
CORBAservices: Common Object
Services Specification

Revised Edition - March 31, 1995
Updated: March 28, 1996
Updated: July 15, 1996
Updated: November 22, 1996
Updated: March 1997
Updated: July 1997

Copyright 1996, AT&T/Lucent Technologies, Inc.
Copyright 1995, 1996 AT&T/NCR
Copyright 1995, 1996 BNR Europe Limited
Copyright 1996, Cooperative Research Centre for Distributed Systems Technology (DSTC Pty Ltd).
Copyright 1995, 1996 Digital Equipment Corporation
Copyright 1996, Gradient Technologies, Inc.
Copyright 1995, 1996 Groupe Bull
Copyright 1995, 1996 Hewlett-Packard Company
Copyright 1995, 1996 HyperDesk Corporation
Copyright 1995, 1996 ICL plc
Copyright 1995, 1996 Ing. C. Olivetti & C.Sp
Copyright 1995, 1996 International Business Machines Corporation
Copyright 1996, International Computers Limited
Copyright 1995, 1996 Iona Technologies Ltd.
Copyright 1995, 1996 Itasca Systems, Inc.
Copyright 1996, Nortel Limited
Copyright 1995, 1996 Novell, Inc.
Copyright 1995, 1996 02 Technologies
Copyright 1995, 1996 Object Design, Inc.
Copyright 1995, 1996 Object Management Group, Inc.
Copyright 1995, 1996 Objectivity, Inc.
Copyright 1995, 1996 Ontos, Inc.
Copyright 1995, 1996 Oracle Corporation
Copyright 1995, 1996 Persistence Software
Copyright 1995, 1996 Servio, Corp.
Copyright 1995, 1996 Siemens Nixdorf Informationssysteme AG
Copyright 1995, 1996 Sun Microsystems, Inc.
Copyright 1995, 1996 SunSoft, Inc.
Copyright 1996, Sybase, Inc.
Copyright 1996, Taligent, Inc.
Copyright 1995, 1996 Tandem Computers, Inc.
Copyright 1995, 1996 Teknekron Software Systems, Inc.
Copyright 1995, 1996 Tivoli Systems, Inc.
Copyright 1995, 1996 Transarc Corporation
Copyright 1995, 1996 Versant Object Technology Corporation

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up, worldwide license to copy
and distribute this document and to modify this document and distribute copies of the modified version.

Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright, in the included material of any such
copyright holder by reason of having used the specification set forth herein or having conformed any computer software to the specification.

NOTICE

The information contained in this document is subject to change without notice.

The material in this document details an Object Management Group specification in accordance with the license and notices set forth on this page. This
document does not represent a commitment to implement any portion of this specification in any company’s products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MANAGEMENT GROUP AND THE
COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH R EGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. The Object Management Group and
the companies listed above shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance or use of this material.

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or other special designations to
indicate compliance with these materials.

This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be
reproduced or used in any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Right in Technical Data and Computer Software Clause at DFARS 252.227.7013

OMG® and Object Management are registered trademarks of the Object Management Group, Inc.
Object Request Broker, OMG IDL, ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc.

X/Open is a trademark of X/Open Company Ltd.

Table of Contents
xli
li
lii

xlii

xlii
iii

xliii

liv

liv

1-1

1-1
-1
-2

2
1-3
-3
-3
-4
-4
-5
-5
-5
-6
-6
-7
0.1 About This Document .
0.1.1 Object Management Group. x
0.1.2 X/Open . x

0.2 Intended Audience .

0.3 Need for Object Services .
0.3.1 What Is an Object Service Specification?. . . xl

0.4 Associated Documents .

0.5 Structure of this Manual . x

0.6 Acknowledgements . x

1. Overview .

1.1 Summary of Key Features .
1.1.1 Naming Service . 1
1.1.2 Event Service . 1
1.1.3 Life Cycle Service . 1-
1.1.4 Persistent Object Service
1.1.5 Transaction Service 1
1.1.6 Concurrency Control Service 1
1.1.7 Relationship Service. 1
1.1.8 Externalization Service. 1
1.1.9 Query Service . 1
1.1.10 Licensing Service . 1
1.1.11 Property Service . 1
1.1.12 Time Service. 1
1.1.13 Security Service . 1
1.1.14 Object Trader Service 1
 CORBAservices: Common Object Services Specification i

-1

-1
-1
-2

2-2

-2

-4

4
2-4

-5

2-5

-5
5

2-5
-6
2-6

-6
-6
7
-7
-7
-8
-8

2-9
-9

2-9
-9

-9

0
0

2. General Design Principles. 2

2.1 Service Design Principles. 2
2.1.1 Build on CORBA Concepts 2
2.1.2 Basic, Flexible Services 2
2.1.3 Generic Services.
2.1.4 Allow Local and Remote Implementations. . 2-2
2.1.5 Quality of Service is an Implementation

Characteristic . 2
2.1.6 Objects Often Conspire in a Service. 2-2
2.1.7 Use of Callback Interfaces 2
2.1.8 Assume No Global Identifier Spaces 2-4
2.1.9 Finding a Service is Orthogonal to Using It . 2-4

2.2 Interface Style Consistency . 2-
2.2.1 Use of Exceptions and Return Codes
2.2.2 Explicit Versus Implicit Operations 2-5
2.2.3 Use of Interface Inheritance 2

2.3 Key Design Decisions .
2.3.1 Naming Service: Distinct from Property and

Trading Services. 2
2.3.2 Universal Object Identity 2-

2.4 Integration with Future Object Services.
2.4.1 Archive Service . 2
2.4.2 Backup/Restore Service
2.4.3 Change Management Service 2-6
2.4.4 Data Interchange Service 2
2.4.5 Internationalization Service 2
2.4.6 Implementation Repository 2-
2.4.7 Interface Repository 2
2.4.8 Logging Service . 2
2.4.9 Recovery Service . 2
2.4.10 Replication Service. 2
2.4.11 Startup Service .
2.4.12 Data Interchange Service 2

2.5 Service Dependencies .
2.5.1 Event Service . 2
2.5.2 Life Cycle Service . 2
2.5.3 Persistent Object Service 2-9
2.5.4 Relationship Service. 2-1
2.5.5 Externalization Service. 2-1
2.5.6 Transaction Service 2-10
ii CORBAservices: Common Object Services Specification

1
-11
11
2

12

3
3

3

-14

-1

-1
-1
3-2
-3

3-3
4

3-6
-8
-9

1
1

2

2.5.7 Concurrency Control Service 2-1
2.5.8 Query Service. 2
2.5.9 Licensing Service . 2-
2.5.10 Property Service . 2-1
2.5.11 Time Service. 2-12
2.5.12 Security Service . 2-12

2.6 Relationship to CORBA. 2-12
2.6.1 ORB Interoperability Considerations:

Transaction Service 2-
2.6.2 Life Cycle Service . 2-13
2.6.3 Naming Service . 2-1
2.6.4 Relationship Service. 2-1
2.6.5 Persistent Object Service 2-13
2.6.6 General Interoperability Requirements. 2-1

2.7 Relationship to Object Model. 2-13

2.8 Conformance to Existing Standards 2

3. Naming Service Specification . 3

3.1 Service Description . 3
3.1.1 Overview . 3
3.1.2 Names.
3.1.3 Names Library . 3
3.1.4 Example Scenarios .
3.1.5 Design Principles . 3-
3.1.6 Resolution of Technical Issues 3-5

3.2 The CosNaming Module .
3.2.1 Binding Objects . 3
3.2.2 Resolving Names . 3
3.2.3 Unbinding Names . 3-10
3.2.4 Creating Naming Contexts 3-1
3.2.5 Deleting Contexts . 3-1
3.2.6 Listing a Naming Context. 3-12
3.2.7 The BindingIterator Interface 3-1

3.3 The Names Library . 3-13
3.3.1 Creating a Library Name Component. 3-14
3.3.2 Creating a Library Name 3-15
3.3.3 The LNameComponent Interface 3-15
3.3.4 The LName Interface 3-15

Destroying a Library Name Component
Pseudo Object 3-16
Inserting a Name Component 3-16
Table of Contents July 1997 iii

-1

-1
-1
2
4-2
4

6

4-6
-6
-7

4-8

9
9

11

11

-15

8
8

-19
Getting the ith Name Component 3-16
Deleting a Name Component 3-17
Number of Name Components 3-17
Testing for Equality 3-17
Testing for Order 3-17
Producing an IDL form 3-18
Translating an IDL Form 3-18
Destroying a Library Name Pseudo-Object 3-18

4. Event Service Specification. 4

4.1 Service Description . 4
4.1.1 Overview . 4
4.1.2 Event Communication 4-
4.1.3 Example Scenario .
4.1.4 Design Principles . 4-
4.1.5 Resolution of Technical Issues 4-4
4.1.6 Quality of Service. 4-

4.2 Generic Event Communication
4.2.1 Push Model. 4
4.2.2 Pull Model . 4

4.3 The CosEventComm Module .
4.3.1 The PushConsumer Interface 4-8
4.3.2 The PushSupplier Interface 4-
4.3.3 The PullSupplier Interface 4-
4.3.4 The PullConsumer Interface 4-10

4.4 Event Channels . 4-10
4.4.1 Push-Style Communication with an Event

Channel . 4-10
4.4.2 Pull-Style Communication with an Event

Channel . 4-
4.4.3 Mixed Style Communication with an Event

Channel . 4-
4.4.4 Multiple Consumers and Multiple Suppliers 4-12
4.4.5 Event Channel Administration 4-13

4.5 The CosEventChannelAdmin Module 4
4.5.1 The EventChannel Interface 4-16
4.5.2 The ConsumerAdmin Interface 4-17
4.5.3 The SupplierAdmin Interface 4-17
4.5.4 The ProxyPushConsumer Interface 4-17
4.5.5 The ProxyPullSupplier Interface 4-1
4.5.6 The ProxyPullConsumer Interface 4-1
4.5.7 The ProxyPushSupplier Interface 4-19

4.6 Typed Event Communication . 4
iv CORBAservices: Common Object Services Specification

3

-24

7
8

1

5-1

5-3
3
-3

4
5

5-7

5-8
-9

5-11

4

4.6.1 Typed Push Model . 4-19
4.6.2 Typed Pull Model . 4-20

4.7 The CosTypedEventComm Module 4-21
4.7.1 The TypedPushConsumer Interface 4-22
4.7.2 The TypedPullSupplier Interface 4-2

4.8 Typed Event Channels . 4-23

4.9 The CosTypedEventChannelAdmin Module 4
4.9.1 The TypedEventChannel Interface 4-26
4.9.2 The TypedConsumerAdmin Interface. 4-26
4.9.3 The TypedSupplierAdmin Interface 4-2
4.9.4 The TypedProxyPushConsumer Interface. . . 4-2
4.9.5 The TypedProxyPullSupplier Interface. 4-28

4.10 Composing Event Channels and Filtering 4-28

4.11 Policies for Finding Event Channels 4-29

Appendix A Implementing Typed Event Channels.4-30

Appendix B An Event Channel Use Example 4-32

5. Persistent Object Service Specification 5-

5.1 Introduction .

5.2 Goals and Properties .
5.2.1 Basic Capabilities . 5-
5.2.2 Object-oriented Storage 5

Interfaces to Data 5-4
Self-description 5-4
Abstraction 5-4

5.2.3 Open Architecture . 5-
5.2.4 Views of Service. 5-

Client 5-5
Object Implementation 5-6
Persistent Data Service 5-6
Datastore 5-6

5.3 Service Structure .

5.4 The CosPersistencePID Module.
5.4.1 PID Interface . 5
5.4.2 Example PIDFactory Interface 5-11

5.5 The CosPersistencePO Module
5.5.1 The PO Interface . 5-12
5.5.2 The POFactory Interface 5-1
5.5.3 The SD Interface . 5-14

5.6 The CosPersistencePOM Module. 5-15

5.7 Persistent Data Service (PDS) Overview 5-18
Table of Contents July 1997 v

-30

-33

-43

-1

-1
-1
-3

4

-7
8

8

-10
5.8 The CosPersistencePDS Module 5-19

5.9 The Direct Access (PDS_DA) Protocol 5-21

5.10 The CosPersistencePDS_DA Module 5-21
5.10.1 The PID_DA Interface 5-23
5.10.2 The Generic DAObject Interface 5-24
5.10.3 The DAObjectFactory Interface 5-24
5.10.4 The DAObjectFactoryFinder Interface 5-25
5.10.5 The PDS_DA Interface. 5-25
5.10.6 Defining and Using DA Data Objects 5-26
5.10.7 The DynamicAttributeAccess Interface 5-28
5.10.8 The PDS_ClusteredDA Interface 5-29

5.11 The ODMG-93 Protocol. 5

5.12 The Dynamic Data Object (DDO) Protocol 5-30

5.13 The CosPersistenceDDO Module. 5-31

5.14 Other Protocols . 5

5.15 Datastores: CosPersistenceDS_CLI Module 5-34
5.15.1 The UserEnvironment Interface 5-36
5.15.2 The Connection Interface 5-37
5.15.3 The ConnectionFactory Interface 5-37
5.15.4 The Cursor Interface. 5-38
5.15.5 The CursorFactory Interface. 5-38
5.15.6 The PID_CLI Interface. 5-38
5.15.7 The Datastore_CLI Interface 5-40

5.16 Other Datastores. 5

5.17 Standards Conformance . 5-43

5.18 References . 5-43

6. Life Cycle Service Specification . 6

6.1 Service Description . 6
6.1.1 Overview . 6
6.1.2 Organization of this Chapter. 6
6.1.3 Client’s Model of Object Life Cycle. 6-

Client’s Model of Creation 6-4
Client’s Model of Deleting an Object 6-6
Client’s Model of Copying or Moving an
Object 6-6

6.1.4 Factory Finders. 6
Multiple Factory Finders 6-

6.1.5 Design Principles . 6-
6.1.6 Resolution of Technical Issues 6-9

6.2 The CosLifeCycle Module . 6
vi CORBAservices: Common Object Services Specification

7

-18
9
9

-21

-47

51

-59

1

-1
-1

-3
-4

7-5

-6

7-6

7
7-9
9

6.2.1 The LifeCycleObject Interface 6-11
copy 6-11
move 6-12
remove 6-13

6.2.2 The FactoryFinder Interface 6-13
find_factories 6-13

6.2.3 The GenericFactory Interface 6-14
create_object 6-15
supports 6-16

6.2.4 Criteria . 6-1

6.3 Implementing Factories . 6
6.3.1 Minimal Factories. 6-1
6.3.2 Administered Factories. 6-1

6.4 Target’s Use of Factories and Factory Finders 6-21

6.5 Summary of Life Cycle Service 6
6.5.1 Summary of Life Cycle Service Structure . . 6-22

Appendix A Addendum to Life Cycle Service: Compound
Life Cycle Specification.6-23

Appendix B Filters . 6

Appendix C Administration . 6-

Appendix D Support for PCTE Objects 6

7. Concurrency Control Service . 7-

7.1 Service Description . 7
7.1.1 Basic Concepts of Concurrency Control. . . . 7

Clients and Resources 7-1
Transactions as Clients 7-2
Locks 7-2
Lock Modes 7-2
Lock Granularity 7-2
Conflict Resolution7-3
Conflict Resolution for Transactions 7-3
Lock Duration 7-3

7.2 Locking Model . 7
7.2.1 Lock Modes . 7

Read, Write, and Upgrade Locks 7-4
Intention Read and Intention Write Locks 7-4
Lock Mode Compatibility 7-5

7.2.2 Multiple Possession Semantics.

7.3 Two-Phase Transactional Locking 7

7.4 Nested Transactions .

7.5 CosConcurrencyControl Module 7-
7.5.1 Types and Exceptions
7.5.2 LockCoordinator Interface 7-
Table of Contents July 1997 vii

10
11
13

-1

8-2

3

8-7

-12

5
6

-19
7.5.3 LockSet Interface . 7-
7.5.4 TransactionalLockSet Interface 7-
7.5.5 LockSetFactory Interface 7-

8. Externalization Service Specification 8-1

8.1 Service Description . 8

8.2 Service Structure .
8.2.1 Client’s Model of Object Externalization . . . 8-2
8.2.2 Stream’s Model of Object Externalization . . 8-
8.2.3 Object’s Model of Externalization 8-4
8.2.4 Object’s Model of Internalization 8-5

8.3 Object and Interface Hierarchies

8.4 Interface Summary . 8-10
Externalization Service Architecture:
Audience/Bearer Mapping 8-11

8.5 CosExternalization Module . 8
8.5.1 StreamFactory Interface 8-12

Creating a Stream Object 8-12

8.5.2 FileStreamFactory Interface 8-13
Creating a Stream Object Associated with
a File 8-13

8.5.3 Stream Interface . 8-13
Externalizing an Object 8-13
Externalizing Groups of Objects 8-14
Internalizing an Object 8-14

8.6 CosStream Module. 8-1
8.6.1 The StreamIO Interface 8-1
8.6.2 The Streamable Interface 8-17

Writing the Object’s State to a Stream 8-18
Reinitializing the Object’s State from a
Stream 8-18

8.6.3 The StreamableFactory Interface 8-19
Creating a Streamable Object 8-19

8.7 CosCompound Externalization Module 8
8.7.1 The Node Interface . 8-21

Externalizing a Node 8-21
Internalizing a Node 8-21

8.7.2 The Role Interface . 8-22
Externalizing a Role 8-22
Internalizing a Role 8-23
Getting a Propagation Value 8-23

8.7.3 The Relationship Interface 8-23
Externalizing the Relationship 8-23
Internalizing the Relationship 8-23
Getting a Propagation Value 8-24
viii CORBAservices: Common Object Services Specification

-26

8-29

-1

-1
-2

-3

-5

9-7
-7

0
11

15

15
15
8.7.4 The PropagationCriteriaFactory Interface . . 8-24
Create a Traversal Criteria Based on
Externalization Propagation 8-24

8.8 Specific Externalization Relationships. 8-25

8.9 The CosExternalizationContainment Module 8

8.10 The CosExternalizationReference Module. 8-28

8.11 Standard Stream Data Format .
8.11.1 OMG Externalized Object Data 8-29
8.11.2 Externalized Repeated Reference Data. 8-30
8.11.3 Externalized NIL Data 8-31

8.12 References . 8-31

9. Relationship Service Specification 9

9.1 Service Description . 9
9.1.1 Key Features of the Relationship Service. . . 9
9.1.2 The Relationship Service vs. CORBA Object

References . 9
Relationships that Are Multidirectional 9-4
Relationships that Allow Third Party
Manipulation 9-4
Traversals that Are Supported for Graphs of
Related Objects 9-4
Relationships and Roles that Can Be Extended
with Attributes and Behavior 9-4

9.1.3 Resolution of Technical Issues 9-4
Modeling and Relationship Semantics 9-4
Managing Relationships 9-5
Constraining Relationships 9-5
Referential Integrity 9-5
Relationships and Roles as First Class Objects 9
Different Models for Navigating and
Constructing Relationships 9-6
Efficiency Considerations 9-6

9.2 Service Structure .
9.2.1 Levels of Service . 9

Level One: Base Relationships 9-7
Level Two: Graphs of Related Objects 9-8
Level Three: Specific Relationships 9-9

9.2.2 Hierarchy of Relationship Interface 9-10
9.2.3 Hierarchy of Role Interface 9-1
9.2.4 Interface Summary . 9-

9.3 The Base Relationship Model . 9-13
9.3.1 Relationship Attributes and Operations 9-14

Rationale . 9-

9.3.2 Higher Degree Relationships 9-
Rationale . 9-
Table of Contents July 1997 ix

17

-33
3

-35

6

9-51

-1

-2
9.3.3 Operations . 9-
Creation 9-17
Navigation 9-18
Destruction 9-18

9.3.4 Consistency Constraints 9-18
9.3.5 Implementation Strategies 9-19
9.3.6 The CosObjectIdentity Module 9-19

The IdentifiableObject Interface 9-19
constant_random_id9-20
is_identical 9-20

9.3.7 The CosRelationships Module 9-20
Example of Containment Relationships9-23
The RelationshipFactory Interface 9-23
The Relationship Interface 9-25
Destroying a Relationship 9-26
The Role Interface 9-26
The RoleFactory Interface 9-30
The RelationshipIterator Interface 9-32

9.4 Graphs of Related Objects . 9
9.4.1 Graph Architecture . 9-3

Nodes 9-35

9.4.2 Traversing Graphs of Related Objects 9
Detecting and Representing Cycles 9-35
Determining the Relevant Nodes and Edges 9-36

9.4.3 Compound Operations 9-3
9.4.4 An Example Traversal Criteria 9-37

Propagation 9-37

9.4.5 The CosGraphs Module 9-38
The TraversalFactory Interface 9-41
The Traversal Interface 9-42
The TraversalCriteria Interface 9-43
The Node Interface 9-44
The NodeFactory Interface 9-46
The Role Interface 9-46
The EdgeIterator Interface 9-47

9.5 Specific Relationships . 9-47
9.5.1 Containment and Reference 9-48
9.5.2 The CosContainment Module. 9-48
9.5.3 The CosReference Module 9-50

9.6 References .

10. Transaction Service Specification 10

10.1 Service Description . 10-1
10.1.1 Overview of Transactions. 10
10.1.2 Transactional Applications 10-2
10.1.3 Definitions . 10-3

Transactional Client 10-4
x CORBAservices: Common Object Services Specification

2

4

Transactional Object 10-4
Recoverable Objects and Resource Objects 10-5
Transactional Server 10-6
Recoverable Server 10-6

10.1.4 Transaction Service Functionality 10-6
Transaction Models 10-6
Transaction Termination 10-7
Transaction Integrity 10-8
Transaction Context 10-8

10.1.5 Principles of Function, Design, and Performance10-8
Functional Requirements 10-8
Design Requirements 10-10
Performance Requirements 10-11

