

Compares the given iterattast with this iterator.

« If they are not equal, the element pointed to by iteisator is retrievedgnd
returned via the output parametdement, the iterator is moved to the next
element, andrue is returned.

« If they are equal, the element pointed to by this iterator is retrieved and
returned via the output parametdement, the iterator is not moved to the
next element, anthlse is returned.

Return value
Returnstrue if this iterator is noequal to the test iterator at the beginning of the
operation.

Exceptions

Theiteratorand the given iterataest each must be validnd point to arelement;
otherwise, the exceptiolteratorinvalid or IteratorinBetween is raised.

Removing elerants

void remove_element () raises (lteratorinvalid, IteratorinBetween);

CORBAservices: Common Object Services Specification

17

Description
Removes the element pointed to by tisatorand sets the iteratam-between

Exceptions
The terator must be validnd point to an element of tlwellection; otherwise, the
exceptionlteratorinvalid or IteratorinBetween is raised.

The terator must not have tleonst designationptherwise, the exception
lteratorinvalid is raised.

Side effects

Other valid iterators pointing to the removed ele meningoetween

All other iteratorskeep their state.

boolean remove_element_set_to_next() (Iteratorinvalid, IteratorinBetween);

Description

Removes the element pointed to by fitkésatorand moves théerator to the next
element.

Return value
Returnstrue if a next element exists.

Exceptions
The terator must be validnd point to an element of tlwellection; otherwise, the
exceptionlteratorinvalid is raised.

The terator must not have thtenst designationptherwise, the exception
lteratorinvalid is raised.

Side effects
Other valid iterators pointing to the removed elemeningoetween

All other iteratorskeep their state.

boolean remove_next_n_elements (in unsigned long n, out unsigned long
actual_number) raises (lteratorinvalid, IteratorinBetween);

Description

Removes amost thenextn elements in iteradn order of the iterator’s collection.
Counting starts withthe element the iterator poinis. Theiterator is moved to the

next element behind the last element removed. If there are no more elements behind
the last elementemoved or there are less tharelements for remal, theiterator

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-91

17

is invalidated. If the value af is 0, all elements in the collecti@me removed until
the end is reached. Thaitput parameteactual_number is set to the actual
number of elements removed. If the valuend$ 0, all elements in the collection
are removed until the end is reached.

Return value
Returnstrue if the iterator is not invalidated.

Exceptions
The terator must be validnd point to an ement; otherwise, the exception
lteratorinvalid or IteratorinBetween is raised.

The terator must not have tlteonst designationptherwise, the exception
lteratorinvalid is raised.

Side effects
Other valid iterators pointing to removed elementsrgbetween

All other iteratorskeep their state.

boolean not_equal_remove_element_set_to_next(in iterator test)
(Iteratorinvalid, IteratorinBetween);

Description

Compares this iterator with the givépratortest. If they are not equal the element
this iterators points to is removed and the iterator is set to the next elemeént,
true is returned. If they are equal teéeementpointed to is removed, theerator is
setin-between andfalse is returned.

Return value

Returnstrue if this iteratorand the giventératortest are not equalvhenthe
operations starts.

Exception

This iteratorand the giveriteratortest must be validtherwise the exception
Iteratorinvalid or IteratorinBetween is raised.

This iterator and the given iteraterst must not have aonst designation otherwise
the exceptioriteratorinvalid is raised.

Side effects
Other valid iterators pointing to removed elementsngbetween

All other iteratorskeep their state.

17-92 CORBAservices: Common Object Services Specification

17

Replacing elements

void replace_element (in any element) raises (Iteratorinvalid,
IteratorinBetween, Elementinvalid);

Description
Replaces the element pointed to by the given element.

Exceptions

The terator must be validnd point to an elment; otherwise, the exception
Iteratorinvalid or IteratorinBetween is raised.

The terator must not have @nst designation; otherwise, the exception
Iteratorinvalid is raised.

The eément must be of the expected element type; otherwisé&l¢meentinvalid
exception is raised.

The given element must have the same positioning property as the replaced element;
otherwise, the exceptioBlementinvalid is raised.

For positioning properties, see “The Collection Interface” on page 17-21.

boolean replace_element_set_to_next(in any element) raises (lteratorinvalid,
IteratorinBetween, Elementinvalid);

Description

Replaces the element pointed to by itesator by thegiven element and sets the
iterator to the next element. If there are no more elements, the iterator is invalidated.

Return value
Returnstrue if there is a next element.

Exceptions

The terator must be validnd point to an ement; otherwise, the exception
Iteratorinvalid or IteratorinBetween is raised.

The terator must not have @nst designation; otherwise, the exception
lteratorinvalid is raised.

The eément must be of the expected element type; otherwis&l¢émeentinvalid
exception is raised.

The given element must have the same positioning property as the replaced element;
otherwise, the exceptioBlementinvalid is raised.

For positioning properties, see“The Collection Interface” on page 17-21.

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-93

17

boolean replace_next_n_elements(in AnySequence elements, out unsigned
long actual_number) raises (lteratorinvalid, IteratorinBetween, Elementinvalid);

Description

Replaces at most as many elementsgearationorder as given irelements by the

given elements. Counting starts with the element the iterator points to. If there are
less elements ithe collection left to be replaced than the given number of elements
as many elements as possible are replaced and the actual number of elements
replaced is returned via the output paramatgual_number.

Theiterator is moved to the next element behindlédst elementeplaced. If there
are no more elements behind thstelement replaced or the number of elements in
the collection to be replaced is less than the number ghsmnents, theiterator is
invalidated.

Return value
Returnstrue if there is another element behind the last element replaced.

Exceptions

The terator must be validnd point to an ement; otherwise, the exception
Iteratorinvalid or IteratorinBetween is raised.

The eéments given must be of the expected type; otherwise, the exception
Elementinvalid is raised.

For each element theositioning property of the replaceslement must be the same
as that of the element replacing it; otherwise, the excepiementinvalid is
raised.

For positioning property see “The Collection Interface”page 17-21.

boolean not_equal_replace_element_set_to_next (in Iterator test, in any
element) raises (lteratorinvalid,lteratorinBetween, Elementinvalid);

Description

Compares this iterat@nd the given iteratdest. If they are not equal, the element
pointed to by thisterator is replaced by thgiven element, the iterator is set to the
next element, anttue is returned. If they are equal, the element pointed to by this
iterator is replaced by the givatement, theiterator is not set to theext element,
andfalse is returned.

Return value

Returnstrue if this iterator and thgiven iteratortest are not equal before the
operations starts.

17-94 CORBAservices: Common Object Services Specification

17

Exceptions
This iteratorand the giverterator must be valiind point to an element each;
otherwise, the exceptiolteratorinvalid or IteratorinBetween is raised.

This iterator mushot have aonst designation; otherwise, the exception
Iteratorinvalid is raised.

The eément must be of the expected element type; otherwisé&l¢émeentinvalid
exception is raised.

The given element must have the same positioning property as the replaced element;
otherwise, the exceptioBlementinvalid is raised.

For positioning property, see “The Collection Interface” on page 17-21.
Adding elements

boolean add_element_set_iterator (in any element) (Elementinvalid);

Description

Adds an element to the collection that this iterator poinntb sets thetérator to
the added element. The exact semantics depends onajeriies of the collection
for which this iterator is created.

If the collectionsupports unique elements or keys and the element or key is already
contained in the collection, adding is ignor@ad the terator is just set to the

element or key already contained. In sexfial collections, the elementadwvays

added agdast element. Irsorted collections, the element is added at a position
determined by the element key value.

Return value

Returnstrue if the element was added. The element to be added must be of the
expected type; otherwise, the exceptieiementinvalid is raised.

Exceptions

If the collection is a Mafand catains an element with the same key as the given
element, then this element has to be equal to the given element; otherwise, the
exceptionElementlinvalid is raised.

Side effects
All other iteratorskeep their state.

void add_n_elements_set_iterator (in AnySequence elements, out unsigned
long actual_number) (Elementinvalid);

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-95

17

17-96

Description

Adds the giverelements to the collection that this iterator poiotsThe elements

are added in the order of the input sequence of elements and the delivered semantics
is consistent with the semantics of #d_element_set_iterator operation. It is
essentially a sequence add_element_set_iterator operations. The wput
parameteractual_number is set to the number of elements added.

Setting iterator state

void invalidate ();

Description

Sets the iterator to the statevalid, that is, “pointing to nothig.” You mayalso say
that the iterator, in some sense, is set to “NULL.”

Testing iterators

Whenever there is a precondition for an iterator operation to be ethettiere is a test
operation provided that enables the user to axaiging an &ception.

boolean is_valid ();

Return value

Returnstrue if the Iterator isvalid, that is points to an element of the collection or
is in the staten-between

boolean is_for (in Collection collector);

Return value
Returnstrue if this iterator can operate on théesen collection.

boolean is_const ();

Return value
Returnstrue if this iterator is createdith “const” designation.

boolean is_in_between ();

Return value
Returnstrue if the iterator is in the statie-between

CORBAservices: Common Object Services Specification

17

boolean is_equal (in Iterator test) raises (Iteratorinvalid);

Return value
Returnstrue if the given iterator points to theddtical element as this iterator.

Exceptions

The given terator must belong to the same collection as the iteratioerwise, the
exceptionlteratorinvalid is raised.

Cloning, Assigning, Destroying iterators

Iterator clone();

Description
Creates a copy of this iterator.

void assign (in Iterator from_where) raises (Iteratorinvalid)

Description
Assigns the given iterator to thigrator.

Exceptions

The giveniterator must be created for the same collection as this iterator; otherwise,
the exceptioriteratorinvalid is raised.

void destroy();

Description
Destroys this iterator.

The Orderedlterator Interface

interface Orderedlterator: Iterator {

/I moving iterators
boolean set_to_last element ();
boolean set_to_previous_element() raises (Iteratorinvalid);

boolean set_to_nth_previous_element(in unsigned long n) raises
(Iteratorinvalid);

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-97

17

17-98

void set_to_position (in unsigned long position) raises
(Positionlnvalid);

/I computing iterator position
unsigned long position () raises (lteratorinvalid);

Il retrieving elements

boolean retrieve_element_set_to_previous(out any element, out
boolean more) raises (lteratorinvalid, IteratorinBetween);

boolean retrieve_previous_n_elements (in unsigned long n, out
AnySequence result, out boolean more) raises (Iteratorinvalid,
IteratorinBetween);

boolean not_equal_retrieve_element_set_to_previous (in lterator
test, outany element) raises (Iteratorinvalid, lteratorinBetween);

/I removing elements

boolean remove_element_set_to_previous() raises (lteratorinvalid,
IteratorinBetween);

booleanremove_previous_n_elements (inunsignedlong n,outunsigned
long actual_number) raises (Iteratorinvalid, IteratorinBetween);

boolean not_equal_remove_element_set_to_previous(in Iterator test)
raises (lteratorinvalid, IteratorinBetween);

Il replacing elements

boolean replace_element_set_to_previous(in any element) raises
(Iteratorinvalid, IteratorinBetween, Elementinvalid);

boolean replace_previous_n_elements(in AnySequence elements, out
unsigned long actual_number) raises (Iteratorinvalid,
IteratorinBetween, Elementinvalid);

boolean not_equal_replace_element_set to_previous (in Iterator
test, in any element) raises (Iteratorinvalid,lteratorinBetween,
Elementinvalid);

/I testing iterators

boolean is_first ();

boolean is_last ();

boolean is_for_same (in Iterator test);
boolean is_reverse ();

%
Moving iterators

boolean set_to_last_element();

CORBAservices: Common Object Services Specification

17

Description

Sets the iterator to the last element of the collection in iteration order. If the
collection is empty (if no last element exists) tieen iterator is invalidated.

Return value
Returnstrue if the collection is not empty.

boolean set_to_previous_element() raises (lteratorinvalid);

Description

Sets the iterator to the previous element in iteration order, or invalidates the iterator
if no such elemengxists. If the iterator is in the statebetweenthe iterator is set
to its “potential previous” element.

Return value
Returnstrue if a previous element exists.

Exceptions
The terator must be valid; oltwise, the exceptiolieratorinvalid is raised.

boolean set_to_nth_previous_element (in unsigned long n) raises
(Iteratorinvalid);

Description

Sets the iterator to the elemanmovements away in reverse collection iteration
order or invalidates the iterator if there is no such element. If the iterator is in the
statein-betweenthe movement to the “potential previous” element is the first of the
n movements.

Return value
Returnstrue if there is such aelement.

Exceptions
The terator must be valid; otliwise, the exceptiolieratorinvalid is raised.

void set_to_position (in unsigned long position) raises (Positioninvalid);

Description

Sets the iterator to the element at the given position. Position 1 specifies the first
element.

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-99

17

Exceptions

Position must be a valid position (i.e., greater than or equabktulless than or
equal tonumber_of _elements()); otherwise, the exceptidrositioninvalid is
raised.

Computing iteraor position

unsigned long position () raises (Iteratorinvalid, IteratorinBetween);

Description

Determines and returns the current posibf theiterator. Position 1 specifies the
first element.

Exceptions

The terator must be pointing to an element of the collectdinerwise, the
exceptionlteratorinvalid respectivelylteratorinBetween is raised.

Retrieving elements

boolean retrieve_element_set to_previous (out any element, out boolean
more) raises (lteratorinvalid, IteratorinBetween);

Description

Retrieves the element pointed to and returns it via the output parastestemt.

The terator is set to the previous element imdt®n order. If there is previous
elementmore is set totrue. If there are no more previous elements, the iterator is
invalidatedand more is set tofalse.

Return value
Returnstrue if an element was returned.

Exceptions

The terator must be validnd point to an ement; otherwise, the exception
Iteratorinvalid or IteratorinBetween is raised.

boolean retrieve_previous_n_elements(in unsigned long n, out AnySequence
result, out boolean more) raises (lteratorinvalid, IteratorinBetween);

17-100 CORBAservices: Common Object Services Specification

17

Description

Retrieves at most the previous elements in iteration order of thierator’s
collectionand returns them aequence of anys via the output parametezsult.
Counting starts with the element the iterator is pointing heiterator is meed to
the element before the last element retrieved.

« |f there is an element before the last elentetrieved, more is set totrue.

« |f there are no more elements before the last element retrieved or there are less
thann elements for retrievathe iterator is invalidatednd more is set tofalse.

« If the value ofn is 0, all elements in the collection are retrieved untilehe is
reached.

Return value
Returnstrue if at least one element is retried.

Exceptions

The terator must be validnd pointing to an element; otherwise, the exception
Iteratorinvalid or IteratorinBetween is raised.

boolean not_equal_retrieve_element_set to_previous (in lterator test, out any
element) raises (lteratorinvalid, IteratorinBetween);

Description

Compares the given iterattast with this iterator.

« If they are not equal, the element pointed to by iteisator is retrievegnd
returned via the output parametdement, the iterator is moved to the previous
element, andrue is returned.

« If they are equal, the element pointed to by this iterator is retrieved and
returned via the output parametdement, the iterator is not moved to the
previous element, arfdlse is returned.

Return value
Returnstrue if this iterator is noequal to the test iterator at the beginning of the
operation.

Exceptions

Theiteratorand the giventératortest each must be valid and point to an element;
otherwise, the exceptiolteratorinvalid or IteratorinBetween is raised.

Replacing elements

boolean replace_element_set_to_previous(in any element) raises
(Iteratorinvalid, IteratorinBetween, Elementinvalid);

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-101

17

Description

Replaces the element pointed to by itesator by thegiven element and sets the
iterator to the previous element. If there are no previous elements, the iterator is
invalidated.

Return value
Returnstrue if there is a previous element.

Exceptions
The terator must be validnd point to an elment; otherwise, the exception
Iteratorinvalid or IteratorinBetween is raised.

The terator must not have @nst designation; otherwise, the exception
Iteratorinvalid is raised.

The eément must be the expected element type; otherwis&|&meentinvalid
exception is raised.

The given element must have the same positioning property as the replaced element;
otherwise, the exceptioBlementinvalid is raised.

For positioning properties, see“The Collection Interface” on page 17-21.

boolean replace_previous_n_elements(in AnySequence elements, out
unsigned long actual_number) raises (lteratorinvalid, IteratorinBetween,
Elementinvalid);

Description

At most, replaces as many elements in reverse iteration order as given in
elements. Counting starts with thelement the iterator points to. If there are less
elements in the collection left to be replaced thangilren number of elements as
many elements as possible are replaced and the actual number of elements replace
is returned via the output paramegetual_number.

The terator is moved to the element before the last element replaced. If there are no
more elementbefore the last element replaced or the number of elements in the
collection to be replaced is less than the number of given elements, the iterator is
invalidated.

Return value
Returnstrue if there is an element before theest element replad.

Exceptions

The terator must be validnd point to an elment; otherwise, the exception
Iteratorinvalid or IteratorinBetween is raised.

17-102 CORBAservices: Common Object Services Specification

17

The eéments given must be of the expected type; otherwise, the exception
Elementinvalid is raised.

For each element th@ositioning property of the replacedlement must be the same
as that of the element replacing it; otherwise, the excepiementinvalid is
raised.

For positioning property, see “The Collection Interface” on page 17-21.

boolean not_equal_replace_element_set_to_previous (in Iterator test, in any
element) raises (lteratorinvalid,lteratorinBetween, Elementinvalid);

Description
Compares this iterat@nd the giventératortest.

« If they are not equal, the element pointed to by iteisator isreplaced by the
given element, the iterator is set to the previelesnentandtrue is returned.

« If they are equal, the element pointed to by this iterator is replaced by the given
element, the iterator is not set to the previous elenaenifalse is returned.

Return value

Returnstrue if this iterator and thgiven iteratortest are not equal before the
operations starts.

Exceptions

This iteratorand the giveriterator each must be valid and point to an element;
otherwise, the exceptiolteratorinvalid or IteratorinBetween is raised.

This iterator mushot have aonst designation; otherwise, the exception
lteratorinvalid is raised.

The eément must be of the expected element type; otherwis&lémeentinvalid
exception is raised.

The given element must have the same positioning property as the replaced element;
otherwise, the exceptioBlementinvalid is raised.

For positioning property, see “The Collection Interface” on page 17-21.
Removing elerants

boolean remove_element_set to_previous() raises (lteratorinvalid,
IteratorinBetween);

Description

Removes the element pointed to by titksatorand moves théerator to the
previous element.

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-103

17

Return value
Returnstrue if a previous element exists.

Exceptions
The terator must be validnd point to an element of tlwellection; otherwise, the
exceptionlteratorinvalid is raised.

The terator must not have tleonst designationptherwise, the exception
lteratorinvalid is raised.

Side effects

Other valid iterators pointing to the removed ele meningoetween

All other iteratorskeep their state.

boolean remove_previous_n_elements (in unsigned long n, out unsignhed long
actual_number) raises (lteratorinvalid, IteratorinBetween);

Description

Removes at most the previonslements in reverse iterationder of the iterator’s
collection. Counting startsith the element the iterator points to. Tikerator is
moved to theelementbefore the last element removed.

« If there are no more elements before the last element removed or there are less
thann elements for removal, the iterator is invalidated.

« If the value ofn is 0, all elements in the collection are removed until the
beginning is reached. The output paramatgual _number is set to the actual
number ofelements remaad.

Return value
Returnstrue if the iterator is not invalidated.

Exceptions

The terator must be validnd point to an elment; otherwise, the exception
Iteratorinvalid or IteratorinBetween is raised.

The terator must not have tleonst designationptherwise, the exception
Iteratorinvalid is raised.

Side effects
Other valid iterators pointing to removed elementdrgbetween

All other iteratorskeep their state.

boolean not_equal_remove_element_set_to_previous(in Iterator test) raises
(Iteratorinvalid, IteratorinBetween);

17-104 CORBAservices: Common Object Services Specification

17

Description

Compares this iterator with the given iteratest.

* If they are not equal, the element this iterator points to is removed, the iterator is
set to the previous element, atnde is returned.

« If they are equal, the element pointed to is removediténator is sein-between
andfalse is returned.
Return value
Returnstrue if this iterator and the given iterattest are equal when theperation
starts.
Exceptions

This iteratorand the giveriteratortest must be validptherwise, the exception
Iteratorinvalid or IteratorinBetween is raised.

This iteratorand the giverteratortest must nothave aconst designation;
otherwise, the exceptiolteratorinvalid is raised.

Side effects
Other valid iterators pointing to the removed elemeningoetween

All other iteratorskeep their state.
Testing iterators

boolean is_first ();

Return value
Returnstrue if the iterator points to thérst element othe collection it belongs to.

boolean is_last ();

Return value
Returnstrue if the iterator points to the last element of the coltecit belongs to.

boolean is_for_same (in Iterator test);

Return value
Returnstrue if the given iterator is for the same collection as this.

boolean is_reverse();

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-105

17

17-106

Return value
Returnstrue if the iterator is created with “verse” designation.

The Sequentiallterator Interface

interface Sequentiallterator : Orderedlterator {
/I adding elements

boolean add_element_as_next_set_iterator (in any element)
raises(Iteratorinvalid, Elementlinvalid);

void add_n_elements_as_next_set_iterator(in AnySequence elements)
raises(IteratorInvalid, Elementinvalid);

boolean add_element_as_previous_set_iterator(in any element)
raises(Iteratorinvalid, Elementinvalid) ;

void add_n_elements_as_previous_set_iterator(in AnySequence
elements) raises(Iteratorinvalid, Elementinvalid);

5
Adding elements

boolean add_element_as_next_set _iterator (in any element)
raises(lteratorinvalid, Elementinvalid);

Description

Adds the element to the collection that this iterator points to (in iteration order)
behind the element this iterator points to and sets the iterator &betime ntadded.

If the iterator is in the state-betweenthe element is added before the “potential
next” element.

Return value
Returnstrue if the element isadded.

Exceptions
The terator must be valid; otliwise, the exceptiolieratorinvalid is raised.

The eément added must be of the expected type; otherwise, the exception
Elementinvalid is raised.

Side effects
All other iteratorskeep their state.

void add_n_elements_as_next_set_iterator(in AnySequence elements)
raises(lteratorinvalid, Elementinvalid);

CORBAservices: Common Object Services Specification

17

Description

Adds the giverelements to the collection that this iterator points to behind the
element the iterator points to. Thehavior is the same astimes calling the
operationadd_element_as_next_set_iterator().

If the iterator is in the staia-betweenthe elements are added before the “potential
next” element.

The eéments are added in the order given in the input sequence.

boolean add_element_as_previous_set_iterator(in any element)
raises(lteratorinvalid, Elementinvalid)

Description

Adds the element to the collection that this iterator points to (in iteration order)
before the element that this iterator points to and sets the iterator to the element
added. If thaterator is inthe statdan-betweenthe element is added after the
“potential previous” element.

Return value
Returnstrue if the element isadded.

Exceptions
The terator must be valid; oltwise, the exceptiolieratorinvalid is raised.
The eément added must be of the expected type; otherwise, the exception
Elementinvalid is raised.

Side effects
All other iteratorskeep their state.

void add_n_elements_as_previous_set_iterator(in AnySequence elements)
raises(lteratorinvalid, Elementinvalid);

Description

Adds the given elements to teellection that this iterator points to previous to the
element the iterator points to. Thehavior is the same astimes calling the
operationadd_element_as_previous_set_to_next().

If the iterator is in the state-betweenthe elements are added behind the “potential
previous” element.

The eéments are added in the reverse order given in the input sequence.

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-107

17

The Keylterator Interface

interface Keylterator : Iterator {
/I moving the iterators
boolean set_to_element_with_key (in any key) raises(Keylnvalid);

boolean set_to_next_element_with_key (in any key)
raises(Iteratorinvalid, Keylnvalid);

boolean set_to_next_element_with_different_key() raises
(IteratorinBetween, Iteratorinvalid);

/I retrieving the keys

boolean retrieve_key (out any key) raises (IteratorinBetween,
Iteratorinvalid);

boolean retrieve_next_n_keys (out AnySequence keys) raises
(IteratorinBetween, Iteratorinvalid);

b
Moving iterators

boolean set_to_element with_key (in any key) raises (Keylnvalid);

Description
Locates an element in the collection with the same key as the given key. Sets the
iterator to the element located or invalidates the iterator suah element exists.

If the collection contains severslich elements, ther$t element in iteratioorder
is located.

Return value
Returnstrue if an element was found.

Exceptions
The key must be of the expected type; otherwise, the excdfstiginvalid is raised.

boolean set_to_next _element_with_key (in any key) raises (Iteratorinvalid,
Keylnvalid);

Description

Locates the next element in iteratiomer with the same key value as the given key,
starting search at the element next to the one pointed to by the iterator. Sets the
iterator to the element located.

« If there is no such element, the iterator is invalidated.

« If the iterator is in the stat@-betweenlocating starts at the iterator’s “potential
next” element.

17-108 CORBAservices: Common Object Services Specification

17

Return value
Returnstrue if an element was found.

Exceptions
The terator must be valid; odltwise, the exceptiotteratorinvalid is raised.

The key must be of the expected type; otherwise, the excdfgtiginvalid is raised.

boolean set_to_next_element_with_different_key () raises (lteratorinBetween,
Iteratorinvalid)

Description

Locates the nextlement in iteratiororder with a key different from the key of the
element pointed to by the iteratstartingthe search with the element next to the
one pointed to by thiterator. Sets thdterator to the located element.

If no such element exists, the iterator is invalidated.

Return value
Returnstrue if an element was found.

Exceptions

The terator must be validnd point to an elment; otherwise, the exception
IteratorinBetween respectivelteratorinvalid is raised.

Retrievingkeys

boolean key (out any key) raises(lteratorinvalid,lteratorinBetween);

Description

Retrieves the key of thelement this iterator points &nd returns it via the output
parametekey.

Exceptions

The terator must be validnd point to an elment; otherwise, the exception
Iteratorinvalid or IteratorinBetween is raised.

boolean retrieve_next_n_keys (in unsigned long n, out AnySequence keys)
raises(lteratorinvalid, lteratorinbetween)

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-109

17

Description

Retrieves the keys of at most the nextlements in iteration order, sets the iterators
to the element behind the last element from which a kegtisved, and returns
them via the output parametezys. Counting starts with thelement this iterator
points to.

« If there is no elemertiehind the last element from whictkay is retrieved or
there are less them elements to retrieve keys from the iterator is invalidated.

« If the value ofn is 0, the keys of all elements in thellection are retrieved until
the end is reached.

Return value
Returnstrue if at least one key is retrieved.

Exceptions

The terator must be validnd point to an elment; otherwise, the exception
Iteratorinvalid or IteratorinBetween is raised.

The Equalitylterator Interface

interface Equalitylterator : Iterator {
Il moving the iterators

boolean set_to_element_with_value(in any element)
raises(Elementinvalid);

boolean set_to_next_element_with_value(in any element)
raises(Iteratorinvalid, Elementlinvalid);

boolean set_to_next_element_with_different_value() raises
(IteratorinBetween, Iteratorinvalid);

b
Moving iterators

boolean set_to_element with_value (in any element) raises(Elementinvalid);

Description

Locates an element in the collection that is equal to the given element. Sets the
iterator to the located element or invalidates the iterator if no such element exists. If
the collection contains severmlich elements, ther$t element in iteratioorder is
located.

Return value
Returnstrue if an element is found.

17-110 CORBAservices: Common Object Services Specification

17

Exceptions

The element must be of the expected type; otherwise, the expeleentinvalid
is raised.

boolean set_to_next_element_with_value(in any element) raises
(Iteratorinvalid, Elementinvalid);

Description

Locates the next element in iteration order in the collection thatis equal to the given
element, starting at the elemamext to the one pointed to by titerator. Sets the
iterator to the located element in the collection.

« If there is no such element, the iterator is invalidated.

« If the iterator is in the stat@-betweenlocating is started at the iterator’s
“potential next” element.

Return value
Returnstrue if an element was fou.

Exceptions
The terator must be valid; o#itwise, the exceptiotteratorinvalid is raised.

The element must be of the expected type; otherwise, the excEfdimentinvalid
is raised.

boolean set_to_next different_element () raises (Iteratorinvalid,
IteratorinBetween);

Description

Locates the next element in iteration order that is different from the element pointed
to. Sets théterator to the located element, or if Bech element exists, therator
is invalidated.

Return value
Returnstrue if the next different element was found.

Exceptions

The iterator must be validnd point to an element of tleellection; otherwise, the
exceptionlteratorinvalid or IteratorinBetween is raised.

The EqualityKeylterator Interface

interface EqualityKeylterator : Equalitylterator, Keylterator {};

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-111

17

This interface just combines the two interfaéggpialitylterator (see“The
Equalitylterator Interface” on page 17-110) afdylterator (see The Keylterator
Interface” on page 17-108).

The Sortedlterator Interface

interface Sortedlterator : Orderedlterator {};

This interface does not add any new operations but new sem#mthe
operatins.

The KeySortedIterator Interface

/I enumeration type for specifying ranges

enum LowerBoundStyle {equal_lo, greater, greater_or_equal};
enum UpperBoundStyle {equal_up, less, less_or_equal};
interface KeySortediterator : Keylterator, Sortedlterator

{

/I moving the iterators

boolean set_to_first_element_with_key (in any key, in
LowerBoundStyle style) raises(Keylnvalid);

booleanset_to_last_element_with_key (inanykey,inUpperBoundStyle
style) raises (Keylnvalid);

boolean set_to_previous_element_with_key (in any key)
raises(Iteratorinvalid, Keylnvalid);

boolean set_to_previous_element_with_different_key() raises
(IteratorinBetween, Iteratorinvalid);

Il retrieving keys

boolean retrieve_previous_n_keys(out AnySequence keys) raises
(IteratorinBetween, Iteratorinvalid);

%
Moving iterators

boolean set_to_first_element_with_key (in any key, in LowerBoundStyle style)
raises (Keylnvalid);

Description
Locates the fst element in iteration order in the collection with key:
» equal to the given key, dtyle is equal_lo
 greater or equal to the given keystlle is greater_or_equal
« greater than the given key, sfyle is greater

Sets the iterator to the located element, or invalidates the iterator if no such element
exists.

17-112 CORBAservices: Common Object Services Specification

17

Return value
Returnstrue if an element was found.