10.2 Service Architecture. 10-12
10.2.1 Typical Usage . 10-12
10.2.2 Transaction Context 10-13
10.2.3 Context Management 10-14
10.2.4 Datatypes . 10-15
10.2.5 Exceptions . 10-15

Standard Exceptions 10-15
Heuristic Exceptions 10-16
WrongTransaction Exception 10-17
Other Exceptions 10-17

10.3 Transaction Service Interfaces . 10-17
10.3.1 Current Interface. 10-18

begin 10-18
commit 10-19
rollback 10-19
rollback_only 10-19
get_status 10-19
get_transaction_name 10-20
set_timeout 10-20
get_control 10-20
suspend 10-20
resume 10-20

10.3.2 TransactionFactory Interface 10-21
create 10-21

10.3.3 Control Interface. 10-21
get_terminator 10-22
get_coordinator 10-22

10.3.4 Terminator Interface 10-2
commit 10-23
rollback 10-23

10.3.5 Coordinator Interface 10-2
get_status 10-24
get_parent_status 10-24
get_top_level_status10-25
is_same_transaction 10-25
is_ancestor_transaction 10-25
is_descendant_transaction 10-25
Table of Contents July 1997 xi

34

36
is_related_transaction10-25
is_top_level_transaction 10-25
hash_transaction 10-25
hash_top_level_tran 10-26
register_resource 10-26
register_subtran_aware 10-26
rollback_only 10-26
get_transaction_name 10-27
create_subtransaction 10-27

10.3.6 Recovery Coordinator Interface 10-27
replay_completion 10-27

10.3.7 Resource Interface . 10-27
prepare 10-28
rollback 10-29
commit 10-29
commit_one_phase 10-29
forget 10-29

10.3.8 Subtransaction Aware Resource Interface . . 10-29
commit_subtransaction 10-30
rollback_subtransaction 10-30

10.3.9 TransactionalObject Interface. 10-30

10.4 The User’s View. 10-31
10.4.1 Application Programming Models 10-31

Direct Context Management: Explicit
Propagation 10-31
Indirect Context Management: Implicit
Propagation 10-31
Indirect Context Management: Explicit
Propagation 10-32
Direct Context Management: Implicit
Propagation 10-32

10.4.2 Interfaces . 10-32
10.4.3 Checked Transaction Behavior 10-32
10.4.4 X/Open Checked Transactions 10-33

Reply Check 10-34
Commit Check 10-34
Resume Check 10-34

10.4.5 Implementing a Transactional Client: Heuristic
Completions . 10-

10.4.6 Implementing a Recoverable Server 10-35
Transactional Object 10-35
Resource Object 10-35
Reliable Servers 10-35

10.4.7 Application Portability 10-36
Flat Transactions 10-36
X/Open Checked Transactions 10-36

10.4.8 Distributed Transactions. 10-
10.4.9 Applications Using Both Checked and Unchecked

Services . 10-36
xii CORBAservices: Common Object Services Specification

5

-70

-1

-1
1
-2

-9

1-10
10.4.10 Examples . 10-37
A Transaction Originator: Indirect and
Implicit 10-37
Transaction Originator: Direct and Explicit 10-38
Example of a Recoverable Server 10-39
Example of a Transactional Object 10-40

10.4.11 Model Interoperability 10-41
Importing Transactions 10-41
Exporting Transactions 10-42
Programming Rules 10-43

10.4.12 Failure Models . 10-43
Transaction Originator 10-43
Transactional Server 10-44
Recoverable Server 10-44

10.5 The Implementors’ View . 10-44
10.5.1 Transaction Service Protocols 10-45

General Principles 10-45
Normal Transaction Completion 10-46
Failures and Recovery 10-52
Transaction Completion after Failure 10-53

10.5.2 ORB/TS Implementation Considerations . . . 10-55
Transaction Propagation 10-55
Transaction Service Interoperation 10-57
Transaction Service Portability 10-60

10.5.3 Model Interoperability 10-63

10.6 The CosTransactions Module . 10-6
10.6.1 The CosTSInteroperation Module 10-69
10.6.2 The CosTSPortability Module 10-69

Appendix A Relationship of Transaction Service to
TP Standards . 10

Appendix B Transaction Service Glossary 10-81

11. Query Service Specification . 11

11.1 Service Description . 11-1
11.1.1 Overview . 11
11.1.2 Design Principles . 11-
11.1.3 Architecture . 11

Query Evaluators: Nesting and Federation11-3
Collections 11-4
Queryable Collections for Scope and Result11-5
Query Objects 11-5

11.1.4 Query Languages . 11-6
SQL Query 11-7
OQL 11-7
SQL Query = OQL 11-8

11.1.5 Key Features. 11

11.2 Service Structure . 1
Table of Contents July 1997 xiii

0

0

10
11

-12
2
12

-14

6

8

19

-23

6

11.2.1 Overview . 11-1
Type One: Collections 11-10
Type Two: Query Framework 11-10

11.2.2 Collection Interface Structure. 11-1
11.2.3 Query Framework Interface Hierarchy/

Structure . 11-
11.2.4 Interface Overview . 11-

11.3 The Collection Model . 11
11.3.1 Common Types of Collections 11-1
11.3.2 Iterators . 11-

11.4 The CosQueryCollection Module. 11
11.4.1 The CollectionFactory Interface 11-15

Creating a Collection 11-16

11.4.2 The Collection Interface 11-1
Determining the Cardinality 11-16
Adding an Element 11-16
Adding Elements from a Collection 11-17
Inserting an Element 11-17
Replacing an Element 11-17
Removing an Element 11-17
Removing all Elements 11-18
Retrieving an Element 11-18
Creating an Iterator 11-18

11.4.3 The Iterator Interface 11-1
Accessing the Current Element 11-18
Resetting the Iteration 11-19
Testing for Completion of an Iteration 11-19

11.5 The Query Framework Model . 11-19
11.5.1 Query Evaluators . 11-
11.5.2 Queryable Collections 11-20
11.5.3 Query Managers . 11-21
11.5.4 Query Objects. 11-21

11.6 The CosQuery Module . 11
11.6.1 The QueryLanguageType Interfaces 11-24
11.6.2 The QueryEvaluator Interface 11-25

Determining the Supported Query Language
Types 11-25
Determining the Default Query Language
Type 11-25
Evaluating a Query 11-25

11.6.3 The QueryableCollection Interface. 11-25
11.6.4 The QueryManager Interface 11-25

Creating a Query Object 11-26

11.6.5 The Query Interface 11-26
Determining the Associated Query Manager 11-2
Preparing the Query for Execution 11-26
xiv CORBAservices: Common Object Services Specification

1-27

-1

-6

-7

-27
Executing the Query 11-26
Determining the Query Status 11-27
Obtaining the Query Result 11-27

11.7 References . 1

12. Licensing Service Specification . 12

12.1 Background On Existing License Management Products 12-1
12.1.1 Business Policy. 12-2
12.1.2 License Types . 12-2
12.1.3 A History of License Types 12-3
12.1.4 Asset Management . 12-3
12.1.5 License Usage Practices 12-4
12.1.6 Scalability. 12-4
12.1.7 Reliability . 12-4
12.1.8 Legacy Applications. 12-5
12.1.9 Security . 12-6
12.1.10 Client/Server Authentication 12
12.1.11 Example: Application Acquiring and Releasing a

Concurrent License. 12-6

12.2 Service Description . 12-7
12.2.1 Overview . 12
12.2.2 Key Components of a Licensing System . . . 12-8

License Attributes 12-8
Licensing Policy 12-8
Interfaces Isolated From Business Policies12-10

12.2.3 Licensing in the CORBA Environment 12-10
12.2.4 Design Principles . 12-12
12.2.5 Licensing Service Interfaces. 12-13

Interfaces are Mandatory 12-13
Constraints on Object Behavior12-13

12.2.6 Licensing Event Trace Diagram 12-14

12.3 The CosLicensing Module . 12-16
12.3.1 LicenseServiceManager Interface. 12-19
12.3.2 ProducerSpecificLicenseService Interface . . 12-19

12.4 References . 12-21

Appendix A Licensing Service Glossary 12-22

Appendix B Use of Other Services. 12-23

Appendix C Producer Client Implementation Issues 12

Appendix D Challenge Mechanism . 12-30

13. Property Service .13-1

13.1 Overview . 13-1
Table of Contents July 1997 xv

3
3

4

9

1
2

29

-1

2

13.1.1 Service Description 13-1
Client’s Model of Properties 13-2
Object’s Model of Properties 13-2

13.1.2 OMG IDL Interface Summary 13-
13.1.3 Summary of Key Features 13-

13.2 Service Interfaces. 13-4
13.2.1 CosPropertyService Module 13-4

Data Types 13-5
Exceptions 13-7

13.2.2 PropertySet Interface 13-9
Defining and Modifying Properties 13-9
define_properties 13-10
Listing and Getting Properties 13-11
get_all_property_names 13-11
get_property_value 13-11
get_properties 13-11
get_all_properties 13-12
Deleting Properties 13-12
delete_property 13-12
delete_properties 13-13
delete_all_properties 13-13
Determining If a Property Is Already
Defined 13-14

13.2.3 PropertySetDef Interface 13-1
Retrieval of PropertySet Constraints 13-15
get_allowed_properties 13-15
Defining and Modifying Properties with
Modes 13-15
define_properties_with_modes 13-16
Getting and Setting Property Modes 13-17
get_property_modes 13-18
set_property_mode 13-18
set_property_modes 13-19

13.2.4 PropertiesIterator Interface 13-1
next_one, next_n 13-19
Destroying the Iterator 13-20

13.2.5 PropertyNamesIterator Interface 13-20
Resetting the Position in an Iterator 13-20
next_one, next_n 13-20
Destroying the Iterator 13-21

13.2.6 PropertySetFactory Interface 13-2
13.2.7 PropertySetDefFactory Interface 13-2

Appendix A Property Service IDL . 13-

14. Time Service Specification . 14

14.1 Introduction . 14-1
14.1.1 Time Service Requirements 14-1
14.1.2 Representation of Time. 14-1
14.1.3 Source of Time . 14-
xvi CORBAservices: Common Object Services Specification

-4

-11

13
14.1.4 General Object Model 14-3
14.1.5 Conformance Points 14-4

14.2 Basic Time Service. 14
14.2.1 Object Model . 14-4
14.2.2 Data Types . 14-5

Type TimeT 14-6
Type InaccuracyT 14-6
Type TdfT 14-6
Type UtcT 14-6
Type IntervalT14-6
Enum ComparisonType 14-7
Enum TimeComparison 14-7
Enum OverlapType 14-7

14.2.3 Exceptions . 14-8
TimeUnavailable 14-8

14.2.4 Universal Time Object (UTO) 14-8
Readonly attribute time 14-9
Readonly attribute inaccuracy 14-9
Readonly attribute tdf 14-9
Readonly attribute utc_time 14-9
Operation absolute_time 14-9
Operation compare_time 14-10
Operation time_to_interval 14-10
Operation interval 14-10

14.2.5 Time Interval Object (TIO). 14-10
Readonly attribute time_interval 14-10
Operation spans 14-11
Operation overlaps14-11
Operation time 14-11

14.2.6 Time Service. 14
Operation universal_time 14-12
Operation secure_universal_time 14-12
Operation new_universal_time 14-12
Operation uto_from_utc 14-12
Operation new_interval 14-12

14.3 Timer Event Service. 14-
14.3.1 Object Model . 14-13
14.3.2 Usage . 14-13
14.3.3 Data Types . 14-14

Enum TimeType 14-14
Enum EventStatus 14-14
Type TimerEventT 14-15

14.3.4 Exceptions . 14-15
14.3.5 Timer Event Handler 14-15

Attribute status 14-16
Operation time_set 14-16
Operation set_timer 14-16
Operation cancel_timer 14-16
Operation set_data 14-16
Table of Contents July 1997 xvii

-17

20

-25

0

14.3.6 Timer Event Service 14-16
Operation register 14-17
Operation unregister 14-17
Operation event_time 14-17

14.4 Conformance . 14

Appendix A Implementation Guidelines 14-18

Appendix B Consolidated OMG IDL . 14-

Appendix C Notes for Users. 14-23

Appendix D Extension Examples . 14

Appendix E References . 14-28

15. Security Service Specification .15-1

15.1 Introduction to Security . 15-1
15.1.1 Why Security? . 15-1
15.1.2 What Is Security? . 15-1
15.1.3 Threats in a Distributed Object System 15-2
15.1.4 Summary of Key Security Features 15-3
15.1.5 Goals . 15-3

Simplicity 15-4
Consistency 15-4
Scalability 15-4
Usability for End Users15-4
Usability of Administrators 15-5
Usability for Implementors15-5
Flexibility of Security Policy 15-5
Independence of Security Technology 15-5
Application Portability 15-6
Interoperability 15-6
Performance 15-6
Object Orientation15-6
Specific Security Goals 15-7
Security Architecture Goals 15-7

15.2 Introduction to the Specification 15-8
15.2.1 Conformance to CORBA Security 15-9
15.2.2 Specification Structure 15-1

Normative and Non-normative Material 15-10
Section Summaries 15-11
Proof of Concept 15-12

15.3 Security Reference Model . 15-12
15.3.1 Definition of a Security Reference Model . . 15-12
15.3.2 Principals and Their Security Attributes. . . . 15-14
15.3.3 Secure Object Invocations 15-15

Establishing Security Associations 15-16
Message Protection 15-17

15.3.4 Access Control Model 15-19
Object Invocation Access Policy 15-20
xviii CORBAservices: Common Object Services Specification

Application Access Policy 15-20
Access Policies 15-21

15.3.5 Auditing . 15-23
15.3.6 Delegation . 15-25

Privilege Delegation 15-26
Overview of Delegation Schemes 15-27
Facilities Potentially Available 15-27
Specifying Delegation Options 15-30
Technology Support for Delegation Options 15-30

15.3.7 Non-repudiation . 15-31
15.3.8 Domains . 15-33

Security Policy Domains 15-34
Security Environment Domains 15-36
Security Technology Domains 15-37
Domains and Interoperability 15-38

15.3.9 Security Management and Administration . . 15-40
Managing Security Policy Domains 15-40
Managing Security Environment Domains 15-41
Managing Security Technology Domains 15-41

15.3.10 Implementing the Model 15-41

15.4 Security Architecture . 15-42
15.4.1 Different Users’ View of the Security Model 15-42

Enterprise Management View 15-42
End User View 15-43
Application Developer View 15-43
Administrator’s View 15-44
Object System Implementor’s View 15-45

15.4.2 Structural Model. 15-46
Application Components 15-47
ORB Services 15-47
Security Services 15-49
Security Policies and Domain Objects 15-49

15.4.3 Security Technology 15-51
15.4.4 Basic Protection and Communications 15-52

Environment Domains 15-52
Component Protection 15-52

15.4.5 Security Object Models 15-54
The Model as Seen by Applications 15-54
Administrative Model 15-71
The Model as Seen by the Objects
Implementing Security 15-75
Summary of Objects in the Model 15-82

15.5 Application Developer’s Interfaces 15-84
15.5.1 Introduction . 15-84

Security Functionality Conformance 15-85
Introduction to the Interfaces 15-86

15.5.2 Finding Security Features. 15-92
Description of Facilities 15-92
Interfaces 15-92
Table of Contents July 1997 xix

1

15
Portability Implications 15-92

15.5.3 Authentication of Principals 15-92
Description of Facilities 15-92
Interfaces 15-93
Portability Implications 15-95

15.5.4 Credentials . 15-96
Description of Facilities 15-96
Interfaces 15-96
Portability Implications 15-100

15.5.5 Object Reference . 15-100
Description of Facilities 15-100
Interfaces 15-101
Portability Implications 15-104

15.5.6 Security Operations on Current 15-104
Description 15-104
Interfaces 15-105

15.5.7 Security Audit . 15-109
Description of Facilities 15-109
Interfaces 15-109
Portability Implications 15-111

15.5.8 Administering Security Policy 15-11
15.5.9 Use of Interfaces for Access Control 15-111

Description of Facilities 15-111
Interfaces 15-112
Portability Implications 15-113

15.5.10 Use of Interfaces for Delegation 15-113
Description of Facilities 15-113
Interfaces 15-114
Portability Implications 15-114

15.5.11 Non-repudiation . 15-1
Description of Facilities 15-115
Interfaces 15-116

15.6 Administrator’s Interfaces . 15-123
15.6.1 Concepts . 15-124

Administrators 15-124
Policy Domains 15-124
Security Policies 15-125

15.6.2 Domain Management 15-125
Policy 15-126
Domain Manager 15-126
Construction Policy 15-127
Extensions to the Object Interface15-127

15.6.3 Security Policies Introduction 15-128
15.6.4 Access Policies . 15-129

Rights15-129
AccessPolicy Interface 15-131
Specific Invocation Access Policies 15-132
DomainAccessPolicy Interface 15-132

15.6.5 Audit Policies . 15-138
Audit Administration Interfaces 15-138
xx CORBAservices: Common Object Services Specification

0

5

71
15.6.6 Secure Invocation and Delegation Policies. . 15-140
Secure Invocation Policies 15-141
Invocation Delegation Policy 15-144

15.6.7 Non-repudiation Policy Management 15-145

15.7 Implementor’s Security Interfaces 15-147
15.7.1 Generic ORB Services and Interceptors 15-148

Request-Level Interceptors15-149
Message-Level Interceptors15-149
Selecting Interceptors 15-150
Interceptor Interfaces 15-150

15.7.2 Security Interceptors. 15-15
Invocation Time Policies 15-152
Secure Invocation Interceptor15-152
Access Control Interceptor 15-154

15.7.3 Implementation-Level Security Object
Interfaces . 15-155

Vault 15-156
Security Context Object 15-158
Access Decision Object15-161
Audit Objects 15-162
Principal Authentication 15-163
Non-repudiation 15-163

15.7.4 Replaceable Security Services 15-163
Replacing Authentication and Security
Association Services 15-163
Replacing Access Decision Policies 15-163
Replacing Audit Services 15-164
Replacing Non-repudiation Services 15-164
Other Replaceability 15-164
Linking to External Security Services 15-164

15.8 Security and Interoperability . 15-16
15.8.1 Interoperability Model 15-166

Security Information in the Object
Reference 15-167
Establishing a Security Association 15-168
Protecting Messages 15-168
Security Mechanisms for Secure Object
Invocations 15-168
Security Mechanism Types 15-169
Interoperating between Underlying
Security Services 15-170
Interoperating between Security Policy
Domains 15-170
Secure Interoperability Bridges15-171

15.8.2 Protocol Enhancements 15-171
15.8.3 CORBA Interoperable Object Reference with

Security . 15-1
Security Components of the IOR 15-172
Operational Semantics15-175

15.8.4 Secure Inter-ORB Protocol (SECIOP) 15-177
Table of Contents July 1997 xxi

96

232

45

7

73

286

1

-3

-4
-4

-7
7

SECIOP Message Header 15-177
SECIOP 15-178
ContextId 15-178
ContextIdDefn 15-178
Message Definitions 15-179
SECIOP Protocol State Tables 15-182

15.8.5 DCE-CIOP with Security 15-185
Goals of Secure DCE-CIOP 15-185
Secure DCE-CIOP Overview 15-186
IOR Security Components for DCE-CIOP 15-186
DCE RPC Security Services 15-191
Secure DCE-CIOP Operational Semantics 15-192

Appendix A Consolidated OMG IDL 15-1

Appendix B Summary of CORBA 2 Core Changes 15-217

Appendix C Relationship to Other Services 15-

Appendix D Conformance Details . 15-235

Appendix E Guidelines for a Trustworthy System 15-2

Appendix F Conformance Statement 15-26

Appendix G Facilities Not in This Specification 15-2

Appendix H Interoperability Guidelines. 15-281

Appendix I Glossary . 15-

16. Trading Object Service Specification. 16-

16.1 Overview . 16-2
16.1.1 Diversity and Scalability 16-3
16.1.2 Linking Traders . 16
16.1.3 Policy . 16-3
16.1.4 Additional ObjectID 16-4

16.2 Concepts and Data Types . 16-4
16.2.1 Exporter . 16
16.2.2 Importer . 16
16.2.3 Service Types . 16-4

Service Type Model 16-5

16.2.4 Properties . 16
16.2.5 Service Offers. 16-

Modifiable Properties 16-8
Dynamic Properties 16-8

16.2.6 Offer Identifier . 16-9
16.2.7 Offer Selection . 16-9

Standard Constraint Language 16-9
Preferences 16-10
Links 16-11
Policies 16-12
Trader Policies 16-16
Link Follow Behavior 16-16
xxii CORBAservices: Common Object Services Specification

-23

5

9
9

5

Importer Policies 16-17
Exporter Policies 16-18
Link Creation Policies 16-18

16.2.8 Interworking Mechanisms 16-18
Link Traversal Control 16-18
Federated Query Example 16-19
Proxy Offers 16-20

16.2.9 Trader Attributes . 16-21

16.3 Exceptions . 16
16.3.1 For CosTrading module 16-23

Exceptions used in more than one interface 16-23
Additional Exceptions for Lookup Interface16-24
Additional Exceptions For Register Interface16-2
Additional Exceptions for Link Interface 16-26
Additional Exceptions for Proxy Offer
Interface 16-27

16.3.2 For CosTradingDynamic module 16-27
16.3.3 For CosTradingRepos module 16-27

16.4 Abstract Interfaces . 16-28
16.4.1 TraderComponents . 16-28
16.4.2 SupportAttributes . 16-2
16.4.3 ImportAttributes . 16-2
16.4.4 LinkAttributes . 16-30