Exceptions
The key must be of the expected type; otherwise, the excdfstiginvalid is raised.

boolean set _to_last element with_key(in any key, in UpperBoundStyle style);

Description
Locates the last element in iteration order in the collection with key:
» equal to the given key, #tyle is equal_up
* less or equal to the given key,sifyle is less_or_equal
« less than the given key, style is less

Sets the iterator to the located element, or invalidates the iterator if no such element
exists.

Return value
Returnstrue if an element was found.

Exceptions
The key must be of the expected type; otherwise, the excdfgtiginvalid is raised.

boolean set_to_previous_element_with_key (in any key) raises(lteratorinvalid,
Keylnvalid);

Description

Locates the previous element in iteration order with a key equal to the given key,
beginning at the element previous to the one pointed to and moving in reverse
iteration order through thelementsSets the iterator to the located element, or
invalidates the iterator if nsuchelement exists. If the iterator is in the state
betweenthe search begins at the iterator’s “potential previous” element.

Return value
Returnstrue if an element was found.

Exceptions
The terator must be valid; odliwise, the exceptiolieratorinvalid is raised.

The key must be of the expected type; otherwise, the excdftiginvalid is raised.

boolean set_to_previous_element_with_different_key() raises
(IteratorinBetween, Iteratorinvalid);

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-113

17

17-114

Description
Locates the previous elementiiaration ordemwith a key different from the key of

the element pointed to, beginning search at the element previous to the one pointed

to and moving in reverse iteration order tgh theelementsSets the iterator to
the located element, or invalidates ttexator if nosuchelement exists.

Return value
Returnstrue if an element was found.

Exceptions

The terator must be validnd point to an elment; otherwise, the exception
IteratorinBetween or Iteratorinvalid is raised.

Retrievingkeys

boolean retrieve_previous_n_keys (in unsigned long n, out AnySequence keys)
raises(lteratorinvalid, Iteratorinbetween)

Description

Retrieves the keys of at most the previauslements in iteration order, sets the
iterators to the element before the last element from which a keyrisved, and
returns them via the output parameteys. Counting starts with the elemethis
iterator points to.

« If there is no elemerngrevious the on&om which the ntrkey is retrieved or if
there are less tham elements to retrieve keys from, the iterator is invalidated.

« If the value ofn is 0, the keys odll elements in the collection aretrieved until
the beginning is reached.

Return value
Returnstrue if at least one key is retrieved.

Exceptions

The terator must be validnd point to an ement; otherwise, the exception
Iteratorinvalid or IteratorinBetween is raised.

The EqualitySortedIterator Interface

interface EqualitySortedlterator : Equalitylterator, Sortedlterator
{

/I moving the iterator

boolean set_to_first_element_with_value (in any element, in
LowerBoundStyle style) raises (Elementinvalid);

boolean set_to_last_element_with_value (in any element, in
UpperBoundStyle style) raises (Elementinvalid);

CORBAservices: Common Object Services Specification

17

boolean set_to_previous_element_with_value (in any elementally)
raises (lteratorinvalid, Elementinvalid);

boolean set_to_previous_element_with_different_value() raises
(IteratorinBetween, Iteratorinvalid);

%
Moving iterators

boolean set_to_first_element_with_value (in any element, in LowerBoundStyle
style) raises(Elementinvalid);

Description
Locates the fst element in iteration order in the collection with value:
» equal to the given element valuestyle is equal_lo
 greater or equal to the given element valushyjfe is greater_or_equal
* greater than the given element valuestifle is greater

Sets the iterator to the located element, or invalidates the iterator if no such element
exists.

Return value
Returnstrue if an element was found.

Exceptions

The element must be of the expected type; otherwise, the excEpimantinvalid
is raised.

boolean set_to_last_element with_value(in any element, in UpperBoundStyle
style) raises (Elementlinvalid);

Description
Locates the last element in iteration order in the collection with value:
» equal to the given element valuestfle is equal_up
* less or equal to the given element valuestyfle is less_or_equal
* less than the given element valuestle is less

Sets the iterator to the located element, or invalidates the iterator if no such element
exists.

Return value
Returnstrue if an element was found.

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-115

17

17-116

Exceptions

The element must be of the expected type; otherwise, the excEfdimentinvalid
is raised.

boolean set_to_previous_element_with_value(in any element)
raises(lteratorinvalid, Elementinvalid);

Description

Locates the previous element in iteration order with a value equal to the given
element value, beginning search at the element previous to the one pointed to and
moving in reverse iteration order through the elements. Sets the iterator to the
located element, or invalidates the iterator if no such element exists. If the iterator is
in the statan-betweenthe search begins at the iterator’s “potential previous”
element.

Return value
Returnstrue if an element was found.

Exceptions
The terator must be valid; odliwise, the exceptiolieratorinvalid is raised.

The element must be of the expected type; otherwise, the excEfdimentinvalid
is raised.

boolean set_to_previous_element_with_different_value() raises
(IteratorinBetween, Iteratorinvalid);

Description

Locates the previouslement in iteratiomrder with a value different from the value

of the element pointed to, beginning search at the element previous to the one
pointed to and moving in revergerationorder through the elements. Sets the
iterator to the located element, or invalidates the iterator if no such element exists.

Return value
Returnstrue if an element was found.

Exceptions

The terator must be validnd point to an elment; otherwise, the exception
lteratorinBetween or Iteratorinvalid is raised.

The EqualityKeySortedlIterator Interface

interface EqualityKeySortedlterator: EqualitySortediterator,
KeySortedlterator {};

CORBAservices: Common Object Services Specification

17

This interface combines the interfadesySortedlterator and
EqualitySortedliterator. This interface does not add angw operations, but new
semantics.

The EqualitySequentiallterator Interface

interface EqualitySequentiallterator : Equalitylterator,
Sequentiallterator

{

/I locating elements

boolean set_to_first_element_with_value (in any element) raises
(Elementinvalid);

boolean set_to_last_element_with_value (in any element) raises
(Elementlnvalid);

boolean set_to_previous_element_with_value (in any element) raises
(Elementinvalid);

b
Moving lterators

boolean set_to__ first element_with_value (in any element)
raises(Elementinvalid);

Description

Sets thdterator to thefirst element in iteration order in the collection that is equal
to the givenelement or invalidates the iterator if no such element exists.

Return value
Returnstrue if an element was found.

Exceptions

The element must be of the expected type; otherwise, the excEfdimentinvalid
is raised.

boolean set_to_last_element (in any element) raises(Elementinvalid);

Description

Sets the iterator to the last elementtérationorder in the collection that is equal
to the givenelement or invalidates the iterator if no such element exists.

Return value
Returnstrue if an element was found.

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-117

17

17-118

Exceptions

The element must be of the expected type; otherwise, the excEfdimentinvalid
is raised.

boolean set_to_previous_element_with_value (in any element) raises
(Iteratorinvalid, Elementinvalid);

Description

Sets the iterator to the previous element in iteration order that is equal to the given

element, beginning search at the element previous to the one specified by the
iteratorand moving in reverse iteration order through the elements. Setsriduo!i
to the located element or invalidates ttezator if nosuchelement exists. If the

iterator is in the statm-betweensearch starts at the “potential precioe$gment.

Return value
Returnstrue if an element was found.

Exceptions
The terator must be valid; oltwise, the exceptiolieratorinvalid is raised.

The element must be of the expected type; otherwise, the excEfdimentinvalid
is raised.

17.5.10 Function Interfaces

The Operations Interface

Interface Operations {

/I element type specific information

readonly attribute CORBA:: TypeCode element_type;
boolean check_element_type (in any element);
boolean equal (in any elementl, in any element2);
long compare (in any elementl, in any element2);

unsigned long hash (in any element, in unsigned long value);

Il key retrieval

any key (in any element);
Il key type specific information

readonly attribute CORBA::TypeCode key_type;
boolean check_key_type (in any key);

CORBAservices: Common Object Services Specification

17

boolean key_equal (in any key1, in any key?2);
long key_compare (in any keyl, in any key?2);

unsigned long key_hash (in any thiskKey, in unsigned long value);

/Il destroying
void destroy();

h

The function interfac®perations is used to pass a number of other user-
defined element type specific information to the collection implementation.

The first knd of element type specific informatigpassed is used for typechecking.
There are attributes specifying the elemmmd key type expected in a given collection.

In addition to the type information there dveo typechecking operations which allow
customizing the typechecking in a user-defined manner. The “default semantics” of
these operations is a simple check on whether the type code of the given element or
key exactly matches the type code specified inefeenentkey type attribute.

Dependent on the properties as representeddnllection interface the respective
implementation relies on someeslent type specific or key type specific information
to be passed to it. For example one has to passftivenation “element comparison”
to implementation of &ortedSet or “key equality” to themplementation of a
KeySet to guarantee unigueness of keys. To phissinformation, theDperations
interface is used.

The third use of this interface is to pass elemerkegrtype specific

information relevant for different categories of implementations. (Performing)
implementations of associative collections essentially can be partitioned into the
categories comparison-based or hashing-based. An AVliringle menétion for a

KeySet (for example) is key-comparison-based; thereforegliés on key comparison
defined and a hash table implementatioiKeySet hashing-based (which relies on the
information how a hash key values). Passing this information is the third kind of usage
of the Operations interface.

The operations defined in ti@perations interface are in summary:
® element type checking and key type checking

® element equalitand the ordering relationship on elements

* Kkey equality and orderingelationship orkeys

® key access

® hash information orlementsand keys

In order to pass this farmation to the collection, a uskas to deriveand implement
an interface from the interfac@perations. Which operations you have to implement
depends on the collection interface andithplementation categoryou want to use.
An instance of this interface is passed to a collection at creati@nand then can be
used by themplemenation.

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-119

17

17-120

Ownership for arOperations instance is passed to the collection at creation

time. That is, the same instance@perations respectively a derived interface cannot
be used in another collection instantle colection is responsible for destroying the
Operations instance when the collection is destroyed.

Operations only defines an abstract interface. Specializationiampdementation are
part of the application development as is the definisodimplementation of
respective factorieand are not listed ithis specification.

Element type specific operations

readonly attribute CORBA::TypeCode element_type;

Description
Specifies the type of the element to be collected.

boolean check_element_type (in any element);

Description

A collection implementation may rely on this operatloging defined to use it
for its type checking. A default implementat may be a simple test whether
the type code of the given element exactly matetement_type. For object
references, sometimes a check on equality of the type codes is not desired but a
check on whether the type of the given element is a specialization of the
element_type.

Return value

Returnstrue if the given element passed the user-defined element type-
checking.

boolean equal (in any elementl, in any element2);

Return value

Returnstrue if elementl is equal teelement2 with respect to the user-defined
semantics of element equality.

Note —If casecompare is defined, the equal operation has to be consistently defined
(i.e., is implied by the defined element comparison).

long compare (in any elementl, in any element2);

CORBAservices: Common Object Services Specification

17

Return value

Returns a value less than zer@iémentl < element2, zero if the values are
equal, and a value greater than zerelé@mentl > element2 with respect to the
user-defined ordering relationship on elements.

unsigned long hash (in any element, in unsigned long value);

Return value

Returns a user-defined hash value for the gelement. The givervalue specifies

the size of the hashtable. This informatizan be used for the implementation of
more or less sophisticated hash functions. Computed hash values have to be less
thanvalue.

Note —The definition of the hash function has to be consistent with the defined
element equality (i.e., if two elements a&gual with respect to the user-defined
element equality they have to hashed to the same hash value).

Computing thekey

any key (in any element);

Description
Computes théuser-definedkey of the given element.

Key typespecific information

readonly attribute CORBA::TypeCode key_type;

Description
Specifies the type of the key of the elements to be collected.

boolean check_key type (in any key);

Return value
Returnstrue if the given key passed the user-defined element type-checking.

boolean key _equal (in any keyl, in any key2);

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-121

17

17-122

Return value

Returnstrue if keyl is equal takey2 with respect to the user-defined semantics of
key equality.

Note —If casekey _compare is defined, thekey equal operation has to be
consistently defined (i.e., is implied by the defifexy comparison). When both key
and element equality are defined, the definitibage to be consistent in the sense that
element equalithas to imply key equality.

key_compare (in any keyl, in any key?2);

Return value

Returns a value less than zerkéfyl < key2, zero if the values are equal, and a
value greater than zerokkyl > key2 with respect to the user-defined ordering
relationship on keys.

unsigned long key_hash (in any key, in unsigned long value);

Return value

Returns a user defined hash value for the gkan The givernvalue specifies the
size of the hashtable. This information can be used fointpeementabn of more

or less sophisticated hash functions. Computed hash values have to be less than
value.

Note —The definition of the hash function has to be consistent with the defined key
equality (ie., if two elements are equal with respected to the user defined element
equality they have to be hashed to the same hash value).

Destroying the Operatins instance

void destroy();
Destroys the operations instance.

The Command and Comparator Interface

Command and Comparator are auxiliary interfaces.

CORBAservices: Common Object Services Specification

17

A collection service provider may either provide the interfaces only or a default
implementation that raises an exceptiohewever an ogration of these interfaces is
called. In either case, a user is forced to providgher implementation of either the
interfaces or a derived interface to make use of them in temtipns
all_elements_do, andsort.

The Command Interface

An instance of an interface derived fr&dbommand is passed to the operation
all_elements_do to be applied to all elements of the collection.

interface Command {
boolean do_on (in any element);

k

The Comparaor Interface

An instance of a user defined interface derived fl@@amparator is
passed to the operati®ort as sorting criteria.

interface Comparator {
long compare (in any elementl, in any element2);
¥

Thecompare operation of the ser's comparator (interface derived fr@omparator)
must return a result according to the following rules:

>0 if elementl > element?2)
0 if elementl = element2)
<0 if (elementl < element2)

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-123

17

Appendix A OMG Object Query Service

A.1 Object Query Service Differences

Identification and Justification of Diffences

The relationship between the Object Collection Service (OCS) and the Object Query
Service (AMS) is two-fold. The Object Query Service uses collectiongj@ery result
and as scope of query evaluation.

Theget_result operation ofCosQuery::Query for example and thevaluate
operation ofCosQuery::QueryEvaluator may return a collection as result or may
return an iterator to the query result.

There may be QueryEvaluator implementation that takes a collection instance
passed as input parameter to evaluate a query on this collection which specifies the
scope of galuation. The query evaluator implementation relies orCibiéection

interface and the generiterator being supported by the collection passed.

A CosQuery::QueryableCollection is a special case of query evaluator which allows
a collection to serve directly as the scope to which a query may be applied. As
QueryableCollection is derived fromCollection a respective instance can serve to
collect a query result to which further query evaluation is applied.

Both usages of collections - as query result and as scope of evaluation - rely on the fact
that a minimum collection interface representing a generic aggregation capability is
supported as a common root fdf collections. Further, they rely on a gendtarator

that can baised oncollections independent of their type.

Summarizing, Object Querye®vice essentially @pends on a generic collection service
matching some minimal requirements. As Objeaefy Service was defined when
therewas notyet any Object Collection Service specification available a generic
collection servicavas defined apart of the Query Service specification.

The CosQueryCollection module defines three interfaces:
® CollectionFactory: provides a generic creation capability
® Collection: defines a generic aggregation capability

® lterator: offers a minimal interface to traverse a collection.

Those interfaces ggify theminimal requirements of OQS togeneric collection
service. The following discusses whether it is possible to reflas®ueryCollection
module by respective interfaces in tBesCollection module as defined in this
specification. Differences are identifi@thd justified.

In anticipation of the details given in the next paragraprcavesummarize:

17-124 CORBAservices: Common Object Services Specification

17

® The CosCollection::Collection top level collection interface matches the
CosQueryCollection::Collection interface except for minafifferences.
Collections as defined in théosCollection module can be used with Query
Service.

® TheCosCollection::Collection top level collection interface proposes an operation
which one may consider as an overlaghwvthe Object Query Service function. The
operationall_elements_do which can be considered a special case of query
evaluation.

® The CosCollection::lterator top level iterator interface is consistent with
CosQueryCollection::lterator interface in the sense that operations defined in
CosQueryCollecton::lterator are supported i€osCollection::lterator. In
addition a managed iterator semantics is defined which is reflected in the specified
side effects on iterats for modifying collection operations. This diffdrem the
iterator semantics defined in the Object Query Service specification but is
considered a requirement in a distributed environment.

® There are a number of operations in @&sCollection::Iterator interface you do
not find in theCosQueryCollection::lterator interface. They are defined in the
CosCollection::Iterator interface to provide support for performidgstributed
processing of very largeollections and to support the generic programming model
as introduced with ANSI STL to the C++ world.

® Therestricted acess collections which are part of thimposal do not inherit from
the top levelCosCollection::Collection interface. They cannot be used with Object
Query Service as they are. But this is in the inherent nature oéslrectedaccess
semantics of these collectioaad is not considered to be a problem. Nevertheless,
the interfaces of the restricted access collections allow combining them with the
collections of the combined property collections hierarchynvidtiple inheritance
to enable usage of restricted access collections within the Object Query Service. In
doing so, theestricted access collections lose thuarantee forestricted acess,
but only support interfaces offering the commouobed oration names for
convenience.

® The CosQueryCollection::CollectionFactory defines the exact same interface as
CosCollection::CollectionFactory.

Replacing the interfaces defined in the Obj@cery ServicaCosQuery::Collection
module by the respective interface defined in this specification, the Object Collection
Service enables thfellowing inheritance relationship:

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-125

17

OCSs
Collection
T
|
I
-—_— = —
\
‘ 0Qs
Queryable
| Collection
\
\
|
Any
OCS Collection
Any

Queryable
OCS Collection

Figure 17-4 Inheritance Relationships

A detailed comparison of the interfaces is given in the following sections and is
outlined along theCosQueryCollection module definitions.

CosQueryCollection Module Detailed Comparison

Exception Definitions
The following mapping of exceptions holds true:

® CosQueryCollection::Elementinvalid maps toCosCollection::Elementinvalid

® CosQueryCollection::lteratorinvalid maps toCosCollection::lteratorinvalid
(with IteratorinvalidReason not_for_collection)

® CosQueryCollection::Positioninvalid maps toCosCollection::Iteratorinvalid
(with IteratorinvalidReason is_invalid) andCosCollection::lteratorinBetween

Type Definitions

There are a number of type definitions in tbesQueryCollection module for the
mapping of SQL data types and for defining the tiRexord. These types are Object
Query Service spefic; therefore, they are not part of the Object Collection Service
defined in this specification. Object Query Service may move these definitions to the
CosQuery module.

17-126 CORBAservices: Common Object Services Specification

17

CollectionFactory Interface
The CosQueryCollection::CollectionFactory interface defines the same interface as
CosCaollection::CollectionFactory and with it the same generic creaticapability.

While the generic create operationsCrsQueryCollection::CollectionFactory do
not raiseany exceptions, theespective operation in the
CosCaollection::CollectionFactory raises exceptionParameterinvalid.”

Collection Interface

The CosQueryCollection::Collection interface defines a basic collection interface,
without resticting specidkations to any particular typgich as equality collections or
ordered collections.

Collection Element Type

The element type of Object Query Service collections is a CORMBAto meet the
general requirement that collectiolnave to be able to collect elements of arbitrary
type. The same holds true for the proposed Object Collection Service defined in this
specification.

Using the CORBAany as element type implies the loss of compile time type checking.
The Object Collection Service as defined here-in considers support fametype
checking as important; therefore, it offers respective support. In the interface
Collection this is reflected by introducing a read-only attribute “element_type” of type
TypeCode which enables a client to inquiry the element type expected.

This differs from Object Query Service collections which do not define any type
checking spcific support.

Collection Attributes
The followingattribute isdefined in the OQ % ollection interface:

cardinality

This read-only attribute maps to the operathumber_of_elements() in
CosCaollection::Collection. This is semantically equivalent. The name of therafion
was chosen awsistently with the overall naming scheme of the Collection Service.

Collection Operatons
The following operations are defined in the Object Query Ser@ialection interface.
void add_element (in any element) raises (Elementinvalid)

This operation maps - except for side effectdterabrs due to managdterator
semantics - to

boolean add_element(in any element) raises (Elementinvalid)

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-127

17

17-128

void add_all_elements (in Collection elements) raises (Elementinvalid)

This operation maps - except for side effectdterabrs due to managdterator
semantics - to

void add_all_from (in Collection collector) raises (Elementinvalid).

void insert_element_at (in any element, in Iterator where) raises
(Iteratorinvalid, Elementinvalid)

This operation maps - except for side effectdterabrs due to managdterator
semantics - to

boolean add_element_set_iterator(in any element, in Iterator where) raises
(Iteratorinvalid, Elementinvalid).

void replace_element_at (in any element, in Iterator where) raises
(Iteratorinvalid, Positioninvalid, Elementinvalid);

This operations maps to

void replace_element_at (in Iterator where, in any element) raises
(Iteratorinvalid, IteratorinBetween,Elementinvalid).

void remove_element_at (in Iterator where) raises (lteratorinvalid,
Positioninvalid)

This operation maps - except for side effectdterabrs due to managdterator
semantics - to

void remove_element_at (in Iterator where) raises (lteratorinvalid,
IteratorinBetween).

void remove_all_elements ()

This operation maps - except for side effectdterabrs due to managdterator
semantics - to

unsigned long remove_all ().

any retrieve_element_at (in Iterator where) raises (lteratorinvalid,
Positioninvalid)

CORBAservices: Common Object Services Specification

17

This operation maps to

boolean retrieve_element_at (in Iterator where, out any element) raises
(Iteratorinvalid, IteratorinBetween).

Iterator create_iterator ()
This operation maps to
Iterator create_iterator (in boolean read_only).

The parameter “read_only“apameter is sed to supportonst iterators. This is
introduced to support the iterator centric ANSI STL like programming model.

Where different operation names arged in the Object @lection Service defined
here-in this is done to maintain consistency wfith Collection Service overall naming
scheme.

Side effects to iterators specified differ from those specified in the Query Service
collection module as the Objecollection Service defined here-in specifies a managed
iterator model which we consider necessary #fistributedenvironment. For more
details in the managetkerator semantics see chapter “Iterator Interfaces.”

The top-levelCosCollection::Collection interface proposes all the methods defined in
CosQueryCollection::Collection. There are some feadditional operations defined
in CosCollection::Collection:

boolean is_empty()

This operation is provided as there are collection operations with the precondition that
the collection mushot be empty. To avoid an exception, the user should have the
capability to test whether the collection is empty.

void destroy()

This operation is defined for destroying a collection instance without having to support
the completd.ifeCycleObject interface.

void all_elements_do(in Command command)

This operation issdded for convenience; however, it seems to be an overlap with OQS
functionality. This frequentlysed trivial query should be part of tbellection service

itself. A typical usage of this operation mhg, for exampleiterating over the

collection to print all element values. Note that @@mmand functionality is very
restricted to enable an efficient implementation. That is, the command is not allowed to
change thepositioning property of the element appliedated must not remove the
element.

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-129

17

Iterator Interface

The CosQueryCollection::lterator corresponds t€osCollection::lterator.
CosCollection::lterator is supported foall collection interfaces of the Object
Collection Service derived froi@ollection. The Object Collection Servideerator
interfaces defined in this specification are designed to support an iterator centric and
generic programming model as introdueeith ANSI STL. This implies very powerful
iterators which go far beyond simple pointing devices as one needs to be able to
retrieve, add, remove elements from/to a cdllecvia an iterator. In addition iterator
interfaces are enriched with bulk and combined operations to enable an efficient
processing of collections in distributed scenariagsgquently, the
CosCollection::lterator is much more powerful than the
CosQueryCollection::lterator.

Iterator Operations
The following operations are defined in t@esQueryCollection::lterator interface:

® any next () raises (lteratorinvalidp&itioninvalid)
This operation maps to

boolean retrieve_element_set_to_next (out any element) raises (lteratorinvalid,
IteratorinBetween)

® void reset ()

This operation maps to

boolean set_to_first_element() of the Object Collection Servidéerator interface.
® boolean more ()

This operation maps to

boolean is_valid() && ! is_inbetween()

Due to the support for iterator ceintand generic programming there are number of
additional operations in th€osCollection::Iterator interface:

® set to_next_element, set_to_next nth_element

® retrieve_element, retrieve_next_n_elements,
not_equal _retrieve_element_set_to_next

®* remove_element, remove_element_set_to_next, remove_next_n_elements,
not_equal_remove_element_set to_next

* replace_element, replace_element_set to_next, replace_next_n_elements,
not_equal replace_element_set to_next

® add_element set_iterator, add_n_elements_set _iterator
® invalidate
® is_in_between, is_for, is_const, is_equal

® clone, assign, destroy

17-130 CORBAservices: Common Object Services Specification

17

Most of the operations can be implemented as combinations of otheitbesiar
operations so that theurden put on Object Query Service providers who implement
such an interface should not be too high.

A.2 Other OMG Object Services Defining Collections

There are several object services that define collections, that is N&emige,
Property Service, and the OMG RFCy$fem Management: Common Management
Facility, Volume 1" submission, for example.

These services define very application specific collections. The Naming Service for
example defines the interfablamingContext or the Property Service an interface
PropertySet. Both are very application specific collectioasd may be implemented
using the Object Collection Service probably wrappering an appropriate Object
CollectionService collection rather than specializing one of those collection interfaces.

The collections defined in the System Management RFC form a generic collection
service. But the service defines collection members that need to maintain back
references to collections in which they are contained to avoid dangling references in
collections. This was considered as inappropfie@vyweight for a general object
collection service. The collections in the System Management RFC may use Object
Collection Service collections for their implementation up to some extemt use
interfaces.

A.3 OMG Persigint Object Services

Collections as persistent objects in the sense defined by the Persistent Object Service

®* may support the CossistencePO::PO interface. This interf@aoables a client
being aware of the persistestate to explicitly control the PO'’s relatiship with its
persistent data (connect/disce@tt/store/restore)

®* may support the CoslPsistence::SD interfacehich allows objects to synchronize
their transient and persistent data

®* have to support one of protocols used tomasistent data in and out of an object,
like DA, ODMG, or DDO.

Supportfor these interfacedoes not effect theollection interface.

Persistentjueryablecollections may request index support for collections. “Indexing
of collections” enables to exploit underlying indices édficient query evaluation. We

do not consider “indexed collections” as part of the Object Collection Service but think
that indexing support can be achieved via composailgctions defined in the Object
Collection Servicgroposed.

A.4 OMGODbject Concurrency Service

Any implementation of the Bject Collection Servicerobably will have to implement
concurrency support. But we did not define any explicit concurrency support in the
collection interfaces as part of the Object Collection Service because we consider that

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-131

17

as an implemeation issue that can be solved by specialization. This also would allow
to reuse the respective interfaces of the Object Concurrency Service rather than
introducing a collection specific support for concurrency.

17-132 CORBAservices: Common Object Services Specification

17

Appendix B Relationship to Other Ralrt/Standards

B.1 ANSI Standard Template Library

The ISO/ANSI C++ standard, as defined by ANSI X3J16 and OSI WG21, contains
three sections defining the Containers library, the Iterators lilanadythe Algothms
library, which form the main part of tH&andardTemplateLibrary. Each section
describes in detail the class structure, mandatory methods and performance
requirements.

Containers

The standard describes two kinds of container template classes, sequence containers
and so called associative containers. There is no inheritance stmedtiireg the
container classes.

Sequence containeoganize the elements of a collection istectly linear
arrangement. Thiollowing sequence containers are defined

® vector: Is a generalization of the concept of an ordinary C++ array the size of
which can be dynamically changed. It's an indexed data structure, which allows
fast, that isconstant timeandom access tits elements. Insertion and deletion of
an element at the end of a vector can be done in constant time. Insadion
deletion of an element in the middle of thata structure may take linear time.

® deque: Like a vector it is an indexed structure of varying size, allowing fast, that s,
constant time random access to its elements. In addition to what a vector offers a
deque also offers constant time insertion and deletion of an element at the
beginning.

® Jist: Is a sequence of varying size. Insertard deletion of an element at any
positioncan be done in constant time. But orihehr-time access to an element at
an arbitrary position is offered.

Associative containerprovide the capability fofast, O(log n), retrieval of elements
from the collections by “contents”, that is, keglue. The followingassociative
containers are provided:

® sgset: Is a collection of unique elements which supports fast acCgksy n), to
elements by element value.

* multiset:Allows multiple occurrences of the same element suggportsfastaccess,
O(log n), to elements by value.

®* map: Is a collection of (key, value) pairs which supports unique keys.It is an
indexed data structure which offers fast, O(log n), access to values by key.

®* multimap: Is a collection of (keyalue) pairs which allows multiple occurrences of
the same key.

Container adapters are the wigllown cotainerswith restrictedaccess, that is:

® stack

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-133

17

® queue
® priority_queue

As roughly sketched MWSI STL specifies performance requirements for container
operatims. Those enforce up to some extent the kinidnpfementation. If you look at
the performance requirements for vector, deque mshthey correspond to array and
list like implementations.

This differs from what the here-in discussed Object Collection Sepvagoses. The
collection classes vector, deque, distl all map tothe same interface Sequence. The
different performance profiles are delivered via the implementation choice.

Algorithms

Different from other container libraries ANSI STL containers offer a very limited set
of operations at the containers themselves. Instead, all higher level operations like
union, find, sort, and so on are offered asabled generic algorithms. A generic
algorithm is a global template function that operates on all contairseigoorting the
appropriate type of iterator. There are approximately 50 algorithms offered in ANSI
STL.

There are:

® non-mutating sequence algorithms
® mutating sequence algorithms

® sortingand related algahms

® generalized numeric algtnms

The basic concept here is the separation of data structures and algorithms. Instead of
implementing an algorithm for each container in the library you provide a generic one
operating on all containers.

If one implements a new container agnsures that an appropriate iterator type is
supported one gets the respective algorithms “for free”. One mayngiéement new
generic algorithmsvorking on terators only which will apply to all containers
supporting the iterator type.

In addition, because the algorithms aceled as C++ global templatenfttions,
reduction of library and executable sizeahieved (selective binding).

Iterators

The key concept in ANSI STL that enables flexibility of STL Hesator classes.
Iterator classes in ANSI STL are C++ pointer abstractions. They allow iteration over
the elements of a container.