16.5 Functional Interfaces . 16-30
16.5.1 Lookup . 16-30

Query Operation 16-31

16.5.2 Offer Iterator . 16-3
Signature 16-35
Function 16-36

16.5.3 Register . 16-36
Export Operation 16-39
Withdraw Operation 16-41
Describe Operation 16-41
Modify Operation 16-42
Withdraw Using Constraint Operation 16-44
Resolve Operation 16-45

16.5.4 Offer Id Iterator . 16-45
Signature 16-45
Function 16-46

16.5.5 Admin. 16-46
Attributes and Set Operations 16-48
List Offers Operation 16-48
List Proxies Operation 16-48

16.5.6 Link . 16-49
Add_Link Operation 16-51
Remove Link Operation 16-52
Describe Link Operation 16-52
List Links Operation 16-53
Table of Contents July 1997 xxiii

7

-68

9

74

-1

7-2

-5
Modify Link Operation 16-53

16.5.7 Proxy . 16-54
Export Proxy Operation 16-55
Withdraw Proxy Operation 16-58
Describe Proxy Operation16-58

16.6 Service Type Repository . 16-59
Add Type Operation 16-62
Remove Type Operation 16-64
List Types Operation 16-64
Describe Type Operation 16-65
Fully Describe Type Operation 16-65
Mask Type Operation 16-66
Unmask Type Operation 16-66

16.7 Dynamic Property Evaluation interface 16-6

16.8 Conformance Criteria. 16
16.8.1 Conformance Requirements for Trading

Interfaces as Server 16-6
Lookup Interface 16-69
Register Interface16-69
Admin Interface16-70
Link Interface 16-70
Proxy Interface 16-70

16.8.2 Conformance Requirements for Implementation
Conformance Classes 16-71

Query Trader 16-71
Simple Trader 16-72
Stand-alone Trader 16-72
Linked Trader 16-72
Proxy Trader 16-73
Full-service Trader 16-73

Appendix A CORBA OMG IDL based Specification of the
Trading Function . 16-

Appendix B OMG Constraint Language BNF 16-93

Appendix C OMG Constraint Recipe Language 16-99

17. Object Collection Specification . 17

17.1 Overview . 17-2

17.2 Service Structure . 1
17.2.1 Combined Property Collections 17-3

Restricted Access Collections 17-4
Collection Factories 17-5

17.2.2 Iterators . 17
17.2.3 Function Interfaces . 17-7

Collectible Elements and Type Safety 17-7
Collectible Elements and the Operations
Interface 17-7
Collectible Elements of Key Collections 17-8

17.2.4 List of Interfaces Defined 17-8
xxiv CORBAservices: Common Object Services Specification

-10

4

17.3 Combined Collections . 17
17.3.1 Combined Collections Usage Samples 17-10

Bag, SortedBag 17-10
EqualitySequence 17-11
Heap 17-11
KeyBag, KeySortedBag 17-11
KeySet, KeySortedSet 17-12
Map, SortedMap 17-12
Relation, SortedRelation 17-13
Set, SortedSet 17-13
Sequence 17-13

17.4 Restricted Access Collections . 17-1
17.4.1 Restricted Access Collections Usage Samples 17-14

Deque 17-14
PriorityQueue 17-14
Queue 17-15
Stack 17-15

17.5 The CosCollection Module . 17-15
17.5.1 Interface Hierarchies 17-15

Collection Interface Hierarchies 17-15
Iterator Hierarchy 17-18

17.5.2 Exceptions and Type Definitions 17-19
17.5.3 Abstract Collection Interfaces 17-21

The Collection Interface 17-21
The OrderedCollection Interface 17-28
The SequentialCollection Interface 17-31
The SortedCollection Interface 17-37
The EqualityCollection Interface 17-37
The KeyCollection Interface 17-42
The EqualityKeyCollection Interface 17-50
The KeySortedCollection Interface 17-51
The EqualitySortedCollection Interface17-53
The EqualityKeySortedCollection Interface17-55
The EqualitySequentialCollection Interface 17-55

17.5.4 Concrete Collections Interfaces 17-57
The KeySet Interface 17-57
The KeyBag Interface 17-57
The Map Interface 17-57
The Relation Interface17-61
The Set Interface 17-61
The Bag Interface 17-62
The KeySortedSet Interface 17-62
The KeySortedBag Interface 17-63
The SortedMap Interface17-63
The SortedRelation Interface 17-63
The SortedSet Interface17-63
The SortedBag Interface 17-64
The Sequence Interface17-64
The EqualitySequence Interface 17-64
The Heap Interface 17-64

17.5.5 Restricted Access Collection Interfaces 17-65
Table of Contents July 1997 xxv

18
17.5.6 Abstract RestrictedAccessCollection Interface 17-65
The RestrictedAccessCollection Interface 17-65

17.5.7 Concrete Restricted Access Collection
Interfaces . 17-66

The Queue Interface 17-66
The Dequeue Interface 17-67
The Stack Interface 17-67
The PriorityQueue Interface 17-69

17.5.8 Collection Factory Interfaces 17-70
The CollectionFactory and CollectionFactories
Interfaces 17-71
The RACollectionFactory and
RACollectionFactories Interfaces 17-74
The KeySetFactory Interface 17-75
The KeyBagFactory Interface 17-75
The MapFactory Interface 17-76
The RelationFactory Interface 17-76
The SetFactory Interface17-77
The BagFactory Interface 17-77
The KeySortedSetFactory Interface 17-78
The KeySortedBagFactory Interface 17-78
The SortedMapFactory Interface 17-79
The SortedRelationFactory Interface 17-79
The SortedSetFactory Interface 17-80
The SortedBagFactory Interface 17-80
The SequenceFactory Interface 17-81
The EqualitySequence Factory Interface 17-81
The HeapFactory Interface 17-82
The QueueFactory Interface 17-82
The StackFactory Interface 17-83
The DequeFactory Interface 17-83
The PriorityQueueFactory Interface 17-83

17.5.9 Iterator Interfaces . 17-84
Iterators as pointer abstraction 17-84
Iterators and support for generic
programming 17-84
Iterators and performance 17-85
The Managed Iterator Model 17-85
The Iterator Interface 17-86
The OrderedIterator Interface 17-97
The SequentialIterator Interface 17-106
The KeyIterator Interface 17-108
The EqualityIterator Interface 17-110
The EqualityKeyIterator Interface 17-111
The SortedIterator Interface 17-112
The KeySortedIterator Interface 17-112
The EqualitySortedIterator Interface 17-114
The EqualityKeySortedIterator Interface17-116
The EqualitySequentialIterator Interface 17-117

17.5.10 Function Interfaces . 17-1
The Operations Interface 17-118
The Command and Comparator Interface 17-122
xxvi CORBAservices: Common Object Services Specification

4

ex-1
Identification and Justification of
Differences 17-124
CosQueryCollection Module Detailed
Comparison 17-126
Containers 17-133
Algorithms 17-134
Iterators 17-134
Consideration on choice 17-135

Appendix A OMG Object Query Service 17-12

Appendix B Relationship to Other Relevant Standards 17-133

Appendix C References . 17-138

 Index .Ind
Table of Contents July 1997 xxvii

xxviii CORBAservices: Common Object Services Specification

List of Figures
2-3

3-2

3-6

. 4-7

 4-7

-8

-11

4-12

-12

-13

-14
Figure 2-1 An event channel as a collection of objects
conspiring to manage multiple simultaneous
consumer clients. .

Figure 3-1 A Naming Graph .

Figure 3-2 The CosNaming Module .

Figure 3-3 The Names Library Interface in PIDL 3-14

Figure 4-1 Push-style Communication Between a Supplier and
a Consumer .

Figure 4-2 Pull-style Communication Between a Supplier and a
Consumer .

Figure 4-3 The OMG IDL Module CosEventComm 4

Figure 4-4 Push-style Communication Between a Supplier and
an Event Channel, and a Consumer and an Event
Channel . 4-11

Figure 4-5 Pull-style communication between a supplier and
an event channel and a consumer and the event
channel . 4

Figure 4-6 Push-style Communication Between a Supplier and
an Event Channel, and Pull-style Communication
Between a Consumer and an Event Channel

Figure 4-7 An Event Channel with Multiple Suppliers and
Multiple Consumers . 4

Figure 4-8 A newly created event channel. The channel has no
 suppliers or consumers . 4

Figure 4-9 State diagram of a proxy . 4
CORBAservices: Common Object Services Specification xxix

16

-20

-21

22

25

 5-1

 5-9

-12

-15

18

-20

1

-22

-31

-32

-35

6-1

 6-2

6-3

4

 6-5

-6
Figure 4-10 The CosEventChannelAdmin Module 4-

Figure 4-11 Typed Push-style Communication Between a
Supplier and a Consumer . 4

Figure 4-12 Typed Pull-style Communication Between a Supplier
and a Consumer . 4

Figure 4-13 The IDL Module CosTypedEventComm 4-

Figure 4-14 The CosTypedEventChannelAdmin Module 4-

Figure 5-1 Roles in the Persistent Object Service

Figure 5-2 Major Components of the POS and their Interactions 5-8

Figure 5-3 The CosPersistencePID Module .

Figure 5-4 TheCosPersistencePO Module . 5

Figure 5-5 The CosPersistencePOM Module 5

Figure 5-6 Example to illustrate POMFunctions 5-

Figure 5-7 The CosPersistencePDS Module 5

Figure 5-8 Direct Access Protocol Interfaces 5-2

Figure 5-9 The CosPersistencePDS_DA Module 5

Figure 5-10 Structure of a DDO . 5

Figure 5-11 The CosPersistenceDDO Module 5

Figure 5-12 The CosPersistenceDS_CLI Module 5

Figure 6-1 Life Cycle service defines how a client can create
an object “over there”. .

Figure 6-2 Life Cycle Service defines how a client can move
or copy an object over there. .

Figure 6-3 The object life cycle problem for graphs of objects is
to determine the boundaries of a graph of objects and
operate on that graph. In the above example, a document
contains a graphic and a logo, refers to a dictionary and
is contained in a folder.

Figure 6-4 To create an object “over there” a client must
possess an object reference to a factory over there.
The client simply issues a request on the factory. 6-

Figure 6-5 An example of a document factory interface. This
interface is defined for clients as a part of application
development. .

Figure 6-6 To delete an object, a client must posses an object
reference supporting the LifeCycleObject interface
and issues a remove request on the object. 6
xxx CORBAservices: Common Object Services Specification

6-7

0

5

9

6-20

1

8-4

 8-5

-6

 8-7

8-9

-10
Figure 6-7 Life cycle services define how a client can move or
copy an object from here to there.

Figure 6-8 The FactoryFinder interface can be “mixed in” with
interfaces of more powerful finding services. 6-8

Figure 6-9 The CosLifeCycle Module . 6-1

Figure 6-10 The Life Cycle service provides a generic creation
capability. Ultimately, implementation specific
creation code is invoked by the creation service.
The implementation specific code also supports the
GenericFactory interface. . 6-1

Figure 6-11 Factories assemble resources for the execution of an
object. A minimal implementation achieves this with
a single factory implementation. 6-1

Figure 6-12 In an administered environment, factory
implementations can delegate the creation problem
to a generic factory. The generic factory can apply
resource allocation policies. Ultimatelythe creation
service communicates with implementation specific
code that assembles resources for the bject

Figure 6-13 The copy and move operations are passed a
FactoryFinder to represent "there." The implementation
of the target uses the FactoryFinder to find a
factory object for creation over there. The protocol
between the object and the factory is private. They can
commujnicate and transfer state according to any
implementation-defined protocol. 6-2

Figure 8-1 Externalization control flow when streamable object
is not in a graph of related objects

Figure 8-2 Externalization control flow when streamable object
is a node in a graph of related objects

Figure 8-3 Internalization control flow when object is not in a
graph of related objects . 8

Figure 8-4 Internalization control flow when object is in a graph
of related objects .

Figure 8-5 Object Externalization Service Booch Class
(=Interface) Diagram .

Figure 8-6 Client Functional Interfaces support client’s model
of externalization . 8
 July 1997 xxxi

10

11

-15

0

22

-26

-28

9-7

9-9

0

0

14

-15

16

-16

-17

19

-21

23

-34

7

8

-39

-48
Figure 8-7 Service Construction Interfaces support service
implementation’s model of externalization 8-

Figure 8-8 Compound Externalization Interfaces support service
implementation’s model of graph externalization 8-

Figure 8-9 The CosStream module . 8

Figure 8-10 The CosCompoundExternalization Module 8-2

Figure 8-11 Internalizing a node returns the new object and the
corresponding roles. 8-

Figure 8-12 The CosExternalizationContainment module 8

Figure 8-13 The CosExternalizationReference module 8

Figure 9-1 Base relationships .

Figure 9-2 Navigation functionality of base relationships 9-8

Figure 9-3 An example graph of related objects

Figure 9-4 Relationship interface hierarchy . 9-1

Figure 9-5 Role interface hierarchy . 9-1

Figure 9-6 Simple relationship type: documents reference books . . . 9-14

Figure 9-7 Simple relationship instance: my document references
the book “War and Peace“ . 9-

Figure 9-8 A ternary check-out relationship type between books,
libraries and persons . 9

Figure 9-9 An unsatisfactory representation of the ternary
check-out relationship using binary relationships 9-

Figure 9-10 Another unsatisfactory representation 9

Figure 9-11 Creating a role for an object . 9

Figure 9-12 A fully established binary relationship 9-17

Figure 9-13 The CosObjectIdentity Module . 9-

Figure 9-14 The CosRelationships Module . 9

Figure 9-15 Two binary one-to-many containment relationships. 9-

Figure 9-16 An example graph of related objects 9

Figure 9-17 A traversal of a graph for compound copy operation . . . 9-3

Figure 9-18 How deep, shallow and none propagation values
affect nodes, roles and relationships. 9-3

Figure 9-19 The CosGraphs Module . 9

Figure 9-20 The CosContainment Module . 9
xxxii CORBAservices: Common Object Services Specification

-50

2

-41

-42

-42

64

1-3

1-5

1-8

0

14

0

1

2-7

-14

-16

-17

3-5

7

3-9

-11

2

-14

-15

-19

0

Figure 9-21 The CosReference Module . 9

Figure 10-1 This figure illustrates the major components and
interfaces of the Transaction Service 10-1

Figure 10-2 X/Open client . 10

Figure 10-3 X/Open server . 10

Figure 10-4 Example . 10

Figure 10-5 Model interoperability example 10-

Figure 11-1 Query Evaluators: Nesting and Federation 1

Figure 11-2 Queryable Collections . 1

Figure 11-3 SQL Query = OQL . 1

Figure 11-4 Collection interface structure . 11-1

Figure 11-5 Query Framework interface hierarchy/structure 11-11

Figure 11-6 CosQueryCollection Module . 11-

Figure 11-7 Query Evaluator and Queryable Collection 11-2

Figure 11-8 Query Manager and Query Object 11-2

Figure 11-9 QueryLanguageType Interface Hierarchy 11-24

Figure 12-1 Licensing Service Relationships . 1

Figure 12-2 Licensing Service Instance Diagram 12

Figure 12-3 Licensing Event Trace Diagram 12

Figure 12-4 CosLicensingManager Module . 12

Figure 13-1 Data types . 1

Figure 13-2 PropertySet interface exceptions . 13-

Figure 13-3 Operations used to define new properties or set
new values . 1

Figure 13-4 Operations used to retrieve property names and
values . 13

Figure 13-5 Operations used to delete properties 13-1

Figure 13-6 is_property_defined operation . 13

Figure 13-7 Operations used to retrieve information related to
constraints. 13

Figure 13-8 Operations used to define new properties or values. . . . 13-16

Figure 13-9 Operations used to get and set property mode 13-18

Figure 13-10 reset operation . 13

Figure 13-11 next_one and next_n operations (properties) 13-2
 July 1997 xxxiii

-20

-20

-21

-21

-22

4-3

-5

8

13

-19

-13

-15

5

18

19

21

24

-25

-28

-28

-29

9

-29

-32

-32

-34

5

-35

6

-36

-39
Figure 13-12 destroy operation . 13

Figure 13-13 reset operation . 13

Figure 13-14 next_one, next_n operations (PropertyNames) 13-21

Figure 13-15 destroy operation . 13

Figure 13-16 PropetySetFactory interface . 13

Figure 13-17 PropertySetDefFactory interface 13

Figure 14-1 General Object Model for Service 1

Figure 14-2 Object Model for Time Service . 14

Figure 14-3 Illustration of Interval Overlap . 14-

Figure 14-4 Object Model of Timer Event Service 14-

Figure 14-5 Time Service and Proxies . 14

Figure 15-1 A Security model for object systems 15

Figure 15-2 Credential containing security attributes 15

Figure 15-3 Target Object via ORB . 15-1

Figure 15-4 Message protection . 15-

Figure 15-5 Access control model . 15-

Figure 15-6 Authorization model . 15-

Figure 15-7 Auditing model . 15-

Figure 15-8 Delegation model . 15

Figure 15-9 No delegation . 15

Figure 15-10 Simple delegation . 15

Figure 15-11 Composite delegation . 15

Figure 15-12 Combined privileges delegation 15-2

Figure 15-13 Traced delegation . 15

Figure 15-14 Proof of receipt . 15

Figure 15-15 Non-repudiation services . 15

Figure 15-16 Security policy domains . 15

Figure 15-17 Policy domain hierarchies . 15-3

Figure 15-18 Federated policy domains . 15

Figure 15-19 System- and application-enforced policies 15-3

Figure 15-20 Overlapping policy domains . 15

Figure 15-21 Framework of domains . 15
xxxiv CORBAservices: Common Object Services Specification

46

-47

49

-50

-53

-53

-55

-56

7

-59

-60

1

-63

64

65

65

-67

-69

-70

-70

4

76

-77

8

79

-81

82

83

49
Figure 15-22 Structural model . 15-

Figure 15-23 ORB services . 15

Figure 15-24 Object reference . 15-

Figure 15-25 Domain objects . 15

Figure 15-26 Controlled relationship . 15

Figure 15-27 Object encapsulation . 15

Figure 15-28 Authentication . 15

Figure 15-29 Multiple credentials . 15

Figure 15-30 Changing security attributes . 15-5

Figure 15-31 Making a secure invocation . 15

Figure 15-32 Target object security . 15

Figure 15-33 Security-unaware intermediate object 15-6

Figure 15-34 Security-aware intermediate object 15-62

Figure 15-35 access_allowed application . 15

Figure 15-36 get_policy application . 15-

Figure 15-37 audit_write application . 15-

Figure 15-38 Audit decision object . 15-

Figure 15-39 set_NR_features operation .15-66

Figure 15-40 generate_token operation . 15

Figure 15-41 Non-repudiation service . 15

Figure 15-42 verify_evidence operation . 15

Figure 15-43 Proof of origin message . 15

Figure 15-44 Managing security policies . 15-7

Figure 15-45 Securing invocations . 15-

Figure 15-46 get_policy operation . 15

Figure 15-47 ORB Security Services . 15-7

Figure 15-48 Access decision object . 15-

Figure 15-49 Target objects sharing security names 15

Figure 15-50 Object created by application or factory 15-

Figure 15-51 Relationship between main objects 15-

Figure 15-52 Interceptors Called During Invocation Path 15-1
 July 1997 xxxv

151

67

77

1

6-5

15

-19

8

26
Figure 15-53 Security Functionality Implemented by Security
Service Objects . 15-

Figure 15-54 Secure Interoperability Model . 15-1

Figure 15-55 New CORBA 2.0 Protocol . 15-1

Figure 16-1 Interactions between a trader and its clients 16-

Figure 16-2 Property Strength . 1

Figure 16-3 Pipeline View of Trader Query Steps and
Cardinality Constraint Application 16-

Figure 16-4 Flow of a query through a trader graph 16

Figure 17-1 Collections Interfaces Hierarchy 17-17

Figure 17-2 Restricted Access Collections Interface Hierarchy 17-17

Figure 17-3 Iterator Interface Hierarchy . 17-1

Figure 17-4 Inheritance Relationships . 17-1
xxxvi CORBAservices: Common Object Services Specification

List of Tables
9

-14

-16

17

-30

-11

-11

12

-12

-13
Table 3-5 Exceptions Raised by Binding Operations 3-

Table 3-6 Exceptions Raised by Resolve Operation. 3-10

Table 3-7 Exceptions Raised by Unbind Operation 3-10

Table 3-8 Exceptions Raised by Creating New
Contexts . 3-11

Table 6-1 Suggested Conventions for Factory Finder
Keys . 6

Table 6-2 Suggested Conventions for Generic Factory
Keys . 6

Table 6-3 Suggested Criteria. 6-

Table 8-1 Tag Byte Values and Data Formats for Basic
CORBA Data Types . 8

Table 9-1 Interfaces Defined in the CosObjectIdentity
Module . 9

Table 9-2 Interfaces Defined in the CosRelationships
Module . 9

Table 9-3 Interfaces Defined in the CosGraphs Module 9-

Table 9-4 Interfaces Defined in the CosContainment
Module . 9

Table 9-5 Interfaces Defined in the CosReference
Module . 9

Table 10-1 Use of Transaction Service Functionality. 10-32
CORBAservices: Common Object Services Specification xxxvii

-12

-19

-3

12

-13

7

-19

3

33

34

134

135

35

136

37

74

75

182

184

189

1

6-10

-13
Table 11-1 Interfaces Defined in the CosQueryCollection
Module . 11

Table 12-1 Exceptions Raised by Licensing Service
Operations. 12

Table 13-1 Property Service Interfaces. 13

Table 13-2 Exceptions Raised by Define Operations 13-10

Table 13-3 Exceptions Raised by List and Get
Properties Operations . 13-

Table 13-4 Exceptions Raised by delete_properties
Operations. 13

Table 13-5 Exceptions Raised by define Operations 13-1

Table 13-6 Exceptions Raised by Get and Set Mode
Operations. 13

Table 15-1 DomainAccessPolicy . 15-13

Table 15-2 User Privilege Attributes (Not Defined by
This Specification) . 15-1

Table 15-3 DomainAccessPolicy (with Privilege
Attributes). 15-1

Table 15-4 DomainAccessPolicy (with Delegate
Entry) . 15-

Table 15-5 Interface Instances . 15-

Table 15-6 DomainAccessPolicy (with Required
Rights Mapping) . 15-1

Table 15-7 RequiredRights for Interfaces c1, c2
and c3 . 15-

Table 15-8 Standard Audit Policy. 15-1

Table 15-9 Option Definitions . 15-1

Table 15-10 IOR Example . 15-1

Table 15-11 Client State Table . 15-

Table 15-12 Target State Table . 15-

Table 15-13 Association Option Mapping to DCE
Security. 15-

Table 15-14 Relationship between Identifiers 15-19

Table 16-1 Preferences . 1

Table 16-2 Scoping Policies . 16
xxxviii CORBAservices: Common Object Services Specification

5

21

-56

7-4

-19

-27

-72

-75

-76

-76

-77

8

-78

-79

-79

-80
Table 16-3 Capability Supported Policies . 16-1

Table 16-4 Trader Attributes. 16-

Table 16-5 Primary/Secondary Policy Parameters 16

Table 17-1 Interfaces derived from combinations of collection
properties . 1

Table 17-2 Iterators and Collections . 17

Table 17-3 Collection interfaces and the iterator interfaces
supported . 17

Table 17-4 Implementation Category Examples 17

Table 17-5 Required element and key-type specific user-defined
information for KeySetFactory. []- implied by
key_compare. 17

Table 17-6 Required element and key-type specific user-defined
information for KeyBagFactory. []- implied by
key_compare. 17

Table 17-7 Required element and key-type specific user-defined
information for MapFactory. []- implied by
key_compare. 17

Table 17-8 Required element and key-type specific user-defined
information for RelationFactory.[]- implied by
key_compare. 17

Table 17-9 Required element and key-type specific user-defined
information for SetFactory.[]- implied by compare. 17-77

Table 17-10 Required element and key-type specific user-defined
information for BagFactory.[]- implied by compare. . . . 17-7

Table 17-11 Required element and key-type specific user-defined
information for KeySortedSetFactory.[]- implied
by key_compare. 17

Table 17-12 Required element and key-type specific user-defined
information for KeySortedBagFactory.[]- implied
by key_compare. 17

Table 17-13 Required element and key-type specific user-defined
information for SortedMapFactory.[]- implied by
key_compare. 17

Table 17-14 Required element and key-type specific user-defined
information for SortedRelationFactory.[]- implied
by key_compare. 17
 July 1997 xxxix

-80

-81

82

-83
Table 17-15 Required element and key-type specific user-defined
information for SortedSetFactory. []- implied
by compare. . 17

Table 17-16 Required element and key-type specific user-defined
information for SortedBagFactory. []- implied
by compare. 17

Table 17-17 Required element and key-type specific user-defined
information for EqualitySequenceFactory. 17-

Table 17-18 Required element and key-type specific user-defined
information for PriorityQueueFactory. [] - implied
by key_compare. 17
xl CORBAservices: Common Object Services Specification

Preface

ns.

 by
 and

 and

ide a
,
0.1 About This Document

Under the terms of the collaboration between OMG and X/Open Co Ltd, this document
is a candidate for endorsement by X/Open, initially as a Preliminary Specification and
later as a full CAE Specification. The collaboration between OMG and X/Open Co Ltd
ensures joint review and cohesive support for emerging object-based specificatio

X/Open Preliminary Specifications undergo close scrutiny through a review process at
X/Open before publication and are inherently stable specifications. Upgrade to full
CAE Specification, after a reasonable interval, takes place following further review
X/Open. This further review considers the implementation experience of members
the full implications of conformance and branding.

0.1.1 Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 750 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to prov
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
CORBAservices: Common Object Services Specification xli

st of

r

o
sists

ive

d

g,

d in

,
stem

zed

s, an

0.1.2 X/Open

X/Open is an independent, worldwide, open systems organization supported by mo
the world's largest information system suppliers, user organizations and software
companies. Its mission is to bring to users greater value from computing, through the
practical implementation of open systems.

0.2 Intended Audience

The specifications described in this manual are aimed at software designers and
developers who want to produce applications that comply with OMG standards fo
object services; the benefits of compliance are outlined in the following section, “Need
for Object Services.”

0.3 Need for Object Services

To understand how Object Services benefit all computer vendors and users, it is helpful
to understand their context within OMG’s vision of object management. The key t
understanding the structure of the architecture is the Reference Model, which con
of the following components:

• Object Request Broker, which enables objects to transparently make and rece
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture an
specifications of the Object Request Broker are described in CORBA: Common
Object Request Broker Architecture and Specification.

• Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary to
construct any distributed application and are always independent of application
domains. For example, the Life Cycle Service defines conventions for creatin
deleting, copying, and moving objects; it does not dictate how the objects are
implemented in an application. Specifications for Object Services are containe
this manual.

• Common Facilities, a collection of services that many applications may share
but which are not as fundamental as the Object Services. For instance, a sy
management or electronic mail facility could be classified as a common facility.
Information about Common Facilities is contained in CORBAfacilities: Common
Facilities Architecture.

• Application Objects, which are products of a single vendor on in-house
development group which controls their interfaces. Application Objects
correspond to the traditional notion of applications, so they are not standardi
by OMG. Instead, Application Objects constitute the uppermost layer of the
Reference Model.

The Object Request Broker, then, is the core of the Reference Model. Nevertheles
Object Request Broker alone cannot enable interoperability at the application semantic
level. An ORB is like a telephone exchange: it provides the basic mechanism for
making and receiving calls but does not ensure meaningful communication between
xlii CORBAservices: Common Object Services Specification

ct

 The
es a

ards

ts

subscribers. Meaningful, productive communication depends on additional interfaces,
protocols, and policies that are agreed upon outside the telephone system, such as
telephones, modems and directory services. This is equivalent to the role of Obje
Services.

0.3.1 What Is an Object Service Specification?

A specification of an Object Service usually consists of a set of interfaces and a
description of the service’s behavior. The syntax used to specify the interfaces is the
OMG Interface Definition Language (OMG IDL). The semantics that specify a
services’s behavior are, in general, expressed in terms of the OMG Object Model.
OMG Object Model is based on objects, operations, types, and subtyping. It provid
standard, commonly understood set of terms with which to describe a service’s
behavior.

(For detailed information about the OMG Reference Model and the OMG Object
Model, refer to the Object Management Architecture Guide).

0.4 Associated Documents

The CORBA documentation set includes the following books:

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBAservices: Common Object Services Specification contains specifications
for the object services.

• CORBAfacilities: Common Facilities Architecture contains information about the
design of Common Facilites; it provides the framework for Common Facility
specifications.

• Object Management Architecture Guide defines the OMG’s technical objectives
and terminology and describes the conceptual models upon which OMG stand
are based. It also provides information about the policies and procedures of OMG,
such as how standards are proposed, evaluated, and accepted.

OMG collects information for each book in the documentation set by issuing Reques
for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as such by vote.

To obtain books in the documentation set, or other OMG publications, refer to the
enclosed subscription card or contact the Object Management Group, Inc. at:

OMG Headquarters
492 Old Connecticut Path
Framingham, MA 01701

USA
Tel: +1-508-820-4300

pubs@omg.org
http://www.omg.org
Preface Associated Documents July 1997 xliii

in
 how

es:

)

0.5 Structure of this Manual

In addition to this preface, CORBAservices: Common Object Services contains the
following chapters:

Overview provides an introduction to the CORBA object services, including a
summary of features for each service.

General Design Principles provides information about the principles that were used
designing each service; explains the dependencies among services; and explains
Object Services relate to each other, CORBA, and industry standards in general.

Chapters 3 through 16 each contain a specification for the following Object Servic

• Naming

• Event

• Persistent Object

• Life Cycle

• Concurrency Control

• Externalization

• Relationship

• Transaction

• Query

• Licensing

• Property

• Time

• Security

• Trading

• Collections

0.6 Acknowledgements

The following companies submitted parts of the specifications that were approved by
the Object Management Group to become CORBAservices:

AT&T/Lucent Technologies

AT&T/NCR

BNR Europe Limited

Cooperative Research Centre for Distributed Systems Technology (DTSC Pty Ltd.

Digital Equipment Corporation

Expersoft Corporation

Gradient Technologies, Inc.

Groupe Bull

Hewlett-Packard Company

HyperDesk Corporation

ICL PLC

Ing. C. Olivetti & C.Sp
xliv CORBAservices: Common Object Services Specification

International Business Machines Corporation

International Computers Limited

Iona Technologies Ltd.

Itasca Systems, Inc.

Nortel Limited

Novell, Inc.

O2 Technologies, SA

Object Design, Inc.

Objectivity, Inc.

Odyssey Research Associates, Inc.

Ontos, Inc.

Oracle Corporation

Persistence Software, Inc.

Servio Corporation

Siemens Nixdorf Informationssysteme AG

Sun Microsystems, Inc.

SunSoft, Inc.

Sybase, Inc.

Taligent, Inc.

Tandem Computers, Inc.

Teknekron Software Systems, Inc.

Tivoli Systems, Inc.

Transarc Corporation

Versant Object Technology Corporation
Preface Acknowledgements July 1997 xlv

xlvi CORBAservices: Common Object Services Specification

Overview 1
 a
ngs

. The

volve
1.1 Summary of Key Features

1.1.1 Naming Service

• The Naming Service provides the ability to bind a name to an object relative to
naming context. A naming context is an object that contains a set of name bindi
in which each name is unique. To resolve a name is to determine the object
associated with the name in a given context.

• Through the use of a very general model and dealing with names in their structural
form, naming service implementations can be application specific or be based on a
variety of naming systems currently available on system platforms.

• Graphs of naming contexts can be supported in a distributed, federated fashion
scalable design allows the distributed, heterogeneous implementation and
administration of names and name contexts.

• Because name component attribute values are not assigned or interpreted by the
naming service, higher levels of software are not constrained in terms of policies
about the use and management of attribute values.

• Through the use of a “names library,” name manipulation is simplified and names
can be made representation-independent thus allowing their representation to e
without requiring client changes.

• Application localization is facilitated by name syntax-independence and the
provision of a name “kind” attribute.
CORBAservices: Common Object Services Specification 1-1

1

.

s
vice

els

.

nd

cts,

1.1.2 Event Service
• The Event Service provides basic capabilities that can be configured together in a

very flexible and powerful manner. Asynchronous events (decoupled event
suppliers and consumers), event “fan-in,” notification “fan-out,” and (through
appropriate event channel implementations) reliable event delivery are supported

• The Event Service design is scalable and is suitable for distributed environments.
There is no requirement for a centralized server or dependency on any global
service.

• The Event Service interfaces allow implementations that provide different qualitie
of service to satisfy different application requirements. In addition, the event ser
does not impose higher level policies (e.g., specific event types) allowing great
flexibility on how it is used in a given application environment.

• Both push and pull event delivery models are supported: that is, consumers can
either request events or be notified of events, whichever is needed to satisfy
application requirements. There can be multiple consumers and multiple suppliers
events.

• Suppliers can generate events without knowing the identities of the consumers.
Conversely, consumers can receive events without knowing the identities of the
suppliers.

• The event channel interface can be subtyped to support extended capabilities. The
event consumer-supplier interfaces are symmetric, allowing the chaining of event
channels (for example, to support various event filtering models). Event chann
can be chained by third-parties.

• Typed event channels extend basic event channels to support typed interaction

• Because event suppliers, consumers and channels are objects, advantage can be
taken of performance optimizations provided by ORB implementations for local a
remote objects. No extension is required to CORBA.

1.1.3 Life Cycle Service

• The Life Cycle Service defines conventions for creating, deleting, copying and
moving objects. Because CORBA-based environments support distributed obje
life cycle services define services and conventions that allow clients to perform life
cycle operations on objects in different locations.

• The client’s model of creation is defined in terms of factory objects. A factory is an
object that creates another object. Factories are not special objects. As with any
object, factories have well-defined OMG IDL interfaces and implementations in
some programming language.

• The Life Cycle Service defines an interface for a generic factory. This allows for
the definition of standard creation services.

• The Life Cycle Service defines a LifeCycleObject interface. This interface defines
remove, copy and move operations.
1-2 CORBAservices: Common Object Services Specification

1

 rely

e

n be a

ases,
es.

t

t

 a

it

s are
• The Life Cycle Service has been extended to support compound life cycle
operations on graphs of related objects. Compound objects (graphs of objects)
on the Relationship Service for the definition of object graphs.

1.1.4 Persistent Object Service

• The Persistent Object Service (POS) provides a set of common interfaces to th
mechanisms used for retaining and managing the persistent state of objects.

• The object ultimately has the responsibility of managing its state, but can use or
delegate to the Persistent Object Service for the actual work. A major feature of the
Persistent Object Service is its openness. In this case, that means that there ca
variety of different clients and implementations of the Persistent Object Service,
and they can work together. This is particularly important for storage, where
mechanisms useful for documents may not be appropriate for employee datab
or the mechanisms appropriate for mobile computers do not apply to mainfram

1.1.5 Transaction Service

• The Transaction Service supports multiple transaction models, including the fla
(mandatory in the specification) and nested (optional) models.

• The Object Transaction Service supports interoperability between different
programming models. For instance, some users want to add object implementations
to existing procedural applications and to augment object implementations with
code that uses the procedural paradigm. To do so in a transaction environmen
requires the object and procedural code to share a single transaction.

• Network interoperability is also supported, since users need communication
between different systems, including the ability to have one transaction service
interoperate with a cooperating transaction service using different ORBs.

• The Transaction Service supports both implicit (system-managed transaction)
propagation and explicit (application-managed) propagation. With implicit
propagation, transactional behavior is not specified in the operation’s signature.
With explicit propagation, applications define their own mechanisms for sharing
common transaction.

• The Transaction Service can be implemented in a TP monitor environment, so
supports the ability to execute multiple transactions concurrently, and to execute
clients, servers, and transaction services in separate processes.

1.1.6 Concurrency Control Service
• The Concurrency Control Service enables multiple clients to coordinate their access

to shared resources. Coordinating access to a resource means that when multiple,
concurrent clients access a single resource, any conflicting actions by the client
reconciled so that the resource remains in a consistent state.
Overview Summary of Key Features July 1997 1-3

1

ith a
tiple
t’s

l lock

es

that

o
in

o be

eam

zed
of

the
• Concurrent use of a resource is regulated with locks. Each lock is associated w
single resource and a single client. Coordination is achieved by preventing mul
clients from simultaneously possessing locks for the same resource if the clien
activities might conflict. Hence, a client must obtain an appropriate lock before
accessing a shared resource. The Concurrency Control Service defines severa
modes, which correspond to different categories of access. This variety of lock
modes provides flexible conflict resolution. For example, providing different mod
for reading and writing lets a resource support multiple concurrent clients on a read-
only transaction. The Concurrency Control Service also defines Intention Locks
support locking at multiple levels of granularity.

1.1.7 Relationship Service
• The Relationship Service allows entities and relationships to be explicitly

represented. Entities are represented as CORBA objects. The service defines tw
new kinds of objects: relationships and roles. A role represents a CORBA object
a relationship. The Relationship interface can be extended to add relationship-
specific attributes and operations. In addition, relationships of arbitrary degree can
be defined. Similarly, the Role interface can be extended to add role-specific
attributes and operations.

• Type and cardinality constraints can be expressed and checked: exceptions are
raised when the constraints are violated.

• The Life Cycle Service defines operations to copy, move, and remove graphs of
related objects, while the Relationship Service allows graphs of related objects t
traversed without activating the related objects.

• Distributed implementations of the Relationship Service can have navigation
performance and availability similar to CORBA object references: role objects can
be located with their objects and need not depend on a centralized repository of
relationship information. As such, navigating a relationship can be a local
operation.

• The Relationship Service supports the compound life cycle component of the Life
Cycle Service by defining object graphs.

1.1.8 Externalization Service

• The Externalization Service defines protocols and conventions for externalizing and
internalizing objects. Externalizing an object is to record the object state in a str
of data (in memory, on a disk file, across the network, and so forth) and then be
internalized into a new object in the same or a different process. The externali
object can exist for arbitrary amounts of time, be transported by means outside
the ORB, and be internalized in a different, disconnected ORB. For portability,
clients can request that externalized data be stored in a file whose format is defined
with the Externalization Service Specification.

• The Externalization Service is related to the Relationship Service and parallels
Life Cycle Service in defining externalization protocols for simple objects, for
arbitrarily related objects, and for facilities, directory services, and file services.
1-4 CORBAservices: Common Object Services Specification

1

s

f

at

cers

 use
s

e

s

e

-

-

1.1.9 Query Service
• The purpose of the Query Service is to allow users and objects to invoke queries on

collections of other objects. The queries are declarative statements with predicate
and include the ability to specify values of attributes; to invoke arbitrary operations;
and to invoke other Object Services.

• The Query Service allows indexing; maps well to the query mechanisms used in
database systems and other systems that store and access large collections o
objects; and is based on existing standards for query, including SQL-92, OQL-93,
and OQL-93 Basic.

• The Query Service provides an architecture for a nested and federated service th
can coordinate multiple, nested query evaluators.

1.1.10 Licensing Service
• The Licensing Service provides a mechanism for producers to control the use of

their intellectual property. Producers can implement the Licensing Service
according to their own needs, and the needs of their customers, because the
Licensing Service does not impose it own business policies or practices.

• A license in the Licensing Service has three types of attributes that allow produ
to apply controls flexibly: time; value mapping, and consumer. Time allows licenses
to have start/duration and expiration dates. Value mapping allows producers to
implement a licensing scheme according to units, allocation (through concurrent
licensing), or consumption (for example, metering or allowance of grace period
through “overflow licenses.”) Consumer attributes allow a license to be reserved or
assigned for specific entities; for example, a license could be assigned to a
particular machine. The Licensing Service allows producers to combine and deriv
from license attributes.

• The Licensing Service consists of a LicenseServiceManager interface and a
ProducerSpecificLicenseService interface: these interfaces do not impose busines
policies upon implementors.

1.1.11 Property Service
• Provides the ability to dynamically associate named values with objects outside th

static IDL-type system.

• Defines operations to create and manipulate sets of name-value pairs or name
value-mode tuples. The names are simple OMG IDL strings. The values are OMG
IDL anys. The use of type any is significant in that it allows a property service
implementation to deal with any value that can be represented in the OMG IDL
type system. The modes are similar to those defined in the Interface Repository
AttributeDef interface.

• Designed to be a basic building block, yet robust enough to be applicable for a
broad set of applications.
Overview Summary of Key Features July 1997 1-5

1

 of

n
ve

cts

.

.

ould
• Provides “batch” operations to deal with sets of properties as a whole. The use
“batch” operations is significant in that the systems and network management
(SNMP, CMIP, ...) communities have proven such a need when dealing with
“attribute” manipulation in a distributed environment.

• Provides exceptions such that PropertySet implementors may exercise control of (or
apply constraints to) the names and types of properties associated with an object,
similar in nature to the control one would have with CORBA attributes.

• Allows PropertySet implementors to restrict modification, addition and/or deletio
of properties (readonly, fixed) similar in nature to the restrictions one would ha
with CORBA attributes.

• Provides client access and control of constraints and property modes.

• Does not rely on any other object services.

1.1.12 Time Service

• Enables the user to obtain current time together with an error estimate associated
with it.

• Ascertains the order in which “events” occurred.

• Generates time-based events based on timers and alarms.

• Computes the interval between two events.

• Consists of two services, hence defines two service interfaces:

• Time Service manages Universal Time Objects (UTOs) and Time Interval Obje
(TIOs), and is represented by the TimeService interface.

• Timer Event Service manages Timer Event Handler objects, and is represented by
the TimerEventService interface.

1.1.13 Security Service

The security functionality defined by th is specification comprises:

• Identification and authentication of principals (human users and objects which
need to operate under their own rights) to verify they are who they claim to be

• Authorization and access control - deciding whether a principal can access an
object, normally using the identity and/or other privilege attributes of the principal
(such as role, groups, security clearance) and the control attributes of the target
object (stating which principals, or principals with which attributes) can access it

• Security auditing to make users accountable for their security related actions. It is
normally the human user who should be accountable. Auditing mechanisms sh
be able to identify the user correctly, even after a chain of calls through many
objects.
1-6 CORBAservices: Common Object Services Specification

1

e
vice
ter

e.

ntial
s an
en

ms in
ir
s

ice

n to

,

• Security of communication between objects, which is often over insecure lower
layer communications. This requires trust to be established between the client and
target, which may require authentication of clients to targets and authentication
of targets to clients. It also requires integr ity protection and (optionally)
confidentiality protection of messages in transit between objects.

• Non-repudiation provides irrefutable evidence of actions such as proof of origin of
data to the recipient, or proof of receipt of data to the sender to protect against
subsequent attempts to falsely deny the receiving or sending of the data.

• Administration of security information (for example, security policy) is also
needed.

1.1.14 Object Trader Service

The Object Trader Service provides a matchmaking service for objects.

The Service Provider registers the availability of the service by invoking an export
operation on the trader, passing as parameters information about the offered service.
The export operation carries an object reference that can be used by a client to invok
operations on the advertised services, a description of the type of the offered ser
(i.e., the names of the operations to which it will respond, along with their parame
and result types), information on the distinguishing attributes of the offered servic

The offer space managed by traders may be partitioned to ease administration and
navigation. This information is stored persistently by the Trader. Whenever a pote
client wishes to obtain a reference to a service that does a particular job, it invoke
import operation, passing as parameters a description of the service required. Giv
this import request, the Trader checks appropriate offers for acceptability. To be
acceptable, an offer must have a type that conforms to that requested and have
properties consistent with the constraints specified by an imported.