17-134 CORBAservices: Common Object Services Specification

17

Their design ensures, thall template algorithmsvork not only on catainers in the
library but also on built-in C++ data type array. Algorithms work on iterators rather
then on the containers themselves. An algorithms does not even “know” whether it is
working with an ordinary C++ pointer or éerator created for a container of the

library.

There are:

® inputiterator, output iterator
* forward iterator

® Dbidirectional iterator

®* random access iterator

® const, reverse, insert iterators

Consideration on choice

The collection class concept as defined by the ANSI standard is designed for optimal,
local use within programs written in C++. In some sense they are extensions of the
language anddavily exploit C++ laguage features. No considerations, of course, are
given to distribution of objects or language neutrality.

Some of the advantages cleavigible in a local C++ environment cannot be carried
over into a distributed and language malénvironment. Some of them areen
counterproductive.

In summary, the follwing list of issues are theeason why the ANSI collection class
standard has not been considered as a basiki$oproposal:

® Aiming with its design at high performance asmhall wde size of C++
applications ANSI STL seems to have avoided inheritance airtual
functions. As ndnheritance is defined, polymorphic use of the defined collection
classes is not possible.

® The ANSI STLprogramming model of generic programming is very C++ specific
one. ANSI STL containers, iterators, and algorithms are designed as Gytiadgn
extension. Containers are smooths extensions of the built-in data type array and
iterators are smooth extensions of ordinary C++ pointers. Container in the library
are processed by generic algorithms via iterators in the same way as C++ arrays via
ordinary pointers. Rather then subclassing and adding operations nbaineo one
extends a container by writing a new generic algorithm. This is a programming
model just intrauced to the C++ world with ANSI STL and for sure not the
programming model Smalltalk programmers ased to.

® As a consequence of the separation of data structures andhafggoociontainers in
ANSI STL up to some extent expose implementation. As an
example consider the two sequential contaitistandvector. The
algorithms sort and merge are methods oflidtecontainer.vector
on the other hand can support efficient random access and therefore use the generic

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-135

17

17-136

algorithms sort and merge. Subsequently you do not find them as methods in the
vector interface. This requires rework of clientsem server implementations
changes fromist to vector oideque because of changing acgeaerns.

® The IDL concept has no notion of dlal (template) functions. The only conceivable
way to organize the algorithms is by collecting them in artificial algorithm object(s).
The seledte binding advantage is lost in a CORBA environment and careful
placement of the algorithm object(s) near the collection must be exercised.

* In the ANSI STL approach the reliance on generic programming as algorithms is
substantial. We believe that this concept is not scalable. It is difficult to imagine a
generic sort in a CORBA environment is effective withoutkhewledge of
underlying data structures. Each access to a container has to go via an iterator
mediated somehow by the underlying request broker, which is satisfiactory
situation.Object Collection Services will be used in an wide variety of
environments, ranging from simple telephdis¢s up to comlex large stores using
multiple indices, exhibiting persistent behavard concurrently accessed via
Object Query Service. We do not believe that gersgorithms scale up isuch
environments.

B.1.1 ODMG-93

Release 1.1 of the ODMG specification defines a set of collection templates and an
iterator template class.

An abstract base clagollection<T> is defined from which all concrete collections
classes are derive@he concreteollection classes supported é&8et<T>, Bag<T>,
List<T>, Varray<T>. In addition an Iterator cladterator<T> is defined for iteration
over the elements of the collection.

Set andBag are unorderedollectionsandBag allows multiplesList is an ordered
collection that allows multiples. Théarray<T> is a one dimensional array of varying
length.

Collection<T> offers the tesempty() and allows to ask for the current number of
elementscardinality(). Further the testss_ordered() andallows_duplicates() are
offered.There is a test on whether an element tadiwed in agiven collection.
Operations for insertiorinsert_element(), and removalremove_element() are
provided. Last not least there igemove_all() operation.

Each of the derived classes providesoperator== and anoperator!= and an
operationcreate_iterator().

A Set<T> is derived fromCollection<T> and ofers in addition operations
is_subset_off(), is_proper_subset_of(), is_superset_of(), or is
proper_superset_of() a suite of set-theoretical operations to fdha union,
difference, intersection of two sets.

A Bag<T> offers the same interface 8&t<T> but allows multiples.

CORBAservices: Common Object Services Specification

17

A List<T> offers specific operations to retrieve or remove the first respectively last
element in the list or to insert an elemenfiest respectively last element. Retrieving,
removing, and replacing an element a&fiven position issupportedinserting an
element before or after a given position is possible.

Varray<T> exposes the characteristics ob@e dimensional array of varying length.
An array can be explicitly re-sized. Tloperator|[] is supported. The operations to
find, remove, retrieve, and replace an element at a given position are supported.

An instancdterator<T> is created to iterate over a given collecfidre operator=
andoperator == are defined. There israset() operation moving an iterator to the
beginning of the collection. There is an operatigivance() and overloaded the
operator++ to move thdterator tothe next element. Retrieving and replacing the
element currently “pointed to” is possible. A check on whether iteration is not yet
finished is offerednot_done().For convenience in iteration there is an operation
next(), combining “check end of iterationetrieval of an element, and moving to the
next element”.

ODMG-93 structure is vergimilar to theproposed Object Collectione&ice.

ODMG-93 Set <T> andBag<T> correspond very well t&et andBag as defined
herein.List<T> maps one-to-one to d&qualitySequence. A Varray<T> maps to an
EqualitySequence too. That the interfaces List<T> and Varray <T> map to the same
interface in the Object Collection Service proposefiects that List<T>and

Varray<T> somehow expose the underlying kind of implementation structure assumed
- namely a list like structure respectively a table like structurthdrObject Collection
Service proposed the different kinds of implementation of a sequendetikiace are

not reflected in the interface but only in the delivered performance profile. This is the
reason why Ist<T> andVarrary<T> map to the same interfa&gualitySequence.

The Iterator interface maps to the top leltetator interface of the iterator hierarchy

of the Object Collection Service.

In summary the Object Collection Servipmposed is a superset of the ODMG-93
proposedcollectionsand iterators.

Object Collection Servicerl.0 Thé&osCollection Module July 1997 17-137

17

Appendix C References
C.1 Listof Refances

OMG, CORBAservices: Common Object Services Specificatiolume 1, March
1996.

17-138 CORBAservices: Common Object Services Specification

Index

A
abort
see rollback
absolute_time 14-9
Abstract Collection Interfaces 17-21
Abstract interface hierarchy 17-4
Abstract Interfaces 16-28
Abstract RestrictedAccessCollection Interface 17-65
Access by key 17-3
Access Control 15-111
access control 15-3
Access Control Interceptor 15-154
Access Control Model 15-19
Access Decision Object 15-161
Access Decision Policies 15-163
Access Decision Time 15-155
access identity 15-14
Access Policies 15-21, 15-129
Access Policies Supported by This Specification 15-22

audit_needed 15-109

audit_write 15-110

Auditing 15-23

Auditing Application Activities 15-64
authenticate 15-93

authentication 15-3

Authentication of principals 15-92
Authorization 15-3
authorization_service Field 15-188
availability 15-2

B

Bag Interface 17-62

Bag, SortedBag 17-10
BagFactory Interface 17-77
Basic Time Service 14-4

Bind Time 15-154

Bind Time - Client Side 15-153
Bind Time - Target Side 15-154

AccessDecision Use of AccessPolicy and RequiredRights 15-134Binding 15-220

accountability 15-2
Add Type Operation 16-62
Add_Link Operation 16-51
Additional ObjectlID 16-4
adjudication 15-71
Admin Interface 16-70
Administering Security Policy 15-111
Administration of security information 15-3
Administration of Time 14-18
administrative interfaces 15-51
Administrative Model 15-71
Administrator’s Interfaces 15-123
Administrator’s View 15-44
AlreadyBound 3-9, 3-11
ANSI Standard Template Library 17-133
Application Access Policies 15-63
Application Access Policy 15-20
application access policy 15-19
Application Activities 15-64
application audit policies 15-23
Application Components 15-47
Application Developer View 15-43
Application Developer’s Interfaces 15-84
Application Interfaces - Security Functionality Level 1 15-201
Application Interfaces - Security Functionality Level 2 15-201
Application Interfaces for Non-repudiation 15-207
application objectxlii, 4-1
Asymmetric key technology 15-38
atomicity 10-45, 10-48, 10-52

glossary definition 10-81
Attribute status 14-16
Attributes and Set Operations 16-48
Audit Administration Interfaces 15-138
Audit Channel Objects 15-163
Audit Decision Objects 15-162
Audit Event Families and Types 15-215
audit identity 15-14
audit objects 15-162
Audit Policies 15-138
Audit Services 15-164
audit_channel 15-110

July 1997

binding 15-48
Binding and Interceptor 15-221
Binding Handle 15-194
Bindinglterator interface 3-12

next_n operation 3-12

next_one operation 3-12
Bindings and Object Reference 15-48
Bridges 15-171

C

callback interface
described 58

call-back object 8-24

cancel_timer 14-16

CannotProceed 3-10

Changes to Support the Current Pseudo-Object 15-230

CLI 5-34

Client and Target Invoke 15-224

Client Side 15-175

ClientSecurelnvocation 15-141

Client-Target Binding 15-220

Collectible elements and the operations interfa¢er

Collectible elements and type safety 17-7

Collectible elements of key collections 17-8

collection 11-4, 11-10
model 11-12

Collection factories 17-2, 17-5

Collection Factory Interfaces 17-70

Collection Interface 17-21

Collection interface 11-14
add_all_elements operation 11-17
add_element operation 11-16
create_iterator operation 11-18
insert_element_at operation 11-17
remove_all_elements 11-18
remove_element_at operation 11-17
replace_element_at operation 11-17
retrieve_element_at operation 11-18

Collection Interface Hierarchies 17-15

Collection interfaces 17-2

CollectionFactory and CollectionFactories Interfaces 17-71

Index-1

Index

CollectionFactory interface 11-14

Collections 17-2

Combined Collections 17-10

combined privileges delegation 15-29

Command and Comparator Interface 17-122

Common collection types 17-2

Common Facilities 15-234

common facilities xlii

compare_time 14-10

Complete evidence 15-67

Component Protection 15-52

Components 15-188

composite delegation 15-29

compound copy request 6-27

compound externalization 64, 8-25

compound life cycle 638-3, 9-369-37
and containment roles 6-42
and relationship service 6-37, 6-8941
copy operation example 6-27—-6-30
copying, moving relationships 6-39-6-41
copying, moving roles 6-37—6-39

copying, moving, removing nodes 6-35—6-37
copying, moving, removing objects 6-33-6-35

compound name3-1, 3-2, 3-113-17

compound object 56

compound operations 9-36
propagation 9-37

Concepts 15-124

concepts of 55

Concrete Restricted Access Collection Interfaces 17-66

concurrency control service
overview 49, 7-1
ConcurrencyControl module
OMG IDL 7-8-7-9
Confidentiality 15-17
confidentiality 15-1
Conformance Criteria 16-68
Conformance Details 15-235

Conformance Requirements for Implementation Conformance

Classes 16-71

Contextld 15-178
continue_authentication 15-94
Control Attributes 15-22
Control interface 10-21
control object 10-21, 10-27, 10-56
Control of privileges delegated 15-27
Control of privileges used 15-28
Control of target restrictions 15-28
Controls Used Before Initiating Object Invocations 15-27
Coordinator interface 10-24
create_subtransaction operation 10-27
get_parent_status operation 10-24
get_status operation 10-24
get_top_level_status operation 10-25
get_transaction_name operation 10-27
hash_top_level_tran operation 10-26
hash_transaction operation 10-25
is_ancestor_transaction operation 10-25
is_descendant_transacation operation 10-25
is_related_transaction operation 10-25
is_same_transaction operation 10-25
is_top_level_transaction operation 10-25
register_resource operation 10-26
register_subtran_aware operation 10-26
rollback_only operation 10-26
coordinator object 10-28, 10-29, 10-38, 10-39, 10-49, 10-56
glossary definition 10-81
copy 15-96
CORBA 55
documentation set xliii
object references 64
standard requests 4-1
CORBA Interoperable Object Reference with Security 15-171
CORBA Module Changes for Replaceability Conformai&e229
CORBA Module Changes to Support Security Level 1 15-226
CORBA Module Changes to Support Security Level 2 15-227
CORBA Module Deprecated Interfaces 15-231
CORBA OMG IDL based Specification of the Trading
Function 16-74
CosCompoundExternalization

Conformance Requirements for Trading Interfaces as Server 16-69 Node interface 8-6

connect 4-18

Connection interface 5-37
operations 5-37

ConnectionFactory interface 5-37
operations 5-37

Consolidated OMG IDL 14-20, 15-196, 16-74, 16-93, 16-99

Constraint Language 16-93
Constraint Language BNF 16-95
Constraint Recipe Languag 16-99
consumer 4-2
ConsumerAdmin interface 4-16, 4-17, 4-26
for_consumers operation 4-16
obtain_pull_supplier operation 4-17
obtain_push_supplier operation 4-17
ContainedInRole interface 8-26
containment relationship 9-1, 9-9
defining 9-49-9-50
example 9-23
overview 9-47
ContainsRole interface 8-26

Index-2 CORBAservices:

CosCompoundExternalization module

OMG IDL 8-20-8-21
CosCompoundExternalizationNode interface 8-5
CosCompoundLifeCycle module

OMG IDL 6-30-6-33
CosCompoundLifeCycleOperations interface 6-26
CosConcurrencyControl module

overview 7-7
CosContainment module

attributes and operations 9-49-9-50

OMG IDL 9-48
CosEventChannelAdmin module

OMG IDL 4-15-4-16
CosEventComm module

OMG IDL 4-8
CosExternalization module

OMG IDL 8-12
CosExternalizationContainment module

OMG IDL 8-26

see also CosCompoundExternalization module 8-26

Common Object Services Specification

Index

see also CosContainment module 8-26 Cursor interface 5-38
CosExternalizationReference module operations 5-38
OMG IDL 8-28 CursorFactory interface 5-38
see also CosCompoundExternalization module 8-28 operations 5-38
see also CosReference module 8-28
CosGraphs D
DA protocol 5-19
TraversalCriteria interface 6-41 compared to ODMG-93 protocol 5-30
CosGraphs module 8-24 DADO 5-26
OMG IDL 9-39-9-41 DAObject interface 5-24
CosLicensingManager module boolean dado_same (inDAObject d) operation 5-24
OMG IDL for 12-17 DataObjectID dado_oid() operation 5-24
CosLifeCycle module PID_DA dado_pid() operation 5-24
OMG IDL 6-10-6-11 void dado_free() operation 5-24
CosLifeCycleContainment module void dado_remove() operation 5-24
andCosCompoundLifeCycle and CosContainment modules 6-4PAODbjectFactory interface 5-24
OMG IDL 6-42 DAObjectFactory create() operation 5-25
CosLifeCycleLifeCycleObject interface 6-37 DAObjectFactoryFinder interface 5-25
CosLifeCycleReference module find_factory operation 5-25
OMG IDL 6-44 Data Definition Language
CosNaming module see DDL
OMG IDL 3-6-3-8 data objectss-27,5-28
CosPersistenceDDO module 5-31-5-33 and dynamic access to attributes 5-28
OMG IDL 5-31 Data Types 15-86
CosPersistenceDS_CLI module datastore 5-7,5-13;57, 5-18, 5-26, 5-34-43
OMG IDL 5-35-5-36 and DDO protocol 5-31
CosPersistencePDS module Datastore_CLI interface 5-40
OMG IDL 5-20 and CLI 5-43
CosPersistencePDS_DA module 5-21-5-29 operations 5-41-5-43
OMG IDL 5-22 DCE Association Options Reduction Algorithm 15-193
CosPersistencePID module DCE Authorization Services 15-191
OMG IDL 5-9 DCE RPC Authentication Services 15-192
CosPersistencePO module DCE RPE Protection Levels 15-192
OMG IDL 5-12 DCE Security Parameters 15-193
CosPropertyService 13-4 DCE Security Services 15-191
CosQuery module DCEAuthorizationDCE 15-191
OMG IDL for 11-23 DCEAuthorizationName 15-191
CosQueryCollection module DCEAuthorizationNone 15-191
OMG IDL for 11-14 DCE-CIOP 15-186
CosReference module DCE-CIOP Operational Semantic 15-192
attributes and operations 9-50-9-51 DCE-CIOP with Security 15-185
CosRelationships module DDL 5-21, 5-26, 5-27, 5-28
OMG IDL 9-20-9-23 DDO
CosStream module storing,restoring,deleting 5-40
OMG IDL 8-15-8-16 DDO interface
CosTime 14-4, 14-5 attributes 5-32
CosTransactions module short add_data() operation 5-32
datatypes defined by 10-15 short add_data_property (in short data_id) operation 5-32
OMG IDL 10-65-10-68 short get_data_count() operation 5-32
CosTSlInteroperation module short get_data_property_count (in short data_id) operation 5-33
PIDL 10-58, 10-69 void get_data operation 5-33
CosTSPortability module void get_data_property operation 5-33
PIDL 10-69 void set_data operation 5-33
CosTypedEventComm module void set_data_property operation 5-33
OMG IDL 4-22 DDO protocol 5-19,5-30
Creating iterators 17-27 define 13-10, 13-16
Credentials 15-56, 15-96 Defining 13-9, 13-15
cryptographic keys 15-4 defining and modifying properties 13-9
Curren 15-217 Delegation 15-25, 15-113
Current 15-56 Delegation Options 15-30
Current interface 10-37 Delegation Policies 15-140

July 1997 Index-3

Index

Delegation Schemes 15-27
Delegation State 15-134
delete 9-30, 13-12, 13-13
Deleting 13-12
deleting properties 13-12
Deque 17-14
DequeFactory Interface 17-83
Dequeue Interface 17-67
Describe Link Operation 16-52
Describe Operation 16-41
Describe Proxy Operation 16-58
Describe Type Operation 16-65
design goals, of event service interfaces 48
destroy 3-18
destroy operation 3-13
Destroying 13-21
Destroying a collection 17-27
destroying the iterator 13-20, 13-21
Determining 13-14
determining defined property 13-14
direct access protocol
see PDS_DA protocol
direct attribute protocol
see DA protocol
distributed objects 6-3
Domain 15-218
Domain Management 15-125
Domain Manager 15-126
Domain Managers 15-74
Domain objects 15-49
DomainAccessPolicy 15-132,15-136
DomainAccessPolicy Use of Privilege Attributes 15-133
DomainAccessPolicy Use of Rights and Rights Families 15-134
Domains 15-33, 15-132
Domains and Interoperability 15-38
Domains at Object Creation 15-73
dynamic data object protocol
see DDO protocol
Dynamic Property Evaluation interface 16-67
Dynamic Property Module 16-88
DynamicAttributeAccess interface 5-28
any attribute_get(in string name) operation 5-28
AttributeNames attribute_names() operation 5-28
void attribute_set(in string name, in any value) operation 5-28

E
edge structure 9-46
Edgelterator interface 9-47

destroy operation 9-47

next_n operation 9-47

next_one operation 9-47
encryption 15-17
End User View 15-43
Enhancements to the CORBA Module 15-226
Enterprise Management View 15-42
Enum ComparisonType 14-7
Enum EventStatus 14-14
Enum OverlapType 14-7
Enum TimeComparison 14-7
Enum TimeType 14-14
Environment Domains 15-52

Equality collection 17-3
EqualityCollection Interface 17-37
Equalitylterator Interface 17-110
EqualityKeyCollection Interface 17-50
EqualityKeylterator Interface 17-111
EqualityKeySortedCollection Interface 17-55
EqualityKeySortedlterator Interface 17-116
EqualitySequence 17-11
EqualitySequence Factory Interface 17-81
EqualitySequence Interface 17-64
EqualitySequentialCollection Interface 17-55
EqualitySequentiallterator Interface 17-117
EqualitySortedCollection Interface 17-53
EqualitySortedlterator Interface 17-114
Establishing a Security Association 15-168
Establishing Credentials 15-54
Establishing the Binding and Interceptors 15-221
event channe#8, 56, 57, 4-54-13

adding consumers 4-16

adding consumers to 4-17

adding consumers to typed 4-26

adding pull consumer to typed 4-28

adding pull consumersto 4-18

adding pull suppliersto 4-18

adding push consumersto 4-19

adding push suppliersto 4-17

adding push suppliers to typed 4-28

adding suppliers 4-16

adding suppliers to 4-17

adding suppliers to typed 4-27

and CORBA requests 4-10

decoders 4-31

defined 4-2, 4-10

encoders 4-31

filtering 4-28—4-29

implementing typed 4-30-4-31

sample use 4-32-4-33
event communication

mixed 4-11

multiple 4-12

pull model 48, 4-2, 4-74-11

push model48, 4-2, 4-64-10

typed pull model 4-20

typed push model 4-19
event consume#-2, 4-6,4-10

proxy 4-13
Event Service 15-233
event service

and CORBA scoping 4-5

and license service 12-1®2-15

design goal of interfaces 48

overview 48, 4-1
event supplierd-2, 4-6,4-10

proxy 4-13
event_time 14-17
EventChannel interface 56, 4-13, 4-16
exception 4-27
Exceptions 16-23

Additional Exceptions for Link Interface 16-26

Additional Exceptions for Lookup Interface 16-24

Additional Exceptions for Proxy Offer Interface 16-27

Index-4 CORBAservices: Common Object Services Specification

Index

Additional Exceptions For Register Interface 16-25
For CosTrading module 16-23
exceptions
described 58
InvalidName 3-10
Exceptions and Type Definitions 17-19
export 16-2
Export Operation 16-39
Export Proxy Operation 16-55
Exporter 16-4
Exporter Policies 16-18
Extended Time Service 14-26
Extension to the Use of Current 15-217
Extensions to CORBA for Domains and Policies 15-218
Extensions to Object Interfaces for Security 15-218
Extensions to the Object Interface 15-127
External Security Services 15-164
externalization
defined 8-1
externalization service
and compound life cycle 8-6
and inheritance and use of objects 8-7
and life cycle service 64
and persistent object service 8-17
and relationship servicé4, 8-58-24
and transaction service 8-17
interface summary 8-10
overview 50
externalizing a node 8-21
externalizing a relationship 8-23
externalizing a role 8-22

F
Facilities Used on Accepting Object Invocations 15-30
factory finder 6-7, 6-13, 6-21, 8-3
factory keys
and kind field 6-14, 6-16
factory object48, 6-4
definition 6-18
FactoryFinder interface 6-8, 6-13—6-14
find_factories operation 6-13
Features (security) 15-92
Federated Policy Domains 15-35
Federated query example 16-19
FileStreamFactory interface 8-8, 8-12, 8-13
create operation 8-13
Final target 15-26
Finding Domain Managers 15-74
Finding the Policies 15-74
Finding What Security Facilities Are Supported 15-217
framework 11-10
Friendly Time Object 14-26
Full-service Trader 16-73
Fully Describe Type Operation 16-65
Function Interfaces 17-3, 17-118
Functional Interfaces 16-30

G
General Security Data Module 15-196
generic factory

criteria parameters 6-17-6-18

July 1997

generic factory interface 6-5
GenericFactory interface 6-14-6-18, 6-22

and criteria parameter 6-17

and criteria parameters 6-17

create_object operation 6-15, 6-17

supports operation 6-16
get 13-11,13-12, 13-15, 13-18
get_active_credentials 15-102
get_all_properties 13-12
get_all_property names 13-11
get_attributes 15-99, 15-105
get_component operation 3-16
get_credentials 15-107
get_number_of_properties 13-11
get_policy 15-103, 15-108
get_properties 13-11
get_property_value 13-11
get_security_features 15-97, 15-102
get_security_mechanisms 15-103
get_security_names 15-104
Getting 13-17
global identifier 58
Goals

Consistency 15-4

Scalability 15-4
Goals of Secure DCE-CIOP 15-185
graphical notation 57
graphs of related objects 9-3

copyingto 6-33

creating traversal criteria for 8-24

destroying 6-35

examples 9-33

moving 6-34

removing 6-34

traversal of 9-359-37

traversing 9-36
Guidelines for a Trustworthgystem 15-245

H

Handling Multiple Credentials 15-56
Heap 17-11

Heap Interface 17-64

HeapFactory Interface 17-82

I

IDAPI standard 5-34

Identification 15-3

Identity domains 15-37

Immediate invoker 15-26

Implementation-Level Security Object Interfaces 15-155
Implementor’s Security Interfaces 15-147
Implementor’s View of Secure Invocations 15-76
Implementor’s View of Secure Object Creation 15-81
Implications of Assurance 15-226

import 16-2

ImportAttributes 16-29

Importer 16-4

Importer Policies 16-17

Initiator 15-26

Integrity 15-17

integrity 15-1

Index-5

Index

Interceptor 15-148
Interceptor Interfaces 15-150, 15-223
Interceptors 15-219, 15-221
Interface Changes Required for Interceptors 15-225
Interface Hierarchies 17-15
interface inheritance.see subtyping
interface repository 61
Interfaces 15-92
Intermediate 15-26
Intermediate Objects in a Chain of Objects 15-60
internalization
object’s model 8-5
internalizing a node -21,8-22
internalizing a relationship 8-23
internalizing a role 8-23
Interoperability 15-225
Interoperability Model 15-166
Interoperating between ORB Technology Domains 15-39
Interoperating between Security Policy Domains 15-170
Interoperating between Security Technology Domains 15-39
Interoperating between Underlying Security Services 15-170
Interoperating with Multiple Security Mechanisms 15-169
interval 14-10
InvalidName exception 3-10
Invocation Delegation Policy 15-144
Invocation Time Policies 15-152
IOR Security Components for DCE-CIOP 15-186
is_valid 15-99
Iterating over a collection 17-26
Iterator Hierarchy 17-18
Iterator interface 11-14
any next operation 11-18
boolean more operation 11-19
void reset operation 11-19
Iterator Interfaces 17-3, 17-84
Iterators 17-5
Iterators and performanc&7-6,17-85
Iterators and support for generic programming 17-84
Iterators as pointer abstraction 17-84

K

Key collection 17-3

Key collections 17-8

KeyBag Interface 17-57

KeyBag, KeySortedBag 17-11
KeyBagFactory Interface 17-75
Keylterator Interface 17-108

KeySet Interface 17-57

KeySet, KeySortedSet 17-12
KeySetFactory Interface 17-75
KeySortedBag Interface 17-63
KeySortedBagFactory Interface 17-78
KeySortedCollection Interface 17-51
KeySortedlterator Interface 17-112
KeySortedSet Interface 17-62
KeySortedSetFactory Interface 17-78

L
Legal Property Value Types 16-94
library names

PIDL operations 3-18

license service
and event service 123,12-15
and life cycle service 12-19
and properties service 12-23
and relationship service 12-26
and security service 12-26
example implementation 12-27
exceptions 12-19
overview 12-8
sample implementation 12-14
LicenseServiceManager interface 12-13, 12-17
check_use operation 12-13
end_use operation 12-13
obtain_producer_specific_license_service operation 12-19, 12-
27
start_use operation 12-13
licensing attributes
examples of 12-24
life cycle service
and license service 12-19
and naming service 63, 6-15
and relationship service 63
client's model 6-4
overview 48, 6-1, 6-21
LifeCycleObject interface 48, 6-6, 6-11-6-13, 6-22, 6-25
and crieteria parameter 6-17
copy operation 6-11
move operation 6-12
NoFactory exception for copy operation 6-11
remove operation 6-13
Link 16-49
Link Creation Policies 16-18
Link Interface 16-70
Link Traversal Control 16-18
LinkAttributes 16-30
Linked Trader 16-72
Linking to External Security Services 15-164
Linking Traders 16-3
Links 16-11
List Offers Operation 16-48
List Proxies Operation 16-48
List Types Operation 16-64
Listing 13-11
listing and getting properties 13-11
LName interface 3-3, 3-15
delete_component operation 3-17
destroy operation 3-16
equal operation 3-17
insert_component operation 3-16
less_than operation 3-17
num_components operation 3-17
LNameComponent interface 3-3, 3-13, 3-15
get_id operation 3-15
get_kind attribute 3-3
get_kind operation 3-15
set_id operation 3-15
set_kind operation 3-15
LockCoordinator interface 7-9
drop_locks operation 7-10
locks 50, 61, 7-1, 7-2—7-7
and nested transactions 7-6

Index-6 CORBAservices: Common Object Services Specification

Index

intention read and write 7-4
mode compatibility 7-5
multiple possession semantics 7-5
read,write,upgrade 7-4
transaction-duration 7-6
LockSet interface 7-9, 7-10-7-11
change_model operation 7-11
get_coordinator operation 7-11
lock operation 7-11
try_lock 7-11
unlock operation 7-11
LockSetFactory interface 7-13
create operation 7-13
create_related operation 7-13
create_transactional operation 7-13
create_transactional_related operation 7-13
Lookup 16-30
Lookup Interface 16-69

M

Making a Secure Invocation 15-58
Managed Iterator Model 17-85

Managed iterators 17-6

Managing Security Environment Domains 15-41
Managing Security Policy Domains 15-40
Managing Security Technology Domains 15-41
Map Interface 17-57

Map, SortedMap 17-12

MapFactory Interface 17-76

Mask Type Operation 16-66

MD5 message digest algorithm 12-30
Message Definitions 15-179

Message Protection 15-17, 15-154
Message protection domains 15-37
Message-Level Interceptors 15-149, 15-223
Messages 15-18, 15-168

messages 15-70

meta-policy 15-13

Modify Link Operation 16-53

Modify Operation 16-42
MTCompleteEstablishContext 15-179
MTContinueEstablishContext 15-180
MTDiscardContext 15-180
MTEstablishContext 15-179
MTMessageError 15-181
MTMessagelnContext 15-181