Trading service in a single trading domain may be distributed over a number of trader
objects. Traders in different domains may be federated. Federation enables syste
different domains to negotiate the sharing of services without losing control of the
own policies and services. A domain can thus share information with other domain
with which it has been federated, and it can now be searched for appropriate serv
offers.

1.1.15 Object Collections Service

Collections are groups of objects which, as a group, support some operations and
exhibit specific behaviors that are related to the nature of the collection rather tha
the type of object they contain. Examples of collections are sets, queues, stacks, lists,
binary, and trees. The purpose of the Collection Object Service is to provide a uniform
way to create and manipulate the most common collections generically.

Examples of collections are sets, queues, stacks, lists, binary, and trees. For example,
sets might support the following operations: insert new element, membership test
union, intersection, cardinality, equality test, emptiness test, etc. One of the defining
Overview Summary of Key Features July 1997 1-7

1

nto S
semantics of a set is that, if an object O is a member of a set S, then inserting O i
results in the set being unchanged. This property would not hold for another collection
type called a bag.
1-8 CORBAservices: Common Object Services Specification

General Design Principles 2
rvices

 of

P-
This chapter discusses the principles that were considered in designing Object Se
and their interfaces. It also addresses dependencies between Object Services, their
relationship to CORBA, and their conformance to existing standards.

2.1 Service Design Principles

2.1.1 Build on CORBA Concepts

The design of each Object Service uses and builds on CORBA concepts:

• Separation of interface and implementation

• Object references are typed by interfaces

• Clients depend on interfaces, not implementations

• Use of multiple inheritance of interfaces

• Use of subtyping to extend, evolve and specialize functionality

Other related principles that the designs adhere to include:

• Assume good ORB and Object Services implementations. Specifically, it is
assumed that CORBA-compliant ORB implementations are being built that
support efficient local and remote access to “fine-grain” objects and have
performance characteristics that place no major barriers to the pervasive use
distributed objects for virtually all service and application elements.

• Do not build non-type properties into interfaces

A discussion and rationale for the design of object services was included in the H
SunSoft response to the OMG Object Services RFI (OMG TC Document 92.2.10).
CORBAservices: Common Object Services Specification 2-1

2

may
real

 client
vent

 that

ion

s
 rules

nts.

rent
is
2.1.2 Basic, Flexible Services

The services are designed to do one thing well and are only as complicated as they
need to be. Individual services are by themselves relatively simple yet they can, by
virtue of their structuring as objects, be combined together in interesting and powerful
ways.

For example, the event and life cycle services, plus a future relationship service,
play together to support graphs of objects. Object graphs commonly occur in the
world and must be supported in many applications. A functionally-rich Folder
compound object, for example, may be constructed using the life cycle, naming,
events, and future relationship services as “building blocks.”

2.1.3 Generic Services

Services are designed to be generic in that they do not depend on the type of the
object nor, in general, on the type of data passed in requests. For example, the e
channel interfaces accept event data of any type. Clients of the service can dynamically
determine the actual data type and handle it appropriately.

2.1.4 Allow Local and Remote Implementations

In general the services are structured as CORBA objects with OMG IDL interfaces
can be accessed locally or remotely and which can have local library or remote server
styles of implementations. This allows considerable flexibility as regards the locat
of participating objects. So, for example, if the performance requirements of a
particular application dictate it, objects can be implemented to work with a Library
Object Adapter that enables their execution in the same process as the client.

2.1.5 Quality of Service is an Implementation Characteristic

Service interfaces are designed to allow a wide range of implementation approaches
depending on the quality of service required in a particular environment. For example,
in the Event Service, an event channel can be implemented to provide fast but
unreliable delivery of events or slower but guaranteed delivery. However, the interface
to the event channel are the same for all implementations and all clients. Because
are not wired into a complex type hierarchy, developers can select particular
implementations as building blocks and easily combine them with other compone

2.1.6 Objects Often Conspire in a Service

Services are typically decomposed into several distinct interfaces that provide diffe
views for different kinds of clients of the service. For example, the Event Service
composed of PushConsumer, PullSupplier and EventChannel interfaces. This
simplifies the way in which a particular client uses a service.
2-2 CORBAservices: Common Object Services Specification

2

to
cts

ents

ng
ith an

event

 in

g an
t the
A particular service implementation can support the constituent interfaces as a single
CORBA object or as a collection of distinct objects. This allows considerable
implementation flexibility. A client of a service may use a different object reference
communicate with each distinct service function. Conceptually, these “internal” obje
conspire to provide the complete service.

As an example, in the Event Service an event channel can provide both PushConsumer
and EventChannel interfaces for use by different kinds of client. A particular client
sends a request not to a single “event channel” object but to an object that implem
either the PushConsumer and EventChannel interface. Hidden to all the clients, these
objects interact to support the service.

The service designs also use distinct objects that implement specific service interfaces
as the means to distinguish and coordinate different clients without relying on the
existence of an object equality test or some special way of identifying clients. Usi
the event service again as an example, when an event consumer is connected w
event channel, a new object is created that supports the PullSupplier interface. An
object reference to this object is returned to the event consumer which can then request
events by invoking the appropriate operation on the new “supplier” object. Because
each client uses a different object reference to interact with the event channel, the
channel can keep track of and manage multiple simultaneous clients. This is shown
graphically in Figure 2-1.

Figure 2-1 An event channel as a collection of objects conspiring to manage multiple
simultaneous consumer clients.

The graphical notation shown in Figure 2-1 is used throughout this document and
the full service specifications. An arrow with a vertical bar is used to show that the
target object supports the interface named below the arrow and that clients holdin
object reference to it of this type can invoke operations. In shorthand, one says tha
object reference (held by the client) supports the interface. The arrow points from the
client to the target (server) object.

event channel

consumer

PullConsumer

PullSupplier

consumer

PullConsumer

PullSupplier

supplier

PushSupplier

PushConsumer
General Design Principles Service Design Principles July 1997 2-3

2

r
re
iple

a

text.

 within

vices

as

 to be

t

A blob (misshapen circle) delineates a conspiracy of one or more objects. In othe
words, it corresponds to a conceptual object that may be composed of one or mo
CORBA objects that together provide some coordinated service to potentially mult
clients making requests using different object references.

2.1.7 Use of Callback Interfaces

Services often employ callback interfaces. Callback interfaces are interfaces that a
client object is required to support to enable a service to call back to it to invoke some
operation. The callback may be, for example, to pass back data asynchronously to
client.

Callback interfaces have two major benefits:

• They clearly define how a client object participates in a service

• They allow the use of the standard interface definition (OMG IDL) and operation
invocation (object reference) mechanisms

2.1.8 Assume No Global Identifier Spaces

Several services employ identifiers to label and distinguish various elements. The
service designs do not assume or rely on any global identifier service or global id
spaces in order to function. The scope of identifiers is always limited to some con
For example, in the naming service, the scope of names is the particular naming
context object.

In the case where a service generates ids, clients can assume that an id is unique
its scope but should not make any other assumption.

2.1.9 Finding a Service is Orthogonal to Using It

Finding a service is at a higher level and orthogonal to using a service. These ser
do not dictate a particular approach. They do not, for example, mandate that all
services must be found via the naming service. Because services are structured
objects there does not need to be a special way of finding objects associated with
services - general purpose finding services can be used. Solutions are anticipated
application and policy specific.

2.2 Interface Style Consistency

2.2.1 Use of Exceptions and Return Codes

Throughout the services, exceptions are used exclusively for handling exceptional
conditions such as error returns. Normal return codes are passed back via outpu
parameters. An example of this is the use of a DONE return code to indicate iteration
completion.
2-4 CORBAservices: Common Object Services Specification

2

meter
tion

d

l as

y.

ure
2.2.2 Explicit Versus Implicit Operations

Operations are always explicit rather than implied e.g. by a flag passed as a para
value to some “umbrella” operation. In other words, there is always a distinct opera
corresponding to each distinct function of a service.

2.2.3 Use of Interface Inheritance

Interface inheritance (subtyping) is used whenever one can imagine that client code
should depend on less functionality than the full interface. Services are often
partitioned into several unrelated interfaces when it is possible to partition the clients
into different roles. For example, an administrative interface is often unrelated an
distinct in the type system from the interface used by “normal” clients.

2.3 Key Design Decisions

2.3.1 Naming Service: Distinct from Property and Trading Services

The Naming Service is addressed separately from property and trading services.

Naming contexts have some similarity to property lists (that is, lists of values
associated with objects though not necessarily part of the object’s state). The Naming
Service in general also has elements in common with a trading service. However,
following the “Bauhaus” principle of keeping services as simple and as orthogona
possible, these services have been kept distinct and are being addressed separately.

2.3.2 Universal Object Identity

The services described in this manual do not require the concept of object identit

2.4 Integration with Future Object Services

This section discusses how the Object Services could evolve to integrate with fut
services, such as:

• Archive

• Backup/Restore

• Change Management (Versioning)

• Data Interchange

• Implementation Repository

• Internationalization

• Logging

• Recovery

• Replication

• Startup
General Design Principles Key Design Decisions July 1997 2-5

2

ble to

n

 the

rvice
t.

 as an

are
hould

n

nge

nd
2.4.1 Archive Service

Persistent Object Service. The Archive Service copies objects from an
active/persistent store to a backup store and vice versa. This service should be a
archive objects stored with the Persistent Object Service.

Externalization Service. The Archive Service copies objects from an active/persistent
store to a backup store and vice versa. This service could use the Externalizatio
Service to get the internal state of objects for saving and to subsequently recreate
objects with this stored state. If only persistent objects need to be archived, then
Object Persistence Service could be used instead.

2.4.2 Backup/Restore Service

Externalization Service. The Backup/Restore Service provides recovery after a
system failure or a user error. This service could use the Object Externalization Se
as an underlying mechanism for objects regardless of whether they are persisten

Persistent Object Service. The Backup/Restore Service provides recovery after a
system failure or a user error. This service could use the Persistent Object Service
underlying mechanism for persistent objects.

Transaction Service. The permanence of effect property of a transaction implies that
the state established by the commitment of a transaction will not be lost. To guarantee
this property, the storage media on which the objects updated by the transaction
stored must be backed-up to secondary storage to ensure that they are not lost s
the primary storage media fail. Similarly, the storage media used by the logging service
must be restorable should the media fail. Since there are multiple components which
require backup services, a single interface would be advantageous.

2.4.3 Change Management Service

Persistent Object Service. The Change Management Service supports the
identification and consistent evolution of objects including version and configuratio
management. This service should work with the Persistent Object Service to allow
persistent objects to evolve from the old to new versions.

2.4.4 Data Interchange Service

Persistent Object Service. The Data Interchange Service enables objects to excha
some or all of their associated state. This service should work with Persistent Object
Service to allow state to be exchanged when one or more of the objects are persistent.

2.4.5 Internationalization Service

Naming Service. Naming Service interfaces may also need to be extended (for
example, the structure of names extended, additional name resolution operations
added) to better support representing and resolving names for some languages a
cultures.
2-6 CORBAservices: Common Object Services Specification

2

nt

G

ritten

e

 of a

ction

pare

em
tially

ry
ld
2.4.6 Implementation Repository

Persistent Object Service. The Implementation Repository supports the manageme
of object implementations. The Persistent Object Service may depend on this to
determine what persistent data an object contains. This dependency is at the
implementation level.

2.4.7 Interface Repository

Persistent Object Service. The Interface Repository supports runtime access to OM
IDL-specified definitions such as object interfaces and type definitions. The Persistent
Object Service depends on this to determine if a persistent object supports certain
interfaces.

2.4.8 Logging Service

Transaction Service. A logging service implements the abstract notion of an infinitely
long, sequentially-accessible, append-only file. It typically supports multiple log files,
where each log file consists of a sequence of log records. New log records are w
to the end of a log file, old log records can be read from any position in the file. To
stop log files from growing too large for the underlying storage medium, a log servic
must provide an operation to archive old log records to allow the log file to be
truncated.

Various components of a transaction processing system may require the services
log service:

• Transaction Service: during the two-phase commit protocol the Transaction
Service must log its state to ensure that the outcome of the committing transa
can be determined should there be a failure.

• Recoverable (transactional) objects: a log can be used to record old and new
versions of a recoverable object for the purposes of supporting recovery.

• Locking service: a log can be used to record the locks held on an object at pre
time to facilitate recovery.

Since there are multiple components within a distributed transaction processing syst
that require the services of a log service, a single log service interface (and poten
server) that is shared between the components is clearly advantageous.

The correctness of a transaction service depends upon the services of a log service, for
this reason, the log service must meet the following requirements:

1. Restart.

A restart facility allows rapid recovery from the cold start of an application. The
recovery service used by the application (indirectly through the application’s use of
recoverable objects) would use the restart facility to establish a checkpoint: a
consistent point in the execution state of the application from which the recove
process can proceed. In the absence of a checkpoint the recovery service wou
have to scan the entire log to ensure restart recovery occurs correctly.
General Design Principles Integration with Future Object Services July 1997 2-7

2

nce

ed,

n
ols
sting

out

 (as
ient to

le,

to the
ging
n

s.
2. Buffering and forcing operations.

A log service should provide two classes of operation for writing log records:

a. An operation to buffer a log record (the record is not written directly to the
underlying storage medium). Used during the execution of a transaction. Si
the log record is buffered the write is inexpensive.

b. An operation to force a log record to the underlying storage medium. Used
during the two-phase commit protocol to guarantee the correctness of the
transaction. Forcing a log record also flushes all previously written, but buffer
log records.

3. Robustness.

The log service should ensure the consistency of the underlying storage medium i
which log files are stored. This usually involves the log service employing protoc
that update the storage in a manner that would not result in the loss of any exi
data (i.e. careful updates), along with support for mirroring the storage media to
tolerate media failures.

4. Archival.

A log service should provide support for archiving log records. Archival is
necessary to allow the log to be truncated to ensure that it does not grow with
bounds.

5. Efficiency.

Since the log service may be written to by multiple components within a
transaction, the addition of log records must be efficient to avoid the bandwidth of
log from becoming a bottleneck in the system.

2.4.9 Recovery Service

Transaction Service. As recoverable objects are updated during a transaction, they
resource managers) keep a record of the changes made to their state that is suffic
undo the updates should the transaction rollback. The component responsible for this
task is termed the recovery service. Various different forms of recovery are possib
however the most common form is called value logging and involves the recoverable
object recording both the old and new values of the object. When a transaction is
recovered due to failure, the old value of an object is used to undo changes made
object during the transaction. Most recovery services employ the services of a log
service (described in this section) to maintain the “undo” information. The definitio
of a standard recovery service interface is one possible additional CORBA-compliant
object service.

2.4.10 Replication Service

Persistent Object Service. The Replication Service provides explicit replication of
objects in a distributed environment and manages the consistency of replicated copies.
This service could use the Persistent Object Service to manage persistent replica
2-8 CORBAservices: Common Object Services Specification

2

e
ation

An

ch
ased
o

tail.

 of

,
2.4.11 Startup Service

Persistent Object Service. The Startup Service supports bootstrapping and
termination of the Persistent Object Service.

2.4.12 Data Interchange Service

Externalization Service. The Data Interchange Service enables objects to exchang
some or all of their associated state. This service could use the Object Externaliz
Service to allow state to be exchanged regardless of whether the objects are persistent.

2.5 Service Dependencies

The interface designs of all the services are general in nature and do not presume or
require the existence of specific supporting software in order to implement them.
implementation of the Name Service, for instance, could use naming or directory
services provided in a general-purpose networking environment. For example, an
implementation may be based on the naming services provided by ONC or DCE. Su
an implementation could provide enterprise-wide naming services to both object-b
and non-object-based clients. Object-based software would see such services thrugh
the use of NamingContext objects.

Although the Object Services do not depend upon specific software, some
dependencies and relationships do exist between services.

2.5.1 Event Service

The Event Service does not depend upon other services.

2.5.2 Life Cycle Service

Interfaces for the Life Cycle Service depend on the Naming Service.

The Life Cycle Service also defines compound operations that depend on the
Relationship Service for the definition of object graphs. Appendix A describes the
topic of compound life cycle, and its dependence on the Relationship Service, in de

2.5.3 Persistent Object Service

The Externalization Service provides functions that provide for the transformation
an object into a form suitable for storage on an external media or for transfer between
systems. The Persistent Object Service uses this service as a POS protocol.

The Life Cycle Service provides operations for managing object creation, deletion
copy and equivalence. The Persistent Object Service depends on this service for
creating and deleting all required objects.
General Design Principles Service Dependencies July 1997 2-9

2

d

t the

ects.

tent
The Naming Service provides mappings between user-comprehensible names an
CORBA object references. The Persistent Object Service depends on this service to
obtain the object reference of, say, a PDS from its name or id.

2.5.4 Relationship Service

The Relationship Service does not depend on other services. Note especially tha
Relationship Service does not depend on any common storage service.

For guidelines about when to use the Relationship Service and when to use CORBA
object references, refer to the section “The Relationship Service vs CORBA Object
References,” in Chapter 9.

2.5.5 Externalization Service

The Externalization Service works with the Life Cycle Service in defining
externalization protocols for simple objects, for arbitrarily related objects, and for
graphs of related objects that support compound operations. Specifically, this service
uses the Life Cycle Service to create and remove Stream and StreamFactory obj
ORB services may be used in Stream implementations to identify InterfaceDef and
ImplementationDef objects corresponding to an externalized object, and to support
finding an appropriate factory for recreating that object at internalization time.

The Externalization Service can also work with the Relationship Service.
Implementations of Stream and StreamIO operations could use the Relationship
Service to ensure that multiple references to the same object or circular references
don’t result in duplication of objects at internalization time or in the external
representation.

In addition, the Externalization Service adds compound externalization semantics to
the containment and reference relationships in the Relationship Service. Detailed
information is provided in “Specific Externalization Relationships” on page 8-25.

2.5.6 Transaction Service

As concurrent requests are processed by an object a mechanism is required to mediate
access. This is necessary to provide the transaction property of isolation. The
Concurrency Control Service is one possible implementation of a locking service.

The Transaction Service depends upon the Concurrency Control Service in the
following ways:

• Concurrency Control Service must support transaction duration locks, which
provide isolation of concurrent requests by different transactions.

• Concurrency Control Service must record transaction duration locks on persis
media, such as a log, as part of the prepare phase of commitment.

• If nested transactions are supported by the Transaction Service then the
Concurrency Control Service must also support locks that provide isolation
between siblings in a transaction family and provide inheritance of locks owned
by a subransaction to its parent when the subtransaction commits.
2-10 CORBAservices: Common Object Services Specification

2

y

tion

OS to

be

o

)
f a

se

ship,

nforge-
• Transactional clients of the Concurrency Control Service are responsible for
ensuring that all locks held by a transaction are dropped after all recovery or
commitment operations have taken place. The drop-licks operation is provided b
the LockCoordinator interface for this purpose.

The Transaction Service supports atomicity and durability properties through the
Persistent Object Service (POS). The Transaction Service can work with the POS to
support atomic execution of operations on persistent objects. Transactions and
persistence are not provided by the same service. When coordination of multiple state
changes are required to persistent data, a persistence service requires a transac
service. The POS can provide persistence, but its implementation needs to be changed
to support transactional behavior. There are no changes to the interfaces of the P
support transactions. The following discussion applies to support of persistence when a
transaction service is required.

Support for persistence can be built from other specialized services that can also
shared by other object services. Examples include:

• Recovery service: this supports the atomicity and durability properties.

• Logging service: this is used by the recovery service to assist in supporting the
atomicity and durability properties. It is also used by the Transaction Service t
support the two-phase commit protocol.

• Backup and restore service: this supports the isolation property.

This view is consistent with the X/Open DTP (Distributed Transaction Processing
model which separates the transaction manager service (i.e. the implementation o
generalized two-phase commit protocol) from a resource manager that provides
services for data with a life beyond process execution. This permits both transactions
on transient objects and on persistent objects without transactions.

2.5.7 Concurrency Control Service

The Concurrency Control Service does not depend on any other service per se.
Nevertheless, it is designed to work with the Transaction Service.

2.5.8 Query Service

The Query Service does not depend on other service but is closely related to the
Object Services: Life Cycle; Persistent Object; Relationship; Concurrency Control;
Transaction; Property; and Collection.

2.5.9 Licensing Service

The Licensing Service depends on the Event Service. It may depend on the Relation
Property, and Query Services for some implementations. This dependency is determined
by an implementation’s policy definition and entry capability. The Licensing Service also
depends on the Security Service, because the Licensing Service interface can use u
able and secure events. The Licensing Service will use Security Service interfaces to sup-
port the requirements addressed by the challenge mechanism.
General Design Principles Service Dependencies July 1997 2-11

2

he
 the

ss
fines

e of

oss
2.5.10 Property Service

The Property Service does not depend upon other services; however, it is closely
related to Collection Service.

2.5.11 Time Service

The Time Service does not depend upon other services.

2.5.12 Security Service

The Security Service does not depend upon other services.

2.5.13 Trader Service

The Trader Service does not depend upon other services.

2.5.14 Collections Service

The Collections Service does not depend upon other services; however, it is closely
related to these services: Concurrency, Naming, Persistent Object, Property, and Query.

2.6 Relationship to CORBA

This section provides information about the relationship of other services to the
CORBA specification.

2.6.1 ORB Interoperability Considerations: Transaction Service

Some implementations of the Transaction Service will support:

• The ability of a single application to use both object and procedural interfaces to t
Transaction Service. This is described as part of the specification, particularly in
sections “The User’s View” and ‘The Implementor’s View.”

• The ability for different Transaction Service implementations to interoperate acro
a single ORB. This is provided as a consequence of this specification, which de
IDL interfaces for all interactions between Transaction Service implementations.