Multiple Credentials 15-56

Multiple Security Mechanisms 15-169

N

name 3-2
binding 3-1
binding operations 3-8
component attributes 3-2
components 3-2
compound 3-2
resolution 3-1
simple 3-2
structure 3-18

name binding 3-1

name component

July 1997

attributes 3-15
names library47, 3-3,3-13
PIDL 3-13-3-14
namespace adminstration 3-5
name-to-object association 3-1
naming context47, 3-1, 3-5, 3-6
and property lists 59
deleting 3-11
naming graph 3-1
example 3-2
Naming Service 15-233
naming service
and internationalization 3-3, 3-6
design of 3-4
overview 47
NamingContext interface 3-8, 3-13, 3-18
bind operation 3-8
bind_context operation 3-9
bind_new_context operation 3-11
destroy operation 3-11
list operation 3-12
new_context operation 3-11
rebind operation 3-8
rebind_context operation 3-9
resolve operation 3-9
unbind operation 3-10
nested queries 11-20
nested transaction 64
new_interval 14-12
new_universal_time 14-12
next 13-19, 13-20
no delegation 15-28
Node interface 6-35, 9-35, 9-44
add_role operation 9-45
copy operation 6-35
externalize_node operation 8-21
internalize_node operation 8-21, 8-22
move operation 6-36
related_object attribute 9-45
remove operation 6-37
remove_role operation 9-46
roles_of node attribute 9-45
roles_of_type operation 9-45
NodeFactory interface 9-46
create_node operation 9-46
nodes
creating 9-46
NoFactory 6-40
Non-repudiation 15-3, 15-31, 15-66, 15-115, 15-163
Non-repudiation credentials and policies 15-66
non-repudiation evidence 15-31
non-repudiation for receipt of messages 15-70
non-repudiation policy 15-31
Non-repudiation Policy Management 15-145
Non-repudiation Service Data Types 15-116
Non-repudiation Service Operations 15-117
Non-repudiation services 15-32
non-repudiation services 15-67
non-repudiation services for adjudication 15-71
NoProtection 15-191
NotCopyable 6-40

Index-7

Index

NotMovable 6-40 P
NotRemovable 6-37 PDS 5-43

see persistent data service
O PDS interface 5-19-5-20

Object Interfaces for Securit 15-218
Object Invocation Access Policy 15-20
Object Management Group xli
address of xliii
object model xliii
Object Reference 15-100
object request broker xlii
Object Security Services 15-49
object service
context xlii
specification defined xliii
Object System Implementor’s View 15-45
Objects 15-60
ODBC standard 5-34
ODMG-93 17-136
ODMG-93 protocol 5-19, 5-30, 5-43, 10-79
integration with transaction service 10-80
Offer Id Iterator 16-45
Offer Identifier 16-9
Offer Iterator 16-35
Offer Selection 16-9
OMG 13-3
OMG Constraint Language BNF 16-93
OMG Constraint Recipe Language 16-99
OMG IDL xliii, 56, 3-3
OMG Trading Function Module 16-74
Operation Access 15-75
operational interfaces 15-50
Operational Semantics 15-175
OperationFactory interface
create_compound_operations operation 6-33
operations 3-15
Operations Interface 17-7,17-118
Operations interface 6-33
copy operation 6-33
destroy operation 6-35
move operation 6-34
remove operation 6-34
OperationsFactory interface 6-33

and DA protocol 5-25
PDS connect operation 5-20
void delete operation 5-20
void disconnect operation 5-20
void restore operation 5-20
void store operation 5-20
PDS_ClusteredDA interface 5-29
ClusterID cluster_id() operation 5-29
ClusterlIDs clusters_of() operation 5-29
PDS_ClusteredDA copy_cluster(in PDS_DA source)
operation 5-29
PDS_ClusteredDA create_cluster(in string kind) operation 5-29
PDS_ClusteredDA open_cluster(in ClusterID cluster)
operation 5-29
string cluster_kind() operation 5-29
PDS_DA interface 5-21, 5-25
and ODMG-93 protocol 5-30
DAObject get_data() operation 5-25
DAODbject lookup(in DAODbjectID id) operation 5-25
DAObjectFactoryFinder data_factories() operation 5-26
PID_DA get_object_pid(in DAObject dao) operation 5-25
PID_DA get_pid() operation 5-25
void set_data(in DAObject new_data) operation 5-25
PDS_DA protocol 5-21, 5-25
and data objects 5-26
persistent data service 7, 5-17, 5-265-27
overview 5-18
persistent data service interface
see PDS interface
persistent identifier 5-7
compared to CORBA object reference 5-9
persistent object interface
see PO interface
persistent object manager 5-11
and PO interface 5-13
purpose of 5-17
Persistent Object Service 15-233
persistent object service
and clients 5-5

Operator Restrictions 16-94
OQL-93 Basic Query Language 11-7
OQL-93 Query Language 11-6
ORB Core and ORB Services 15-219
ORB Interoperability 15-225
ORB Security Services 15-76
ORB Services 15-47,15-219
ORB Services and Interceptors 15-148
Ordering of elements 17-3
OSI TP protocol 10-76
exported transactions 10-78
imported transactions 10-77
transaction identifiers 10-77
Overlapping Policy Domains 15-36
overlaps 14-11
override_default_credentials 15-101
override_default_mechanism 15-103
override_default_QOP 15-101

and CORBA accessor operations 5-27

and CORBA Dynamic Invocation interface 5-28
and CORBA persistent reference handli&g, 5-3
and datastore 5-6

and factory finders 5-25

and factory objects 5-24

and object implementation 5-6

and persistent data service 5-6

and query service 5-42

and transaction service 5-42

overview 49

PID

see persistent identifier

PID interface 5-8
PID_CLl interface 5-38

attributes 5-39

PID_DA interface 5-23

DAObjectID attribute 5-23

Index-8 CORBAservices: Common Object Services Specification

Index

PIDL 67, 3-3
PO interface 5-12-5-13
... connect operation 5-13
void delete operation 5-13
void disconnect operation 5-13
void restore operation 5-13
void store operation 5-13
Policies 15-74, 15-218
Policy Details 15-75
Policy Domain Hierarchies 15-34
Policy domain managers 15-50
Policy Domains 15-124
POM interface
...connect operation 5-16
OMG IDL 5-16
void delete operation 5-16
void disconnect operation 5-16
void restore operation 5-16
void store operation 5-16
Preferences 16-10
Principal Authentication 15-163
Principal authenticator 15-55
principal_authenticator 15-108
Principals 15-92
Principals and Their Security Attributes 15-14
PriorityQueue 17-14
PriorityQueue Interface 17-69
PriorityQueueFactory Interface 17-83
Privilege Attributes 15-21, 15-133
Privilege Delegation 15-26
privilege delegation 15-25
ProducerSpecificLicenseService interface 12-13, 12-14, 12-17
check_use operation 12-20, 12-21, 12-27
end_use operation 12-20, 12-27
start_use operation 12-20, 12-27
proof of delivery 15-32
proof of origin 15-32
propagation 10-30-184, 10-38, 10-41, 10-55, 10-580-62
deep 9-37
glossary definition 10-83
none 9-38
shallow 9-37
propagation context 67
PropagationCriteriaFactory interface 8-24
create operation 6-41, 8-24
Properties 16-7
Dynamic 16-8
modifiable 16-8
properties
defining and modifying with modes 13-15
properties service
and license service 12-23
Propertiesiterator 13-19
Propertieslterator interface 13-19
Property 13-23
property list4-1,12-23
property modes
getting and setting 13-17
property service
object classification 13-1
object usage count 13-1

July 1997

Property service IDL 13-23

PropertyNamesiterator 13-20

PropertyNameslterator interface 13-20

PropertySet 13-9

PropertySetDef 13-14

PropertySetDef interface 13-14

PropertySetDefFactory 13-22

PropertySetDefFactory interface 13-22

PropertySetFactory 13-21

PropertySetFactory interface 13-21

Protecting Messages 15-168

Protection boundaries 15-53

Protocol Enhancements 15-171

proxies and Time 14-23

Proxy 16-54

Proxy Interface 16-70

Proxy Trader 16-73

ProxyPullConsumer interface 4-18
connect_pull_supplier operation 4-18

ProxyPullSupplier 4-18

ProxyPullSupplier interface 4-3, 4-18
connect_pull_consumer operation 4-18

ProxyPushConsumer interface 4-3, 4-17
connect_push_supplier operation 4-18
disconnect_push_supplier operation 4-18

ProxyPushSupplier interface 4-19
connect_push_consumer operation 4-19

pseudo object7, 3-3,3-13, 3-18
creating library name 3-14

Public 15-14

Public key technology 15-38

PullConsumer interface 4-3, 4-10, 4-21
disconnect_pull_consumer operation 4-7

PullSupplier interface 56, 4-7, 4-9
disconnect_pull_supplier operation 4-7, 4-10
pull operation 4-9
try_pull operation 4-9

PushConsumer interface 56, 4-6, 4-8, 12-27
disconnect_push_consumer operation 4-9
push operation 4-8

PushSupplier interface 4-3, 4-9
disconnect_push_supplier operation 4-7, 4-9

unaIity of service 564-3, 4-4, 4-64-12
query collection 11-10
query evaluator 11-3
defined 11-19
Query Example 16-19
query framework 11-10
query framework interfaces
overview of 11-10
Query interface
execute operation 11-26
get_result operation 11-27
get_status operation 11-27
prepare operation 11-26
readonly attribute 11-26
query object
defined 11-21
Query Operation 16-31

Index-9

Index

query service propagation_for operation 8-24
and transaction service 11-2 relationship service
list of interfaces for 11-23 and base level operations 9-17
Query Trader 16-71 and cardinality9-2,9-18
queryable collection and compound life cycle 9-3
defined 11-20 and containment relationship 9-47-9-48
QueryableCollection interface 11-25 and CORBA object references 64
QueryEvaluator interface and degree 9-2
attributes for 11-25 and entity 9-2
QueryManager interface and levels of service 9-3, 9-7-9-10
create operation 11-26 and license service 12-26
Queue 17-15 and reference relationship 9-47-9-48
Queue Interface 17-66 and semantics 9-2
QueueFactory Interface 17-82 and type9-1,9-14
attribute and operation rationale 9-15
R interface summary 9-11-9-13
RACo llectionFactory and RACollectionFactories Interfaces 17-74 gverview 50
Readonly attribute inaccuracy 14-9 Relationship to Object Services and Common Facilities 15-232
Readonly attribute tdf 14-9 Relationship to Other Relevant Standards 17-133
Readonly attribute time 14-9 RelationshipFactory interface 9-23
Readonly attribute time_interval 14-10 create operation 9-24
Readonly attribute utc_time 14-9 degree attribute 9-25
received_credentials 15-107 named_role_types attribute 9-25
received_security_features 15-107 relationship_type attribute 9-25
Recipe Syntax 16-99 Relationshiplterator interface 9-32
recoverable object 10-5 destroy operation 9-32
and nested transactions 10-29 next_n operation 9-32
recoverable server 10-6, 10-39 next_one operation 9-32
glossary definition 10-83 relationships
implementing 10-35 and defining role attributes 9-30
RecoveryCoordinator interface 10-27 and operations on roles 9-26-9-30
replay_completion operation 10-27 containment 8-25
reference model xlii reference 8-25
reference relationship 9-1, 9-9 Remove Link Operation 16-52
defining 9-50-9-51 Remove Type Operation 16-64
overview 9-47 Replaceable Security Service 15-163
reference restriction 15-25 Replaceable Security Services 15-78
refresh 15-99 Replacing Access Decision Policies 15-163
Register 16-36 Replacing Audit Services 15-164
register 14-17 Representation of Literals 16-95
Register Interface 16-69 representation of Time 14-1
Relation Interface 17-61 Request-Level Interceptors 15-149, 15-222
Relation, SortedRelation 17-13 required_rights_object 15-108
RelationFactory Interface 17-76 RequiredRights 15-134
relationship RequiredRights Interface 15-130
and nodes, defined 9-35 Resetting 13-19
creating 9-24 resetting
destroying 9-26 position in an iterator 13-20
determining roles 9-26 resetting position in iterator 13-20
Relationship between implementation objects for associations 15Resetting the position in an iterator 13-19
80 Resolve Operation 16-45
relationship between main objects 15-82 Resource interface 10-27
relationship factory attribute6-42,6-45 commit operation 10-29
Relationship interface 6-39, 8-23, 8-26, 9-25 commit_one_phase operation 10-29
copy operation_ 6-39 forget operation 10-29
destroy operation 9-26 prepare operation 10-28
externalize_role operation 8-23 rollback operation 10-29
internalize_relationship operation 8-23 resource manager 10-9, 10-64, 10-74
life_cycle_propagation operation 6-41 mappingsto 10-72
move operation 6-40 resource object
named_roles attribute 9-26 defined 10-5

Index-10 CORBAservices: Common Object Services Specification

Index

Restricted Access Collection Interfaces 17-65 Security and Interoperability 15-165

Restricted Access Collectiors7-4,17-14 Security Architecture 15-42

RestrictedAccessCollection Interface 17-65 Security Association 15-168

Retrieval 13-15 security association 15-16

retrieval of PropertySet constraints 13-15 Security at the Target 15-59

Rights 15-22, 15-129 Security Attributes 15-57

Rights Families 15-130, 15-134 Security Audit 15-109

Rights Families and Values 15-215 Security auditing 15-3

RM Security Components of the IOR 15-172
see resource manager Security context 15-80

role factory attributes 6-48;45 Security Context Object 15-158

Role interface6-37, 8-22, 9-269-46 Security Data Modul 15-196
check_minimum_cardinality operation 9-29 security domains 15-4
copy operation 6-38 Security environment domain 15-33
destroy operation 9-29 Security Environment Domains 15-36, 15-41
destroy_relationships operation 9-28 Security Facilities 15-217
externalize_propagation operation 8-23 Security Features 15-3, 15-92
externalize_role operation 8-22 Security Functionality Conformance 15-85
get_edges operation 9-47 Security Functionality Level 1 15-85, 15-236
get_other_related_object operation 9-27 Security Functionality Level 2 15-85, 15-238
get_other_role operation 9-27 Security Information itheObject Reference 15-167
get_relationships operation 9-28 Security Interceptors 15-150
how_many operation 9-28 Security Mechanism Types 15-169
internalize_role operation 8-23 Security Mechanisms 15-63, 15-216
life_cycle_propagation operation 6-39 Security Mechanisms for Secure Object Invocations 15-168
link operation 9-29 security name 15-15
move operation 6-38 Security Object Models 15-54
related_object attribute 9-27 Security of communication 15-3
unlink operation 9-30 Security Operations on Current 15-104