• The ability for the same Transaction Service to interoperate with another instanc
itself across different ORBs. (This ability is supported by the Interoperability
specification of CORBA 2.0.)

• The ability for different Transaction Services implementations to interoperate acr
different ORBs. (This ability is supported by the Interoperability specification of
CORBA 2.0.)
2-12 CORBAservices: Common Object Services Specification

2

RBs

ject
es the

 is

d on
• A critical dependency for Transaction Service interoperation across different O
is the handling of the propagation_context between ORBs. This includes the
following:
• Efficient transformation between different ORB representations of the

propagation_context .
• The ability to carry the ID information (typically an X/Open XID) between

interoperating ORBs.
• The ability to do interposition to ensure efficient local execution of the

is_same_transaction operation.

2.6.2 Life Cycle Service

The Life Cycle Service assumes CORBA implementations support object relocation.

2.6.3 Naming Service

Entities that are not CORBA objects - that is to say, not objects accessed via an Ob
Request Broker - are used for names (in the guise of pseudo objects). In both cas
interfaces to these entities conform as closely as possible to OMG IDL while satisfying
the specific service design requirements, in order to enable maximum flexibility in the
future. Specifically, in the Naming Service, name objects are pseudo objects with
interfaces defined in pseudo IDL (PIDL). These objects look like CORBA objects but
are specifically designed to be accessed using a programming language binding. This
done for reasons based on the expected use of these objects.

2.6.4 Relationship Service

The Relationship Service requires CORBA Interface Repositories to support the ability
to dynamically determine if an InterfaceDef conforms to another InterfaceDef, that is,
if it is a subtype. This is needed to implement type constraints for particular
relationships.

2.6.5 Persistent Object Service

The Persistent Object Service requires CORBA Interface Repositories.

2.6.6 General Interoperability Requirements

Interoperability between Object Services and users of Object Services implemente
different ORBs requires common RepositoryIDs be used to identify types in both
systems. The types identified by these RepositoryIDs must also be consistently
defined. As described in Common Object Request Broker: Architecture and
Specification, Pragma Directives for Repository Id section, all CORBAservice IDL
presented in this specification is implicitly preceded at file scope by the following
directive:

 #pragma prefix “omg.org”
General Design Principles Relationship to CORBA July 1997 2-13

2

 are
Object Service Implementations that choose to extend the standard interfaces must do
so by deriving new interfaces rather than by modifying the standard interfaces.

2.7 Relationship to Object Model

All specifications contained in this manual conform to the OMG Object Model. No
additional components or profiles are required by any service.

2.8 Conformance to Existing Standards

In general, existing relevant standards do not have object-oriented interfaces nor
they structured in a form that is easily mapped to objects. These specifications have
been influenced by existing standards, and services have been designed which
minimize the difficulty of encapsulating supporting software. The naming service
specification is believed to be compatible with X.500, DCE CDS and ONC NIS and
NIS+.

These specifications are broadly conformant to emerging ISO/IEC/CCITT ODP
standards:

• CCITT Draft Recommendations X.900, ISO/IEC 10746 Basic Reference Model
for Open Distributed Computing

• ISO/IEC JTC1 SC21 WG7 N743 Working Document on Topic 9.1 - ODP Trader
2-14 CORBAservices: Common Object Services Specification

 Time Service Specification 14
ser to

n

ed in
 to

ly the

he
14.1 Introduction

14.1.1 Time Service Requirements

The requirements explicitly stated in the RFP ask for a service that enables the u
obtain current time together with an error estimate associated with it.

Additionally, the RFP suggests that the service also provide the following facilities:

• Ascertain the order in which “events” occurred.

• Generate time-based events based on timers and alarms.

• Compute the interval between two events.

Although the RFP mentions specification of a synchronization mechanism, the
submitters deemed it inappropriate to specify a single such mechanism as discussed i
Section 14.1.3, Source of Time.

14.1.2 Representation of Time

Time is represented many ways in programs. For example the X/Open DCE Time
Service [1] defines three binary representations of absolute time, while the UNIX
SVID defines a different representation of time. Other systems use time represent
myriads of different ways. It is not a goal of the service defined in this submission
deal with all these different representations of time or to propose a new unifying
representation of time.

To satisfy the set of requirements that are addressed, we have chosen to use on
Universal Time Coordinated (UTC) representation from the X/Open DCE Time Service.
Global clock synchronization time sources, such as the UTC signals broadcast by t
WWV radio station of the National Bureau of Standards, deliver time, which is
relatively easy to handle in this representation. UTC time is defined as follows.
CORBAservices: Common Object Services Specification 14-1

14

e

 one

e

ter.

the

s.

ware
Time units 100 nanoseconds (10 -7 seconds)

Base time 15 October 1582 00:00:00.

Approximate range AD 30,000

UTC time in this service specification always refers to time in Greenwich Time Zone.
The corresponding binary representations of relative time is the same one as for
absolute time, and hence with similar characteristics:

Time units 100 nanoseconds (10 -7 seconds)

Approximate range +/- 30,000 years

In order to ease implementation on existing systems, migration from them and
interoperation with them, care has been taken to ensure that the representation of tim
used interoperates with X/Open DCE Time Service [1], and that the operation for
getting current time is easy to implement on X/Open DCE Time Service, NTP [2] (and
for that matter any other reasonable distributed time synchronization algorithm that
might come up with, e.g. ones presented in [3]) with appropriate values for
inaccuracies.

14.1.3 Source of Time

The services defined in this chapter depend on the availability of an underlying Time
Service that obtains and synchronizes time as required to provide a reasonable
approximation of the current time to these services. The following assumptions ar
made about the underlying time synchronization service:

• The Time Service is able to return current time with an associated error parame

• Within reasonable interpretation of the terms, the Time Service is available and
reliable. The time provided by the underlying service can be trusted to be within
inaccuracy window provided by the underlying system.

• The time returned by the Time Service is from a monotonically increasing serie

Additionally, if the underlying Time Service meets the criteria to be followed for
secure time presented in Appendix A, Implementation Guidelines, then the Time
Service object is able to provide trusted time.

No additional assumptions are made about how the underlying service obtains the time
that it delivers to this service. For example it could utilize a range of techniques
whether it be using a Cesium clock attached to each node or some hardware/soft
time synchronization method. It is assumed that the underlying service may fail
occasionally. This is accounted for by providing an appropriate exception as part of the
interface. The availability and accuracy of trusted time depends on what is provided by
the underlying Time Service.
14-2 CORBAservices: Common Object Services Specification

14

14.1.4 General Object Model

The general architectural pattern used is that a service object manages objects of a
specific category as shown in Figure 14-1.

Figure 14-1 General Object Model for Service

The service interface provides operations for creating the objects that the service
manages and, if appropriate, also provides operations for getting rid of them.

The Time Service object consists of two services, and hence defines two service
interfaces:

• Time Service manages Universal Time Objects (UTOs) and Time Interval Objects
(TIOs), and is represented by the TimeService interface.

• Timer Event Service manages Timer Event Handler objects, and is represented by
the TimerEventService interface.

The underlying facility that delivers time is associated with the UniversalTime and
SecureUniversalTime operation of the TimeService interface as described in
Section 14.2, Basic Time Service.

Service

Service Interface

Instances managed by

Instance
Interface

Object

the Service Object
Time Service: v1.0 Introduction July 1997 14-3

14

 in

 in

y
the

ce.

nd
an

e

and
nd,
14.1.5 Conformance Points

There are two conformance points for this service.

• Basic Time Service. This service consists of all data types and interfaces defined
the TimeBase and CosTime modules in Section 14.2, Basic Time Service. It
provides operations for getting time and manipulating time. A complete
implementation of the TimeBase and the CosTime modules is necessary and
sufficient to conform to the Time Service object standard. An implementation of the
CosTime module in which the universal_time operation always raises the
TimeUnavailable exception is not acceptable for satisfying this conformance
point.

• Timer Event Service. This service consists of all data types and interfaces defined
the CosTimerEvent module in Section 14.3, Timer Event Service. It provides
operations for managing time-triggered event handlers and the events that the
handle. A complete implementation of this module is necessary to conform to
optional Timer Event Service component of the Time Service object. Since the
CosTimerEvent module depends on the CosTime module, it is not possible to
conform just to the Timer Event Service without conforming to Basic Time Servi
To claim conformance to Timer Event Service, both Timer Event Service and Time
Service must be provided.

14.2 Basic Time Service

All data structures pertaining to the basic Time Service, Universal Time Object, a
Time Interval Object are defined in the TimeBase module so that other services c
make use of these data structures without requiring the interface definitions. The
interface definitions and associated enums and exceptions are encapsulated in th
CosTime module.

14.2.1 Object Model

The object model of this service is depicted in Figure 14-2. The Time Service object
manages Universal Time Objects (UTOs) and Time Interval Objects (TIOs). It does so
by providing methods for creating UTOs and TIOs. Each UTO represents a time,
each TIO represents a time interval, and reference to each can be freely passed arou
subject to the caveats discussed in Appendix A, Implementation Guidelines.
14-4 CORBAservices: Common Object Services Specification

14

ted
ion of
to
Figure 14-2 Object Model for Time Service

14.2.2 Data Types

A number of types and interfaces are defined and used by this service. All definitions
of data structures are placed in the TimeBase module. All interfaces, and associa
enum and exception declarations are placed in the CosTime module. This separat
basic data type definitions from interface related definitions allows other services
use the time data types without explicitly incorporating the interfaces, while allowing
clients of those services to use the interfaces provided by the Time Service to
manipulate the data used by those services.

module TimeBase {

typedef unsigned long long TimeT;
typedef TimeT InaccuracyT;
typedef short TdfT;
struct UtcT {

TimeT time; // 8 octets
unsigned long inacclo; // 4 octets
unsigned short inacchi; // 2 octets
TdfT tdf; // 2 octets

// total 16 octets.
};

struct IntervalT {
TimeT lower_bound;

Time Service

TimeService interface

UTO interface

universal_time

new_universal_time

absolute _time
compare_time

secure_universal_time

interval
time
inaccuracy
tdf
utc_time

UTO

TIO

UTO

TIO

TIO interface
spans
time
overlap
time_interval

uto_from_utc
new_interval
Time Service: v1.0 Basic Time Service July 1997 14-5

14

r
base is

t

TimeT upper_bound;
};

};

Type TimeT

TimeT represents a single time value, which is 64 bits in size, and holds the numbe
of 100 nanoseconds that have passed since the base time. For absolute time the
15 October 1582 00:00.

Type InaccuracyT

InaccuracyT represents the value of inaccuracy in time in units of 100
nanoseconds. As per the definition of the inaccuracy field in the X/Open DCE Time
Service [1], 48 bits is sufficient to hold this value.

Type TdfT

TdfT is of size 16 bits short type and holds the time displacement factor in the form
of minutes of displacement from the Greenwich Meridian. Displacements East of the
meridian are positive, while those to the West are negative.

Type UtcT

UtcT defines the structure of the time value that is used universally in this service.
The basic value of time is of type TimeT that is held in the time field. Whether a
UtcT structure is holding a relative or absolute time is determined by its history. There
is no explicit flag within the object holding that state information. The iacclo and
inacchi fields together hold a 48-bit estimate of inaccuracy in the time field. These
two fields together hold a value of type InaccuracyT packed into 48 bits. The tdf
field holds time zone information. Implementation must place the time displacemen
factor for the local time zone in this field whenever they create a UTO.

The contents of this structure are intended to be opaque, but in order to be able to
marshal it correctly, at least the types of fields need to be identified.

Type IntervalT

This type holds a time interval represented as two TimeT values corresponding to the
lower and upper bound of the interval. An IntervalT structure containing a lower
bound greater than the upper bound is invalid. For the interval to be meaningful, the
time base used for the lower and upper bound must be the same, and the time base
itself must not be spanned by the interval.

module CosTime {
enum TimeComparison {

TCEqualTo,
TCLessThan,
14-6 CORBAservices: Common Object Services Specification

14

pe.

f

en

hen
TCGreaterThan,
TCIndeterminate

};

enum ComparisonType {
IntervalC,
MidC

};

enum OverlapType {
OTContainer,
OTContained,
OTOverlap,
OTNoOverlap

};
};

Enum ComparisonType

ComparisonType defines the two types of time comparison that are supported.
IntervalC comparison does the comparison taking into account the error envelo
MidC comparison just compares the base times. A MidC comparison can never return
TCIndeterminate .

Enum TimeComparison

TimeComparison defines the possible values that can be returned as a result o
comparing two UTOs. The values are self-explanatory. In an IntervalC comparison,
TCIndeterminate value is returned if the error envelopes around the two times
being compared overlap. For this purpose the error envelope is assumed to be
symmetrically placed around the base time covering time-inaccuracy to
time+inaccuracy. For IntervalC comparison, two UTOs are deemed to contain the
same time only if the Time attribute of the two objects are equal and the Inaccuracy
attributes of both the objects are zero.

Enum OverlapType

OverlapType specifies the type of overlap between two time intervals. Figure 14-3
depicts the meaning of the four values of this enum. When interval A wholly contains
interval B, then it is an OTContainer of interval B and the overlap interval is the
same as the interval B. When interval B wholly contains interval A, then interval A is
OTContained in interval B and the overlap region is the same as interval A. Wh
neither interval is wholly contained in the other but they overlap, then the OTOverlap
case applies and the overlap region is the length of interval that overlaps. Finally, w
the two intervals do not overlap, the OTNoOverlap case applies.
Time Service: v1.0 Basic Time Service July 1997 14-7

14

e

ond
Figure 14-3 Illustration of Interval Overlap

14.2.3 Exceptions

This service returns standard CORBA exceptions where specified in addition to th
service-specific exception described in this section.

module CosTime {
exception TimeUnavailable {};

}

TimeUnavailable

This exception is raised when the underlying trusted time service fails, or is unable to
provide time that meets the required security assurance.

14.2.4 Universal Time Object (UTO)

The UTO provides various operations on basic time. These include the following
groups of operations:

• Construction of a UTO from piece parts, and extraction of piece parts from a UTO
(as read only attributes).

• Comparison of time.

• Conversion from relative to absolute time, and conversion to an interval.

Of these, the first operation is required for completeness, since in its absence it would
be difficult to provide a time input to the timer event handler, for example. The sec
operation is required by the RFP, and the third is required for completeness and
usability.

module CosTime {
interface TIO; // forward declaration
interface UTO {

readonly attribute TimeBase::TimeT time;
readonly attribute TimeBase::InaccuracyTinaccuracy;
readonly attribute TimeBase::TdfT tdf;
readonly attribute TimeBase::UtcT utc_time;

UTO absolute_time();

TimeComparison compare_time(

Interval A

Interval B
OTContainerOTContained OTOverlap OTNoOverlap
14-8 CORBAservices: Common Object Services Specification

14

, as

f

e
in ComparisonType comparison_type,
in UTO uto

);

TIO time_to_interval(
in UTO uto

);

TIO interval();
};

};

The UTO interface corresponds to an object that contains utc time, and is the means
for manipulating the time contained in the object. This interface has operations for
getting a UtcT type data structure containing the current value of time in the object
well as operations for getting the values of individual fields of utc time, getting
absolute time from relative time, and comparing and doing bounds operations on
UTOs. The UTO interface does not provide any operation for modifying the time in the
object. It is intended that UTOs are immutable.

Readonly attribute time

This is the time attribute of a UTO represented as a value of type TimeT.

Readonly attribute inaccuracy

This is the inaccuracy attribute of a UTO represented as a value of type
InaccuracyT .

Readonly attribute tdf

This is the time displacement factor attribute tdf of a UTO represented as a value o
type TdfT .

Readonly attribute utc_time

This attribute returns a properly populated UtcT structure with data corresponding to
the contents of the UTO.

Operation absolute_time

This attribute returns a UTO containing the absolute time corresponding to the relativ
time in object. Absolute time = current time + time in the object. Raises
CORBA::DATA_CONVERSION exception if the attempt to obtain absolute time
causes an overflow.
Time Service: v1.0 Basic Time Service July 1997 14-9

14

n
s are
Operation compare_time

Compares the time contained in the object with the time given in the input parameter
uto using the comparison type specified in the in parameter comparison_type ,
and returns the result. See the description of TimeComparison in Section 14.2.2,
Data Types, for an explanation of the result. See the explanation of
ComparisonType in Section 14.2.2 for an explanation of comparison types. Note
that the time in the object is always used as the first parameter in the comparison. The
time in the utc parameter is used as the second parameter in the comparison.

Operation time_to_interval

Returns a TIO representing the time interval between the time in the object and the
time in the UTO passed in the parameter uto . The interval returned is the interval
between the midpoints of the two UTOs and the inaccuracies in the UTOs are not take
into consideration. The result is meaningless if the time base used by the two UTO
different.

Operation interval

Returns a TIO representing the error interval around the time value in the UTO as a
time interval. TIO.upper_bound = UTO.time+UTO.inaccuracy. TIO.lower_bound =
UTO.time - UTO.inaccuracy.

14.2.5 Time Interval Object (TIO)

The TIO represents a time interval and contains operations relevant to time intervals.

module CosTime {
interface TIO {

readonly attribute TimeBase::IntervalT time_interval;

OverlapType spans (
in UTO time,
out TIO overlap

);
OverlapType overlaps (

in TIO interval,
out TIO overlap

);

UTO time ();
}

}

Readonly attribute time_interval

This attribute returns an IntervalT structure with the values of its fields filled in
with the corresponding values from the TIO.
14-10 CORBAservices: Common Object Services Specification

14

ITO
Operation spans

This operation returns a value of type OverlapType depending on how the interval
in the object and the time range represented by the parameter UTO overlap. See the
definition of OverlapType in Section 14.2.2, Data Types. The interval in the object
is interval A and the interval in the parameter UTO is interval B. If OverlapType is
not OTNoOverlap , then the out parameter overlap contains the overlap interval,
otherwise the out parameter contains the gap between the two intervals. The
exception CORBA::BAD_PARAM is raised if the UTO passed in is invalid.

Operation overlaps

This operation returns a value of type OverlapType depending on how the interval
in the object and interval in the parameter TIO overlap. See the definition of
OverlapType in Section 14.2.2, Data Types. The interval in the object is interval A
and the interval in the parameter TIO is interval B. If OverlapType is not
OTNoOverlap , then the out parameter overlap contains the overlap interval,
otherwise the out parameter contains the gap between the two intervals. The
exception CORBA::BAD_PARAM is raised if the TIO passed in is invalid.

Operation time

Returns a UTO in which the inaccuracy interval is equal to the time interval in the
and time value is the midpoint of the interval.

14.2.6 Time Service

The TimeService interface provides operations for obtaining the current time,
constructing a UTO with specified values for each attribute, and constructing a TIO
with specified upper and lower bounds.

module CosTime {
interface TimeService {

UTO universal_time()
raises(TimeUnavailable

);
UTO secure_universal_time()

raises(TimeUnavailable
);
UTO new_universal_time(

in TimeBase::TimeT time,
in TimeBase::InaccuracyT inaccuracy,
in TimeBase::TdfT tdf

);
UTO uto_from_utc(

in TimeBase::UtcT utc
);
Time Service: v1.0 Basic Time Service July 1997 14-11

14

t
rned

ch a
cure

he

ts
s the

.

TIO new_interval(
in TimeBase::TimeT lower,
in TimeBase::TimeT upper

);
};

};

Operation universal_time

The universal_time operation returns the current time and an estimate of
inaccuracy in a UTO. It raises TimeUnavailable exceptions to indicate failure of
an underlying time provider. The time returned in the UTO by this operation is no
guaranteed to be secure or trusted. If any time is available at all, that time is retu
by this operation.

Operation secure_universal_time

The secure_universal_time operation returns the current time in a UTO only
if the time can be guaranteed to have been obtained securely. In order to make su
guarantee, the underlying Time Service must meet the criteria to be followed for se
time, presented in Appendix A, Implementation Guidelines. If there is any uncertainty
at all about meeting any aspect of these criteria, then this operation must return t
TimeUnavailable exception. Thus, time obtained through this operation can
always be trusted.

Operation new_universal_time

The new_universal_time operation is used for constructing a new UTO. The
parameters passed in are the time of type TimeT and inaccuracy of type
InaccuracyT . This is the only way to create a UTO with an arbitrary time from i
components. This is expected to be used for building UTOs that can be passed a
various time arguments to the Timer Event Service, for example.
CORBA::BAD_PARAM is raised in the case of an out-of-range parameter value for
inaccuracy .

Operation uto_from_utc

The uto_from_utc operation is used to create a UTO given a time in the UtcT
form. This has a single in parameter UTC, which contains a time together with
inaccuracy and tdf . The UTO returned is initialized with the values from the UTC
parameter. This operation is used to convert a UTC received over the wire into a UTO

Operation new_interval

The new_interval operation is used to construct a new TIO. The parameters are
lower and upper , both of type TimeT, holding the lower and upper bounds of the
interval. If the value of the lower parameter is greater than the value of the upper
parameter, then a CORBA::BAD_PARAM exception is raised.
14-12 CORBAservices: Common Object Services Specification

14

l

nel of

 t
14.3 Timer Event Service

The module CosTimerEvent encapsulates all data type and interface definitions
pertaining to the Timer Event Service.

14.3.1 Object Model

The TimerEventService object manages Timer Event Handlers represented by Timer
Event Handler objects as shown in Figure 14-4. Each Timer Event Handler is
immutably associated with a specific event channel at the time of its creation. The
Timer Event Handler can be passed around as any other object. It can be used to
program the time and content of the events that will be generated on the channe
associated with it. The user of a Timer Event Handler is expected to notify the Timer
Event Service when it has no further use for the handler.

Figure 14-4 Object Model of Timer Event Service

14.3.2 Usage

In a typical usage scenario of this service, the user must first create an event chan
the “push” type (see CORBA Service: Event Service Specification [Chapter 4]). The
user must then register this event channel as the sink for events generated by theimer
event handler that is returned by the registration operation. The user can then use the

Timer Event Service

Timer Event Service Interface

Timer Event Handler Objects

Timer Event Handler

register
unregister

Interface
set_timer
cancel_timer
set_data
status
time_set

event_time

Timer Events
Time Service: v1.0 Timer Event Service July 1997 14-13

14

e

cted

erval

timer event handler object to set up timer events as desired. The service will caus
events to be pushed through the event channel within a reasonable interval around the
requested event time. The implementor of the service will document what the expe
interval is for their implementation. The data associated with the event includes a
timestamp of the actual event time with the error envelope including the requested
event time.

14.3.3 Data Types

All declarations pertaining to this service is encapsulated in the CosTimerEvent
module.

module CosTimerEvent{
enum TimeType {

TTAbsolute,
TTRelative,
TTPeriodic

};

enum EventStatus {
ESTimeSet,
ESTimeCleared,
ESTriggered,
ESFailedTrigger

};

struct TimerEventT{
TimeBase::UtcT utc;
any event_data;

};
};

Enum TimeType

TimeType is used to specify whether a time is TTRelative , TTAbsolute , or
TTPeriodic in operations for setting timer intervals for the event-triggering
mechanism. The TTRelative value is used to specify that the time provided is
relative to current time, TTAbsolute is used to specify that the time provided is
absolute, and TTPeriodic is used to specify that the time provided is a period (and
hence a relative time) between successive events. If TTPeriodic is used, then the
same event continues to be triggered repeatedly at the completion of the time int
specified, until the timer is reset.

Enum EventStatus

EventStatus defines the state of a TimerEventHandler object. The state
ESTimeSet means that the event has been set with a time in the future, and will be
triggered when that time arrives. ESTimeCleared means that the event is not set to
go off, and the time was cleared before the previously set triggering time arrived.
14-14 CORBAservices: Common Object Services Specification

14

ata

nt-

ad

 for
ESTriggered means that the event has already triggered and the appropriate d
has been sent the event channel. ESFailedTrigger means that the event did
trigger, but data could not be delivered over the event channel.

In case of TTPeriodic events, the status ESTriggered never occurs. Upon
successful triggering of a TTPeriodic event, the status is set to ESTimeSet .

Type TimerEventT

This is the structure that is returned to the event requester by the time-driven eve
triggering mechanism. It has two fields. The first field, utc , contains the actual time at
which the event was triggered. This value is set in the time field of utc . The
inaccuracy fields inacclo and inacchi of utc are set to the difference between
the requested event time and the actual event time.

The second field, event_data , contains the data that the requester of the event h
asked to be sent when the event was triggered.

14.3.4 Exceptions

Timer Event Service raises standard CORBA exceptions as specified in OMG IDL
the service. It does not have any service-specific exceptions.

14.3.5 Timer Event Handler

Timer Event Handlers are created and managed by the Timer Event Service. A
TimerEventHandler object holds information about an event that is to be
triggered at a specific time and action that is to be taken when the event is triggered. It
provides operations for setting, resetting, and canceling the timer event associated with
it, as well as for changing the event data that is sent back as a part of a TimeEventT
structure on the event channel upon the triggering of the event. The only thing that
cannot be changed is the event channel associated with that event handler. An attribute
named status holds the current status of the event handler.

module CosTimerEvent {
interface TimerEventHandler {

readonly attribute EventStatus status;
boolean time_set(

out CosTime::UTO uto
);
void set_timer(

in TimeType time_type,
in CosTime::UTO trigger_time

);
boolean cancel_timer();
void set_data(

in any event_data
);
};

};
Time Service: v1.0 Timer Event Service July 1997 14-15

14

e +

ts.
Attribute status

status is a readonly attribute that reflects the current state of the
TimerEventHandler . See the definition of EventStatus enumerator in Section
14.3.1, Object Model, for details.

Operation time_set

Returns TRUE if the time has been set for an event that is yet to be triggered, FALSE
otherwise. In addition, it always returns the current value of the timer in the event
handler as the out uto parameter.

Operation set_timer

Sets the triggering time for the event to the time specified by the uto parameter, which
may contain TTRelative , TTAbsolute or TTPeriodic time. The time_type
parameter specifies what type of time is contained in the uto parameter. The previous
trigger, if any, is canceled and a new trigger is enabled at the time specified if
absolute , or at current time + time specified if relative . If a relative time
value of zero is specified (i.e. the time attribute of utc = 0LL), then the last relative
time that was specified is reused. If no relative time was previously specified, then
a CORBA::BAD_PARAM exception is raised. If a periodic time is specified
(time_type == periodic), then the time parameter is interpreted as a relative time
and the time trigger is set at the periodicity defined by the time (i.e. at current tim
time, current time + 2 * time, etc.).

Operation cancel_timer

Cancels the trigger if one had been set and had not gone off yet. Returns TRUE if an
event is actually canceled, FALSE otherwise.

Operation set_data

The data that will be passed back through the event channel in a TimerEventT
structure for all future triggering of the event handler is set to event_data .

14.3.6 Timer Event Service

The Timer Event Service provides operations for registering and unregistering even

module CosTimerEvent {
interface TimerEventService {

TimerEventHandler register(
in CosEventComm::PushConsumer event_interface,
in any data

);
void unregister(

in TimerEventhandler timer_event_handler
14-16 CORBAservices: Common Object Services Specification

14

d

he

ime
);
CosTime::UTO event_time(

in TimerEventT timer_event
);

};
};

Operation register

The register operation registers the event handler specified by the data and the
event_interface parameters. When the event handler is triggered, the data is
delivered using the push operation (of the PushConsumer interface in Chapter 4,
Event Service Specification, Section 4.3, CosEventComm Module) specified in the
event_interface parameter. Only the Push Model is supported for timer event
delivery. Note that the event handler needs to be primed with a triggering time using
the set_time operation of the TimerEventHandler interface in order for an actual
event to be triggered. At initialization, the time in the handler is set to current time an
its state is set to ESTimeCleared , and no event is scheduled. Raises
CORBA::NO_RESOURCE exception if lack of resources causes it to fail to register t
event handler.

Operation unregister

The unregister operation notifies the service that the timer_event_handler
will not be used any more and all resources associated with it can be destroyed.
Subsequent attempts to use that object reference will raise CORBA::INV_OBJREF.

Operation event_time

The event_time operation returns a UTO containing the time at which the event
contained in the timer_event structure was triggered.

14.4 Conformance

It is sufficient to provide just the Time Service (module TimeBase and CosTime) to
claim conformance with the Time Service object as described in Section 14.1.5,
Conformance Points. To claim conformance with the Timer Event Service, both T
Service and Timer Event Service (module CosTimerEvent) must be provided.

In order to conform to the Basic Time Service, the semantics of the
secure_universal_time operation must be strictly adhered to. In order to return
a valid time from this operation, the vendor must provide a statement about how the
security assurance criteria specified in Appendix A, Implementation Guidelines, are
met in their product. To conform to the object Time Service, in all other cases, i.e.
when the security assurance criteria are not satisfied, the
secure_universal_time operation must raise the TimeUnavailable
exception.
Time Service: v1.0 Conformance July 1997 14-17

14

 of
ce

 the
ot

ion.

ded

ure.
inst
 Appendix A Implementation Guidelines

A.1 Introduction

This appendix contains advice to implementors. Appropriate documented handling
the criteria presented here is mandatory for conformance to the Basic Time Servi
conformance point.

A.2 Criteria to Be Followed for Secure Time

The following criteria must be followed in order to assure that the time returned by
secure_universal_time operation is in fact secure time. If these criteria are n
satisfactorily addressed in an ORB, then it must return the TimeUnavailable
exception upon invocation of the secure_universal_time operation of the
TimeService interface.

Administration of Time

Only administrators authorized by the system security policy may set the time and
specify the source of time for time synchronization purposes.

Protection of Operations and Mandatory Audits

The following types of operations must be protected against unauthorized invocat
They must also be mandatorily audited:

• Operations that set or reset the current time

• Operations that designate a time source as authoritative

• Operations that modify the accuracy of the time service or the uncertainty interval
of generated timestamps

Synchronization of Time

Synchronization of time must be transmitted over the network. This presents an
opportunity for unauthorized tampering with time, which must be adequately guar
against. Time Service implementors must state how time values used for time
synchronization are protected while they are in transit over the network.

Time Service implementors must state whether or not their implementation is sec
Implementors of secure time services must state how their system is secured aga
threats documented in Chapter 15, Security Service Specification. They must also
document how the issues mentioned in this section are addressed adequately.
14-18 CORBAservices: Common Object Services Specification

14

are
 the

r
A.3 Proxies and Time Uncertainty

The Time Service object returns a timestamp, which contains both a time and an
associated uncertainty interval. These values are considered valid at the instant they
returned by the Time Service object; however, if these values are not delivered to
caller immediately, they may no longer be reliable by the time the caller receives them.

In a CORBA system, the use of proxy objects can render time values unreliable by
introducing unpredictable and uncorrected latency between the time the time serve
object generates a timestamp and the time the caller’s time server proxy receives the
timestamp and returns it to the caller (see Figure 14-5 below).

Figure 14-5 Time Service and Proxies

Implementors of the Time Service must prevent this problem from occurring. Two
possible ways of preventing proxy latency are:

• Prohibit proxies of the time server object (i.e. require a Time Service
implementation in every address space that will need to make Time Service calls).

• Create a special time server proxy, which measures latency between the Time
Service object and the proxy, recalculates the time interval’s uncertainty, and adjusts
the interval value before returning the timestamp to the caller.

Other approaches probably exist; the two above are intended as examples only.

Caller

Time
Service
Proxy

Time
Service

get time Time=x;interval=3sec
(delivered at time x)

Time=x;interval=3sec
(delivered at time x+y -- y may be greater than 3sec)
Time Service: v1.0 Conformance July 1997 14-19

14

ich

ng in
 Appendix B Consolidated OMG IDL

B.1 Introduction

This appendix contains a summary of the OMG IDL defined in this document.

B.2 Time Service

This section contains the OMG IDL definitions pertaining to the Time Service, wh
is encapsulated in the TimeBase and CosTime modules. The TimeBase module
contains the basic data type declarations that can be used by others without pulli
the Time Service interfaces. The Time Service interface and associated enums and
exceptions are declared in the CosTime module.

module TimeBase {
typedef unsigned long long TimeT;
typedef TimeT InaccuracyT;
typedef short TdfT;
struct UtcT {

TimeT time; // 8 octets
unsigned long inacclo; // 4 octets
unsigned short inacchi; // 2 octets
TdfT tdf; // 2 octets

// total 16 octets.
};

struct IntervalT {
TimeT lower_bound;
TimeT upper_bound;

};
};

module CosTime {

enum TimeComparison {
TCEqualTo,
TCLessThan,
TCGreaterThan,
TCIndeterminate

};

enum ComparisonType{
IntervalC,
MidC

};

enum OverlapType {
OTContainer,
OTContained,
OTOverlap,
OTNoOverlap

};
14-20 CORBAservices: Common Object Services Specification

14
exception TimeUnavailable {};
interface TIO; // forward declaration

interface UTO {

readonly attribute TimeBase::TimeTtime;
readonly attribute TimeBase::InaccuracyTinaccuracy;
readonly attribute TimeBase::TdfT tdf;
readonly attribute TimeBase::UtcT utc_time;
UTO absolute_time();
TimeComparison compare_time(

in ComparisonType comparison_type,
in UTO uto

);
TIO time_to_interval(

in UTO uto
);
TIO interval();

};

interface TIO {
readonly attribute TimeBase::IntervalT time_interval;
boolean spans (

in UTO time,
out TIO overlap

);
boolean overlaps (

in TIO interval,
out TIO overlap

);
UTO time ();

};

interface TimeService {
UTO universal_time()

raises(TimeUnavailable
);
UTO secure_universal_time()

raises(TimeUnavailable
);
UTO new_universal_time(

in TimeBase::TimeT time,
in TimeBase::InaccuracyT inaccuracy,
in TimeBase::TdfT tdf

);
UTO uto_from_utc(

in TimeBase::UtcT utc
);
TIO new_interval(

in TimeBase::TimeT lower,
in TimeBase::TimeT upper

);
};

};
Time Service: v1.0 Conformance July 1997 14-21

14

ends
B.3 Timer Event Service

This section contains all the OMG IDL definitions pertaining to the Timer Event
Service, which are encapsulated in the CosTimerEvent module. This module dep
on TimeBase, CosTime, CosEventComm and CORBA.

module CosTimerEvent{
enum TimeType {

TTAbsolute,
TTRelative,
TTPeriodic

};

enum EventStatus {
ESTimeSet,
ESTimeCleared,
ESTriggered,
ESFailedTrigger

};

struct TimerEventT {
TimeBase::UtcT utc;
any event_data;

};

 interface TimerEventHandler {
readonly attribute EventStatus status;
boolean time_set(

out CosTime::UTO uto
);
void SetTimer(

in TimeType time_type,
in CosTime::UTO trigger_time

);
 boolean cancel_timer();
 void set_data(

in any event_data
);
};

interface TimerEventService {
TimerEventHandler register(

in CosEventComm::PushConsumer event_interface,
in any data

);
void unregister(

in TimerEventHandler timer_event_handler
);
CosTime::UTO event_time(

in TimerEventT timer_event
);

};
};
14-22 CORBAservices: Common Object Services Specification

14

ch
 be
time.

it

es

citly

an
 Appendix C Notes for Users

C.1 Introduction

This appendix contains notes covering the following matters:

• Guarding against proxy-related inaccuracies in time contained in UTO.

• How to transmit time and time intervals across the network and recover the
corresponding UTO and TIO at the other end.

C.2 Proxies and Time

As explained in Appendix B, Consolidated OMG IDL, indiscriminate use of remote
proxies to obtain value of current time can lead to obtaining values of time in whi
the inaccuracy is incorrect due to transmission delays. Consequently, care should
taken to ensure that the local Time Service is used to obtain the value of current

C.3 Sending Time Across the Network

When passing small objects such as UTO and TIO from one location to another, one
should be aware that each time the passed object reference is used by the recipient
causes an object invocation to take place across the network and is inherently
inefficient. The preferred way of dealing with this problem is to pass small objects by
value instead of by reference. Unfortunately, due to various reasons, OMG IDL do
not allow specification of passing of object parameters by value. Consequently, the
user has to explicitly take action to avoid this problem.

The interfaces defined contain features that make it possible for the user to expli
send the value of time, and time interval across from one location to another and then
reconstruct the appropriate object at the receiving end. This is done as follows:

• The signature of the operation that passes time or time interval as a parameter
across the network should specify that time is passed as the data type and not as
object reference. For example, for passing universal time, a signature such as

void foo(in TimeBase::UtcT);

should be used instead of

void foo(in CosTime::UTO);

• The invoker should use the data attribute of the UTO as the in parameter. In
pseudo-code, something such as the following should be done by the invoker:

CosTime::UTO uto = CosTime::universal_time();
foo(uto.data);
Time Service: v1.0 Conformance July 1997 14-23

14

s:

such
• At the server end, the time data received can be converted to a UTO as follow

foo(in TimeBase::UtcT utc) {
CosTime::UTO uto = CosTime::TimeService::uto_from_utc(utc);

.....

};

It would be nice to say in the definition of the foo operation something such as:

foo(in byvalue UTO uto);

and have the system take care of doing essentially what is described above. However,
there are difficult model- and paradigm-related issues that need resolution before
a change can be coherently proposed.
14-24 CORBAservices: Common Object Services Specification

14

 Appendix D Extension Examples

D.1 Introduction

The process of constructing the contents of a TimeBase::TimeT value can be quite
tedious, involving many 64-bit multiplications and additions. The CORBA Facility for
Time Representation is going to provide user-friendly ways of creating TimeT data
and displaying them. However, if one is planning to use only the Time Service, it will
be necessary to construct some rudimentary facility to build TimeT things. This
appendix shows one way of doing this as an example of how to extend this service in
useful ways.

D.2 Object Model

Following the design pattern used in the rest of this service definition, the basic
extension is to define a TimeI object corresponding to the TimeT structure, and
extend TimeService to provide an operation for creating such objects. The TimeI
object has attributes corresponding to the user-friendly representation of time such as
year, month, day, hour, minute, second, microsecond, etc.

D.3 Summary of Extensions

The additions are encapsulated in the FriendlyTime module. The changes are as
follows:

• Data type declaration for components of time.

• Definition of the TimeI interface, consisting mostly of attributes.

• Definition of the FriendlyTime::TimeService interface derived from the
CosTime::TimeService interface, for adding the operation to create TimeI objects.

D.4 Data Types

The data types are self-explanatory for the purposes of setting up this example. A
complete specification should state more specific properties of each of these data
types.

module FriendlyTime {
typedef unsigned short YearT; // must be > 1581
typedef unsigned short MonthT; // 1 - 12
typedef unsigned short DayT; // 1 - 31
typedef unsigned short HourT; // 0 - 24
typedef unsigned short MinuteT; // 0 - 59
typedef unsigned short SecondT; // 0 - 59
typedef unsigned short MicrosecondT;

}

Time Service: v1.0 Conformance July 1997 14-25

14

d to

ute
D.5 Exceptions

No exceptions are defined in this module.

D.6 Friendly Time Object

The time object provides a friendly interface to the various components usually use
represent time in normal human discourse. The set of attributes used in this example
are by no means exhaustive, and is used only for illustrative purposes.

module FriendlyTime {
interface TimeI {

attribute YearT year;
attribute MonthT month;
attribute DayT day;
attribute HourT hour;
attribute MinuteT minute;
attribute SecondT second;
attribute MicrosecondT microsecond;
attribute TimeBase::TimeT time;
void reset(); // set all attributes to zero

};
};

The TimeI object can be viewed as a representation conversion object. The general
technique for using it is to create one using the operation
CosFriendlyTime::TimeService::time introduced in Section D.7, Extended
Time Service. This creates a TimeI object with time set to zero in it. Then the _set
operation can be used to set the values of the various attributes. Finally, the attrib
time can be used to get the corresponding TimeT value.

Conversely, one can set any TimeT value in the time attribute and then get the year,
month, etc. from the appropriate attributes.

The reset operation facilitates reuse of time objects.

D.7 Extended Time Service

CosTime::TimeService is extended by derivation to provide an operation for
creating TimeI objects.

module FriendlyTime {
interface TimeService : CosTime::TimeService {

TimeI time();
};

};
14-26 CORBAservices: Common Object Services Specification

14

is no
D.8 Epilogue

The extension provided in this appendix makes the Time Service defined in the
normative part of the document more easily usable. This leads one to wonder whythis
extension is not part of the main body of this submission. The reason is that there
agreement on what the most useful representative components of time are, and the
feeling that in general this should be dealt with at the Common Facilities level in
general. We still felt that it would be useful to illustrate how easy it is to extend the
basic service to provide this ease-of-use facility, thus this appendix.
Time Service: v1.0 Conformance July 1997 14-27

14

1,

-1,
 Appendix E References
• X/Open DCE Time Service, X/Open CAE Specification C310, November 1994.

• RFC 1119 Network Time Protocol, D. Mills, September 1989.

• Probabilistic Clock Synchronization, Flaviu Cristian, Distributed Computing (1989)
3: Pg. 146-158.

• OMG IDL type Extensions RFP, Andrew Watson Ed., OMG Doc. No. 95-1-35.

• CORBAServices: Common Object Service Specification, OMG Doc. No. 95-3-3
March 31 1995 revision, Chapter 4, Event Service Specification, Section 4.2
Pg. 4-6.

• CORBAServices: Common Object Service Specification, OMG Doc. No. 96-10
October 1996 revison, Chapter 15, Security Service Specification.
14-28 CORBAservices: Common Object Services Specification

Object Collection Specification 17
This chapter provides complete documentation for the Object Collection Service
specification.

Contents

This chapter contains the following sections.

Section Title Page

“Overview” 17-2

“Service Structure” 17-2

“Combined Collections” 17-10

“Restricted Access Collections” 17-14

“The CosCollection Module” 17-15

Appendix A, “OMG Object Query Service” 17-124

Appendix B, “Relationship to Other Relevant Standards” 17-133

Appendix C, “References” 17-138
CORBAservices: Common Object Services Specification 17-1

17

ser.
of

ss of

 they
ype.

ly

is
tion
ments

e

 a

 as
17.1 Overview

Collections support the grouping of objects and support operations for the
manipulation of the objects as a group. Common collection types are queues, sets,
bags, maps, etc. Collection types differ in the “nature of grouping” exposed to the u
“Nature of grouping” is reflected in the operations supported for the manipulation
objects as members of a group. Collections, for example, can be ordered and thus
support access to an element at position ”i” while other collections may support
associative access to elements via a key. Collections may guarantee the uniquene
elements while others allow multiple occurrences of elements. A user chooses a
collection type that matches the application requirements based on manipulation
capabilities.

Collections are foundation classes used in a broad range of applications; therefore,
have to meet the general requirement to be able to collect elements of arbitrary t
On the other hand, a collection instance usually is a homogenous collection in the
sense that all elements collected are of the same type, or support the same single
interface.

Sometimes you may not want to do something to all elements in a collection, but on
treat an individual object or traverse a collection explicitly (not implicitly via a
collection operation). To enable this, a pointer abstraction often called an iterator
supported with collections. For example, an iterator points to an element in a collec
and processes the element pointed to. Iterators can be moved and used to visit ele
of a collection in an application defined manner. There can be many iterators pointing
to elements of the same collection instance.

Normally, when operating on all elements of a collection, you want to pass user-
defined information to the collection implementation about what to do with the
individual elements or which elements are to be processed. To enable this, function
interfaces are used. A collection implementation can rely on and use the defined
function interface. A user has to specialize and implement these interfaces to pass th
user-defined information to the implementation. A function interface can be used to
pass element type specific information such as how to compare elements or pass
“program” to be applied to all elements.