RoleFactory interface 9-27, 9-30 Security Policies 15-65, 15-72, 15-125, 15-128
and max_cardinality attribute 9-31 Security policies and domain objects 15-49
and min_cardinality attribute 9-31 Security Policy 15-76
and role_type attribute 9-31 Security Policy Domains 15-34, 15-40, 15-170
create_role operation 9-30 Security Reference Model 15-12
related_object_type attribute 9-32 Security Replaceability 15-241

roles Security Replaceability Ready 15-85
and cardinality9-29,9-31 Security Replaceable Service Interfaces 15-210

rollback Security Service 15-1
glossary definition 10-84 security service

and license service 12-26

S o security specification 15-2

Scoping Policies 16-13 Security Technology 15-51

SDinterface 5-11 Security technology domain 15-33

SECIOP 15-178 Security Technology Domains 15-37, 15-41

SECIOP Message Header 15-177 see also data Objects

SECIOP Protocol State Tables 15-182 Selecting Security Attributes 15-57

Secure DCE-CIOP 15-186 Selection of ORB Services 15-47

Secure DCE-CIOP Operational Semantics 15-192 Send and Receive Message 15-224

Secure Interoperability 15-243 sending Time across the network 14-23

Secure Interoperability Bridges 15-171 Sequence 17-13

Secure Inter-ORB Protocol (SEC'OP) 15-177 Sequence Interface 17-64

Secure Invocation and Delegation Policies 15-140 SequenceFactory Interface 17-81

Secure Invocation Interceptor 15-152 SequentialCollection Interface 17-31

Secure Object Invocations 15-15, 15-168 Service Offers 16-7

Secure Time 14-18 Service Type Repository 16-59

SeCUre_UanerSﬁ'_tlme 14-12, 14-17 Service Type Repository Module 16-89

SecureUniversalTime 14-3 set 13-18,13-19

Securing the Binding Handle to the Target 15-194 set_security_features 15-97

Security 15-1 Set, SortedSet 17-13
Goals 15-3 set_credentials 15-106

Security Administration Interfaces 15-205 set data 14-16

July 1997 Index-11

Index

set_privileges 15-58, 15-98
set_security_features 15-58
set_timer 14-16
SetFactory Interface 17-77
Setting Security Policy Details 15-75
simple delegation 15-28
simple name 3-2
Simple Trader 16-72
SNA LU protocol 10-76, 10-78
incoming communication 10-79
outgoing communication 10-79
transaction identifiers 10-78
SortedBag Interface 17-64
SortedCollection Interface 17-37
Sortedlterator Interface 17-112
SortedMap Interface 17-63
SortedMapFactory Interface 17-79
SortedRelation Interface 17-63
SortedRelationFactory Interface 17-79
SortedSet Interface 17-63
SortedSetFactory Interface 17-80
source of Time 14-2
spans 14-11
Specific ORB Security Services and Replaceable Security
Services 15-78
Specifying Delegation Options 15-30
Specifying Use of Rights for Operation Access 15-75
SQL Query Language 11-6
Stack 17-15
Stack Interface 17-67
StackFactory Interface 17-83
Stand-alone Trader 16-72
Standard Data Type 15-213
Standardized Capability Supported Policies 16-15
Stream interface 8-12, 8-13
begin_context operation 8-14
end_context operation 8-14
externalize operation 8-13
flush operation 8-14
internalize operation 8-13, 8-14
internalize_from_stream operation 8-15
stream object
creating 8-12, 8-13
data format 8-29-8-31
externalizing 8-13
externalizing group 8-14
internalizing 8-13, 8-14
stream service 8-3
and begin_context request 8-3
and externalize_to_stream requé&s8, 8-4
and internalize_from_stream request 8-3
and readonly key attribute 8-3
Streamable interface 8-4, 8-7, 8-17
externalize_to_stream operation 8-18
internalize_from_stream 8-18
is_identical operation 8-17
streamable object
and inheritance 8-17
creating
StreamableFactory interface

Index-12

create_uninitialized operation 8-19

creation key 8-17
StreamableFactory interface 8-19
StreamFactory interface 8-8, 8-12
create operation 8-12
StreamlO interface 8-4, 8-8, 8-16
read_ operation 8-19
read_object operation 8-18, 8-19
read_t operation 8-16
write__ operation 8-18, 8-30
write_object operation 8-18
write_operation 8-16
SubtransactionAwareResource interface 10-29
commit_substransaction operation 10-30
commit_subtransaction operation 10-30
subtransactions 10-70412, 10-52, 10-54, 10-55, 10-59)-63
subtyping 55, 59
Summary of CORBA 2 Core Changes 15-217
supplier 4-2
SupplierAdmin interface 4-3, 4-16, 4-17
for_suppliers operation 4-16
obtain_pull_consumer operation 4-17
obtain_push_consumer operation 4-17
SupportAttributes 16-29
Symmetric key technology 15-38
synchronization of Time 14-18
synchronized data interface
see SD interface
System- and Application-Enforced Policies 15-35
system audit policies 15-23

T
TAG_ASSOCIATION_OPTIONS 15-193
Target 15-59
Target Side 15-176
target_requires field 15-190
target_supports field 15-189
TargetSecurelnvocation 15-141
Technology Support for Delegation Options 15-30
Terminator interface
rollback operation 10-23
terminator object 10-38
Threats in a Distributed Object System 15-2
time 14-11
Time Interval Object (TIO) 14-10
Time Interval Objects (TIOs) 14-3
Time Service 15-233
Time Service interface 14-11
Time Service Requirements 14-1
Time Service requirements 14-1
time_set 14-16
time_to_interval 14-10
TimeBase 14-4, 14-5
Timer Event Handler 14-34-15
Timer Event Service 14-3, 14-4, 14-13, 14-16;22
TimeUnavailable 14-4, 14-8
traced delegation 15-29
Trader Attributes 16-21
Trader Policies 16-16
trading object service 16-2
transacations

CORBAservices: Common Object Services Specification

Index

resource manager 10-64
transaction abort
see Resource interface
rollback operation 10-29
transaction context 10-18
management of 10-21
propagation of 10-21
transaction originator 10-13, 10-19, 10-22, 10-43
glossary definition 10-84
Transaction Service 15-232
transaction service
and concurrency control service 64
and orb interoperability 66
and persistent object service 65
application use of 10-31
transactional client 10-4, 10-34
glossary defintion 10-84
transactional object 10-4
example 10-40
transactional server
defined 10-6
TransactionalLockSet interface 7-9
TransactionalLockSet interface operations 7-12
TransactionalObject interface 10-30
TransactionFactory interface 10-38
transactions
checked 10-32-10-34, 10-36
consistency property 10-53
consistency property,glossary definition 10-81
coordinator object 10-28, 10-29, 10-38, 10-39, 10-49, 10-56
distributed 10-36
durability 10-52
durability, glossary definition 10-82
flat 10-6, 10-7, 10-9, 10-36
flat,glossary definition 10-82
implicit propagation 10-37
interposition 10-45, 10-56, 10-59
interposition, glossary defintion 10-82
isolation 10-7, 10-9, 103,10-23
isolation, glossary definition 10-82
propagation 10-30-184, 10-38, 10-41, 10-55, 10-59, 10-62,
10-83
propagation to resource manager 10-74
recoverable object 10-5, 10-29
recoverable server 10-6, 10-35
recoverable server, glossary defintion 10-83
recoverable server,example 10-39
resource manager 10-9, 10-74
terminator object 10-38
two-phase commit protocd5, 10-12, 10-27, 10-45, 10-48, 10-
53, 10-57, 10-64, 10-76, 10-79
two-phase commit, glossary definition 10-85
TraveralCriteria interface
next_n operation 9-44
traversal criteria
creating 6-41, 9-36
example of 9-37
Traversal interface
destroy operation 9-43
next_n operation 9-43
next_one operation 9-42

July 1997

ScopedEdge structure 9-42
traversal object 9-35, 9-36
creating 9-41
TraversalCriteria interface 9-36, 9-43
destroy operation 9-44
next_one operation 9-43
visit_node operation 9-44
Weighted_Edge structure 9-43
TraversalFactory interface 9-41
create_traversal_on operation 9-42
Trusted Computing Base 15-53
Trustworthy System 15-245
Type checking information 17-22
Type Definitions 17-19
Type InaccuracyT 14-6
Type IntervalT 14-6
Type safety 17-7
Type TdfT 14-6
Type TimerEventT 14-15
Type TimeT 14-6
Type UtcT 14-6
TypedConsumerAdmin interface
obtain_typed_pull_supplier operation 4-26
obtain_typed_push_supplier operation 4-26
TypedProxyPullSupplier interface 4-28
TypedProxyPushConsumer interface 4-28
TypedPullSupplier interface 4-21
TypedPushConsumer interface 4-20
TypedSupplierAdmin interface 4-27
obtain_typed_pull_consumer operation 4-27
obtain_typed_push_consumer operation 4-27

U
Unique entries (collections) 17-4
universal object identity 59
Universal Time Coordinated (UTC) 14-1
Universal Time Object (UTO) 14-8
Universal Time Objects (UTOs) 14-3
universal_time 14-4, 14-12
UniversalTime 14-3
Unmask Type Operation 16-66
unregister 14-17
Use of AccessPolicy and RequiredRights 15-134
Use of Interfaces for Access Control 15-111
Use of Interfaces for Delegation 15-113
Use of Privilege Attributes 15-133
Use of Rights and Rights Families 15-134
User sponsor 15-55
UserEnvironment interface

operations 5-37
Users’ View of the Security Model 15-42
Using Interceptors 15-222
uto_from_utc 14-12

Vv

Values for Standard Data Types 15-213
Vault 15-79, 15-156

View of the Security Model 15-42

wW
Withdraw Operation 16-41

Index-13

Index

Withdraw Proxy Operation 16-58
Withdraw Using Constraint Operation 16-44

X

X/Open xlii

X/Open CLI standard 5-34
X/Open TX interface 10-70-10-72
X/Open XA interface 10-64

Index-14 CORBAservices: Common Object Services Specification

CORBAservices: Common
Object Services Specification

TO: CORBAserviceReaders

FROM: OMG Hedquarters

RE: Update packager CORBAservices
DATE: July 30, 1997

In addition to the usual update pages, this update package
contains the following new or changed information:

* Overview (chapter 1) - added Object Collections
Service
Note: print complete chapter

* General Design Principles (chapter 2) - added Object
Collections Service on page 2-12 and General Interoper-
ability Requirements on pa@el3.

Note: print complete chapter

* Time Service (chapter 14) - replaced the type definition
of type TimeT from “ulonglong” to “unsigned long
long” (and associated text changes) and substituted the
word “minutes” in place of “seconds” in the description
of the type TdfT.
Note: print complete chapter

* Object Collection Specification (chapter 1 fjew spec-
ification
Note: print complete chapter

Refer to the next page for complete update instructions.

Pages to remove from CORBA
services (March 1997)

Pages to add from this update
package (footer July 1997)

Title and copyright

Title and copyright

Table of Contents (footer reads
March 1997)

Table of Contents (footer reads July
1997)

List of Figures (footer reads Marc
1997)

n List of Figures (footer reads July
1997)

List of Tables (footer reads March
1997)

List of Tables (footer reads July
1997)

Preface (footer reads March 1997

) Preface (footer reads July 1997

Chapter 1 - Overview (footer read
March 1997)

sChapter 1 - Overview (footer reads
July 1997)

Chapter 2 - General Design
Principles (footer reads March
1995)

Chapter 2 - General Design Princi-
ples (footer reads July 1997)

Chapter 14 - Time Service (footer
reads November 1996)

Chapter 14 - Time Service (footer
reads July 1997)

Chapter 17 - Object Collection Ser-
vice (footer reads July 1997)

Index (footer reads March 1997)

Index (footer reads July 1997)

	0.1 About This Document
	0.1.1 Object Management Group
	0.1.2 X/Open

	0.2 Intended Audience
	0.3 Need for Object Services
	0.3.1 What Is an Object Service Specification?

	0.4 Associated Documents
	0.5 Structure of this Manual
	0.6 Acknowledgements
	Overview
	1.1 Summary of Key Features
	1.1.1 Naming Service
	1.1.2 Event Service
	1.1.3 Life Cycle Service
	1.1.4 Persistent Object Service
	1.1.5 Transaction Service
	1.1.6 Concurrency Control Service
	1.1.7 Relationship Service
	1.1.8 Externalization Service
	1.1.9 Query Service
	1.1.10 Licensing Service
	1.1.11 Property Service
	1.1.12 Time Service
	1.1.13 Security Service
	1.1.14 Object Trader Service
	1.1.15 Object Collections Service

	General Design Principles
	2.1 Service Design Principles
	2.1.1 Build on CORBA Concepts
	2.1.2 Basic, Flexible Services
	2.1.3 Generic Services
	2.1.4 Allow Local and Remote Implementations
	2.1.5 Quality of Service is an Implementation Char...
	2.1.6 Objects Often Conspire in a Service
	2.1.7 Use of Callback Interfaces
	2.1.8 Assume No Global Identifier Spaces
	2.1.9 Finding a Service is Orthogonal to Using It

	2.2 Interface Style Consistency
	2.2.1 Use of Exceptions and Return Codes
	2.2.2 Explicit Versus Implicit Operations
	2.2.3 Use of Interface Inheritance

	2.3 Key Design Decisions
	2.3.1 Naming Service: Distinct from Property and T...
	2.3.2 Universal Object Identity

	2.4 Integration with Future Object Services
	2.4.1 Archive Service
	2.4.2 Backup/Restore Service
	2.4.3 Change Management Service
	2.4.4 Data Interchange Service
	2.4.5 Internationalization Service
	2.4.6 Implementation Repository
	2.4.7 Interface Repository
	2.4.8 Logging Service
	2.4.9 Recovery Service
	2.4.10 Replication Service
	2.4.11 Startup Service
	2.4.12 Data Interchange Service

	2.5 Service Dependencies
	2.5.1 Event Service
	2.5.2 Life Cycle Service
	2.5.3 Persistent Object Service
	2.5.4 Relationship Service
	2.5.5 Externalization Service
	2.5.6 Transaction Service
	2.5.7 Concurrency Control Service
	2.5.8 Query Service
	2.5.9 Licensing Service
	2.5.10 Property Service
	2.5.11 Time Service
	2.5.12 Security Service
	2.5.13 Trader Service
	2.5.14 Collections Service

	2.6 Relationship to CORBA
	2.6.1 ORB Interoperability Considerations: Transac...
	2.6.2 Life Cycle Service
	2.6.3 Naming Service
	2.6.4 Relationship Service
	2.6.5 Persistent Object Service
	2.6.6 General Interoperability Requirements

	2.7 Relationship to Object Model
	2.8 Conformance to Existing Standards

	Time Service Specification
	14.1 Introduction
	14.1.1 Time Service Requirements
	14.1.2 Representation of Time
	14.1.3 Source of Time
	14.1.4 General Object Model
	14.1.5 Conformance Points

	14.2 Basic Time Service
	14.2.1 Object Model
	14.2.2 Data Types
	14.2.3 Exceptions
	14.2.4 Universal Time Object (UTO)
	14.2.5 Time Interval Object (TIO)
	14.2.6 Time Service

	14.3 Timer Event Service
	14.3.1 Object Model
	14.3.2 Usage
	14.3.3 Data Types
	14.3.4 Exceptions
	14.3.5 Timer Event Handler
	14.3.6 Timer Event Service

	14.4 Conformance

	Object Collection Specification
	17.1 Overview
	17.2 Service Structure
	17.2.1 Combined Property Collections
	17.2.2 Iterators
	17.2.3 Function Interfaces
	17.2.4 List of Interfaces Defined

	17.3 Combined Collections
	17.3.1 Combined Collections Usage Samples

	17.4 Restricted Access Collections
	17.4.1 Restricted Access Collections Usage Samples...

	17.5 The CosCollection Module
	17.5.1 Interface Hierarchies
	17.5.2 Exceptions and Type Definitions
	17.5.3 Abstract Collection Interfaces
	17.5.4 Concrete Collections Interfaces
	17.5.5 Restricted Access Collection Interfaces
	17.5.6 Abstract RestrictedAccessCollection Interfa...
	17.5.7 Concrete Restricted Access Collection Inter...
	17.5.8 Collection Factory Interfaces
	17.5.9 Iterator Interfaces
	17.5.10 Function Interfaces