17.2 Service Structure

The purpose of an Object Collection Service is to provide a uniform way to
create and manipulate the most common collections generically. The Object Service
defines three categories of interfaces to serve this purpose.

1. Collection interfaces and collection factories. A client chooses a collection
interface which offers grouping properties that match the client’s needs. A client
creates a collection instance of the chosen interface using a collection factory. When
creating a collection, a client has to pass element type specific information such
how to compare elements, how to test element equality, or the type checking
desired. A client uses collections to manipulate elements as a group. When a
17-2 CORBAservices: Common Object Services Specification

17

s

hen a

tion

 that
ey
collection is no longer used it may be destroyed - this includes removing the
elements collected, destroying element type specific information passed, and the
iterators pointing to this collection.

2. Iterator interfaces. A client creates an iterator using the collection for which it i
created as factory. A client uses an iterator to traverse the collection in an
application defined manner, process elements pointed to, mark ranges, etc. W
client no longer uses an iterator, it destroys the iterator.

3. Function interfaces. A client creates user-defined specializations of these
interfaces using user-defined factories. Instances are passed to a collection
implementation when the collection is created (element type specific information)
or as a parameter of an operation (for example, code to be executed for each
element of the collection). Instances of function interfaces are used by a collec
implementation rather than by a client.

17.2.1 Combined Property Collections

The Object Collection Service (or simply Collection Service) defined in this
specification aims at being a complete and differentiated offering of interfaces
supporting the grouping of objects. It enables a user to make a choice when following
the rule “pay only for what you use.” With this goal in mind, a very systematic
approach was chosen.

Groups, or collections of objects, support operations and exhibit specific behaviors
are mainly related to the nature of the collection rather than the type of objects th
collect.

“Nature of the collection” can be expressed in terms of well defined properties.

Ordering of elements

A previous or next relationship exists between the elements of an ordered collection
which is exposed in the interface.

Ordering can be sequential or sorted. A sequential ordering can be explicitly
manipulated; however, a sorted ordering is to be maintained implicitly based on a sort
criteria to be defined and passed to the implementation by the user.

Access by key

A key collection allows associative access to elements via a key. A key can be
computed from an element value via a user-defined key operation. Furthermore, key
collections require key equality to be defined.

Element equality

An equality collection exploits the property that a test for element equality is defined
(i.e., it can be tested whether an element is equal to another in terms of a user-defined
element equality operation). This enables a test on containment, for example.
Object Collection Service: v1.0 Service Structure July 1997 17-3

17

.

xploit

is

d
with

ctions
Uniqueness of entries

A collection with unique entries allows exactly one occurrence of an element key
value, not multiple occurrences.

Meaningful combinations of these basic properties define “collections of differing
nature of grouping.” Table 17-1 provides an overview of meaningful combinations
The listed combinations are described in more detail in the following section.

Properties are mapped to interfaces - each interface assembling operations that e
these properties. These interfaces are combined via multiple inheritance and form an
abstract interface hierarchy. Abstract means that no instance of such a class can be
instantiated, an attempt to do so may raise an exception at run-time. Leaves of th
hierarchy represent concrete interfaces listed in the table above and can be instantiated
by a user. They form a complete and differentiated offering of collection interfaces.

Restricted Access Collections

Common data structures based on these properties sometimes restrict access such as
queues, stacks, or priority queues. They can be considered as restricted access variants
of Sequence or KeySortedBag. These interfaces form their own hierarchy of
restricted access interfaces. They are not incorporated into the hierarchy of combine
properties because a user of restricted access interfaces should not be bothered
inherited operations which cannot be used in these interfaces. Nevertheless, to support
several “views” on an interface, a restricted users view of a queue and an unrestricted
system administrators view to the same queue instance, the restricted access colle
are defined in a way that allows combining them with the combined properties
collections via multiple inheritance.

Table 17-1 Interfaces derived from combinations of collection properties

Unordered

Ordered

Sorted
Sequen-

tial

Unique Multiple Unique Multiple Multiple

Key (Key
equality
must be

specified)

Element
Equality

Map Relation Sorted Map
Sorted

Relation

No Element
Equality

KeySet KeyBag
Key Sorted

Set
Key

SortedBag

No Key

Element
Equality

Set Bag SortedSet Sorted Bag
Equality
Sequence

No Element
Equality

Heap Sequence
17-4 CORBAservices: Common Object Services Specification

17

 are

ion

pe

es.”

ns,

 the

y
ch

All collections are unbounded (there is no explicit bound set) and controlled by the
collections; however, it depends on the quality of service delivered whether there
“natural” limits such as the size of the paging space.

Collection Factories

For each concrete collection interface specified in this specification there is one
corresponding collection factory defined. Each such factory offers a typed create
operation for the creation of collection instances supporting the respective collect
interface.

Additionally, a generic extensible factory is specified to enable the usage of many
implementation variants for the same collection interface. This extensible generic
factory allows the registration of implementation variants and their user-controlled
selection at collection creation time.

Information to be passed to a collection at creation time is the element and key ty
specific information that a collection implementation relies on. That is, one passes the
information how to compare element keys, how to test equality of element keys, type
checking relevant information, etc. Which type of information needs to be passed
depends on the respective collection interface.

17.2.2 Iterators

Iterators, as defined in this specification, are more than just simple “pointing devic

Iterator hierarchy

The service defines a hierarchy of iterators which parallels the collection hierarchy.

The top level iterator is generic in the sense that it allows iteration over all collectio
independent of the collection type because it is supported by all collection types. The
ordered iterator adds some capabilities useful for all kinds of ordered collections.
Iterators further down in the hierarchy add operations exploiting the capabilities of
corresponding collection type Not. Each iterator type is supported by each collection
type. For example, a KeyIterator is supported only by collection interfaces derived
from KeyCollection.

Iterators are tightly intertwined with collections. An iterator cannot exit independentl
of a collection (i.e., the iterator life time cannot exceed that of the collection for whi
it is created). A collection is the factory for its iterators. An iterator is created for a
given collection and can be used for this, and only this, collection.

Generic and iterator centric programming

Iterators on the one hand are pointer abstractions in the sense of simple pointing
devices. They offer the basic capabilities you can expect from a pointer abstraction.
One can reset an iterator to a start position for iteration and move or position it in
different ways depending on the iterator type.

There are essentially two reasons to embellish an iterator with more capabilities.
Object Collection Service: v1.0 Service Structure July 1997 17-5

17

ory

r
pe

 in

one

efore,
ries

 of

ss,
1. To support the processing of very large collections to allow for delayed instantiation
or incremental query evaluation in case of very large query results. These are
scenarios where the collection itself may never exist as instantiated main mem
collection but is processed in “fine grains” via an iterator passed to a client.

2. To enrich the iterator with more capabilities is to strengthen the support for the
generic programming model as introduced with ANSI STL to the C++ world.

One can retrieve, replace, remove, and add elements via an iterator. One can test
iterators for equality, compare ordered iterators, clone an iterator, assign iterators, and
destroy them. Furthermore, an iterator can have a const designation which is set when
created. A const iterator can be used for access only.

The reverse iterator semantics is supported. No extra interfaces are specified to
support this but a reverse designation is set at creation time. An ordered iterator fo
which the reverse designation is set reinterprets the operations of a given iterator ty
to work in reverse.

Iterators and performance

To reduce network traffic, combined operations and bulk operations are offered.

• Combined operations are combinations of simple iterator operations often used
loops.

• Bulk operations support retrieving, replacing, and adding many elements within
operation.

Managed Iterators

All iterators are managed in the sense that iterators never become undefined; ther
they do not lead to undefined behavior. Common behavior of iterators in class libra
today is that iterators become undefined when the collection content is changed. For
example, if an element is added the side effect on iterators of the collection is
unknown. Iterators do not “know” whether they are still pointing to the same element
as before, still pointing to an element at all, or pointing “outside” the collection. One
cannot even test the state. This is considered unacceptable behavior in a distributed
environment.

The iterator model used in this specification is a managed iterator. Managed iterators
are “robust” to modifications of the collection. A managed iterator is always in one
the following defined testable states:

• valid (pointing to an element of the collection)

• invalid (pointing to nothing; comparable to a NULL pointer)

• in-between (not pointing to an element, but still "remembering" enough state to be
valid for most operations on it).

A valid managed iterator remains valid as long as the element it points to remains in
the collection. As soon as the element is removed, the according managed iterator
enters a so-called in-between state. The in-between state can be viewed as a vacuum
within the collection. There is nothing the managed iterator can point to. Neverthele
17-6 CORBAservices: Common Object Services Specification

17

s)

,

ed
ters

y

 to
managed iterators remember the next (and for ordered collection, also the previou
element in iteration order. It is possible to continue using the managed iterator (in a
set_to_next_element() for example) without resetting it first. For more information
see “The Managed Iterator Model” on page 17-85.

17.2.3 Function Interfaces

The Object Collection service specifies function interfaces used to pass user-defin
information to the collection implementation (either at creation time or as parame
of operations). The most important is the Operations interface discussed in more
detail below.

Collectible Elements and Type Safety

Collections are foundation classes used in a broad range of applications. They have to
be able to collect elements of arbitrary type and support keys of arbitrary type.
Instances of collections are usually homogenous collections in the sense that all
elements have the same element type.

Because there is no template support in CORBA IDL today, the requirement
“collecting elements of arbitrary type” is met by defining the element type and the key
type as a CORBA any. In doing so, compile time type checking for element and ke
type is impossible.

As collections are often used as homogenous collections, dynamic type
checking is enabled by passing relevant information to the collection at
creation time. This is done by specialization of the function interface
Operations. This interface defines attributes element_type and key_type as well as
defines operations check_element_type() and check_key_type() which have to be
implemented by the user. Implementations may range from “no type checking at all,”
“type code match,” “checking an interface to be supported,” up to “checking
constraints in addition to a simple type code checking.” Using the Operations
interface allows user-defined customization of the dynamic type checking.

Collectible Elements and the Operations Interface

The function interface Operations is used to pass a number of other user-defined
element type specific information to the collection implementation.

The type checking of relevant information is one sample.

Depending on the properties represented by a collection interface, a respective
implementation relies on some element type specific or key type specific information
passed to it. For example, one has to pass the information “element comparison”
implement a SortedSet or “key equality” to guarantee uniqueness of keys in a
KeySet. The Operations interface is used to pass this information.
Object Collection Service: v1.0 Service Structure July 1997 17-7

17

n

tion
The third use of this interface is to pass element or key type specific information that
the different categories of implementations rely on. For example, tree-like
implementations for a KeySet rely on the “key comparison” information and hashing
based implementations rely on the information how to hash key values. This
information is passed via the Operations interface.

A user has to customize the Operations interface and to implement the appropriate
operations dependent on the collection interface to be used. An instance of the
specialized Operations interface is passed at collection creation time to the collectio
implementation.

Collectible Elements of Key Collections

Key collections offer associative access to collection elements via a key. A key is
computed from the element value and is user-defined element type specific informa
to be passed to a collection. The Operations interface has an operation key() which
returns the user-defined key of a given element.

For a specific element type, a user has to implement the element type specific key()
operation in an interface derived from Operations. The key type is a CORBA any.
Again this is designed to accommodate generality. Computable keys reflect the data
base view on elements of key collections as “keyed elements” where a key is a
component of a tuple or is “composed” from several components of a tuple.

17.2.4 List of Interfaces Defined

The Object Collection service offers the following interfaces:

Abstract interfaces representing collection properties and their combinations

• Collection

• OrderedCollection

• KeyCollection

• EqualityCollection

• SortedCollection

• SequentialCollection

• EqualitySequentialCollection

• EqualityKeyCollection

• KeySortedCollection

• EqualitySortedCollection

• EqualityKeySortedCollection
17-8 CORBAservices: Common Object Services Specification

17
Concrete collections and their factories

• CollectionFactory, CollectionFactories

• KeySet, KeySetFactory

• KeyBag, KeyBagFactory

• Map, MapFactory

• Relation, RelationFactory

• Set, SetFactory

• Bag, BagFactory

• KeySortedSet, KeySortedSetFactory

• KeySortedBag, KeySortedBagFactory

• SortedMap, SortedMapFactory

• SortedRelation, SortedRelationFactory

• SortedSet, SortedSetFactory

• SortedBag, SortedBagFactory

• Sequence, SequenceFactory

• EqualitySequence, EqualitySequenceFactory

• Heap, HeapFactory

Restricted access collections and their factories

• RestrictedAccessCollection, RACollectionFactory

• Stack, StackFactory

• Queue, QueueFactory

• Deque, DequeFactory

• PriorityQueue, PriorityFactory

Iterator interfaces

• Iterator

• OrderedIterator

• SequentialIterator

• SortedIterator

• KeyIterator

• EqualityIterator

• EqualityKeyIterator
Object Collection Service: v1.0 Service Structure July 1997 17-9

17

n

re the

e

d by

e
 you

 not
est

g of

sorted
er.
• KeySortedIterator

• EqualitySortedIterator

• EqualitySequentialIterator

• EqualityKeySortedIterator

Function interfaces

• Operations

• Command

• Comparator

17.3 Combined Collections

The overview introduced properties and listed the meaningful combinations of these
properties that result in consistently defined collection interfaces forming a
differentiated offering. In the following sections, the semantics of each combinatio
will be described in more detail and demonstrated by an example.

17.3.1 Combined Collections Usage Samples

Bag, SortedBag

A Bag is an unordered collection of zero or more elements with no key. Multiple
elements are supported. As element equality is supported, operations which requi
capability “test of element equality” (e.g., test on containment) can be offered.

Example: The implementation of a text file compression algorithm. The algorithm
finds the most frequently occurring words in sample files. During compression, th
words with a high frequency are replaced by a code (for example, an escape character
followed by a one character code). During re-installation of files, codes are replace
the respective words.

Several types of collections may be used in this context. A Bag can be used during th
analysis of the sample text files to collect isolated words. After the analysis phase
may ask for the number of occurrences for each word to construct a structure with the
255 words with the highest word counts. A Bag offers an operation for this, you do
have to “count by hand,” which is less efficient. To find the 255 words with the high
word count, a SortedRelation is the appropriate structure (see “Relation,
SortedRelation” on page 17-13). Finally, a Map may be used to maintain a mappin
words to codes and vice versa. (See “Map, SortedMap” on page 17-12).

A SortedBag (as compared to a Bag) exposes and maintains a sorted order of the
elements based on a user-defined element comparison. Maintained elements in a
order makes sense when printing or displaying the collection content in sorted ord
17-10 CORBAservices: Common Object Services Specification

17

t

orted,
 for

correct

is
hat
a test

sing
nal
 more
e
est a
ser
he
ense

he
EqualitySequence

An EqualitySequence is an ordered collection of elements with no key. There is a firs
and a last element. Each element, except the last one, has a next element and each
element, except the first one, has a previous element. As element equality is supp
all operations that rely on the capability “test on element equality” can be offered,
example, locating an element or test for containment.

Example: An application that arranges wagons to a train. The order of the wagons is
important. The trailcar has to be the first wagon, the first class wagons are arranged
right behind the trailcar, the restaurant has to be arranged right after the first class and
before the second class wagons, and so on. To check whether the wagon has the
capacity, you may want to ask: “How many open-plan carriages are in the train?” or
“Is there a bistro in the train already?”

Heap

A Heap is an unordered collection of zero or more elements without a key. Multiple
elements are supported. No element equality is supported.

Example: A “trash can” on a desktop which memorizes all objects moved to the
trashcan as long as it is not emptied. Whenever you move an object to the trashcan it
added to the heap. Sometimes you move an object accidentally to the trashcan. In t
case, you iterate in some order through the trashcan to find the object - not using
on element equality. When you find it, you remove it from the trashcan. Sometimes
you empty the trashcan and remove all objects from the trashcan.

KeyBag, KeySortedBag

A KeyBag is an unordered collection of zero or more elements that have a key.
Multiple keys are supported. As no element equality is assumed, operations such as
“test on collection equality” or “set theoretical operation” are not offered.

A KeySortedBag is sorted by key. In addition to the operations supported for a
KeyBag, all operations related to ordering are offered. For example, operations
exploiting the ordering such as “set_to_previous / set_to_next” and “access via
position” are supported.

A license server maintaining floating licenses on a network may be implemented u
a KeyBag to maintain the licenses in use. The key may be the LicenseId and additio
element data may be, for example, the user who requested the license. As usual,
than one floating license is available per product; therefore, many licenses for the sam
product may be in use. A LicenseId may occur more than once. A user may requ
license multiple times, it may also occur that the same LicenseId with the same u
occurs multiple times. If a user of the product requests and receives the license, t
LicenseId, together with the request data, is added to the licenses in use. If the lic
is released, it is deleted from the Bag of licenses in use. Sometimes you may want to
ask for the number of licenses of a product in use, that is ask for the number of t
licenses in use with a given LicenseId.
Object Collection Service: v1.0 Combined Collections July 1997 17-11

17

not

ity).

eys

card

nd

t

ted.

t is

, the
Access to licenses in use is via the key LicenseId. This sample application does
require operations such as testing two collections for equality or set theoretical
operations on collections. It is not exploiting element equality; therefore, it can use a
KeyBag instead of a Relation (which would force the user to define element equal

If you want to list the licenses in use with the users holding the licenses sorted by
LicenseId, you could make use of a KeySortedBag instead of a KeyBag.

KeySet, KeySortedSet

A KeySet is an unordered collection of zero or more elements that have a key. K
must be unique. Defined element equality is not assumed; therefore, operations and
semantics which require the capability “element equality test" are not offered.

A KeySortedSet is sorted by key. In addition to the operations supported for a KeySet,
all operations related to ordering are offered. For example, operations exploiting the
ordering, such as “set_to_previous / set_to_next” and “access via position” are
supported.

Example: A program that keeps track of cancelled credit card numbers and the
individuals to whom they are issued. Each card number occurs only once and the
collection is sorted by card number. When a merchant enters a customer’s card number
into the point-of-sales terminal, the collection is checked to determine whether the
number is listed in the collection of cancelled cards. If it is found, the name of the
individual is shown and the merchant is given directions for contacting the card
company. If the card number is not found, the transaction can proceed because the card
is valid. A list of cancelled cards is printed out each month, sorted by card number, a
distributed to all merchants who do not have an automatic point-of-sale terminal
installed.

Map, SortedMap

A Map is an unordered collection of zero or more elements that have a key. Keys mus
be unique. As defined, element equality is assumed access via the element valueand
all operations which need to test on element equality, such as a test on containment for
an element, test for equality, and set theoretical operations can be offered for maps.

A SortedMap is sorted by key. In addition to the operations supported for a Map, all
operations related to ordering are offered. For example, operations exploiting the
ordering like “set_to_previous / set_to_next” and “access via position” are suppor

Example: Maintaining nicknames for your mailing facility. The key is the nickname.
Mailing information includes address, first name, last name, etc. Nicknames are
unique; therefore, adding a nickname/mailing inforation entry with a nickname tha
already available should fail, if the mailing information to be added is different from
the available information. If it is exactly the same information, it should just be
ignored. You may define more than one nickname for the same person; therefore
same element data may be stored with different keys. If you want to update address
17-12 CORBAservices: Common Object Services Specification

17

 To

wo

on to

 and

e, and

uct.

t
information for a given nickname, use the replace_element_with_key() operation.
create a new nickname file from two existing files, use a union operation which
assumes element equality to be defined.

Relation, SortedRelation

A Relation is an unordered collection of zero or more elements with a key. Multiple
keys are supported. As defined element equality is assumed, test for equality of t
collections is offered as well as the set theoretical operations.

A SortedRelation is sorted by key. In addition to the operations supported for a
Relation, all operations related to ordering are offered. For example, operations that
exploit ordering such as “set_to_previous / set_to_next” and “access via position” are
supported.

A SortedRelation may be used in the text file compression algorithm mentioned
previously in the Bag, Sorted Bag example to find the 255 words with the highest
frequency. The key is the word count and the additional element data is the word. As
words may have equal counts, multiple keys have to be supported. The ordering with
respect to the key is used to find the 255 highest keys.

Set, SortedSet

A set is an unordered collection of zero or more elements without a key. Element
equality is supported; therefore, operations that require the capability “test on element
equality” such as intersection or union can be offered.

A SortedSet is sorted with respect to a user-defined element comparison. In additi
the operations supported for a Set, all operations related to ordering are offered. For
example, operations that exploit ordering such as “set_to_previous / set_to_next”
“access via position” are supported.

Example: A program that creates a packing list for a box of free samples to be sent to
a warehouse customer. The program searches a database of in-stock merchandis
selects ten items at random whose price is below a threshold level. Each item is added
to the set. The set does not allow an item to be added if it already is present in the
collection; this ensures that a customer does not get two samples of a single prod

Sequence

A Sequence is an ordered collection of elements without a key. There is a first and a
last element. Each element (except the last one) has a next element and each element
(except the first one) has a previous element. No element equality is supported;
therefore, multiples may occur and access to elements via the element value is no
possible. Access to elements is possible via position/index.
Object Collection Service: v1.0 Combined Collections July 1997 17-13

17

ed by

cific

n.

 no

ot

ntil

ents

 and

o
Example: A music editor. The Sequence is used to maintain tokens representing the
recognized notes. The order of the notes is obviously important for further processing
of the melody. A note may occur more than once. During editing, notes are access
position and are removed, added, or replaced at a given position. To print the result,
you may iterate over the sequence and print note by note.

A Sequence may also be used to represent how a book is constructed from diverse
documents. It is obvious that ordering is important. It may be the case that a spe
document is used multiple times within the same book (for example, a specific
graphic). Reading the book, you may want to access a specific document by positio

17.4 Restricted Access Collections

17.4.1 Restricted Access Collections Usage Samples

Deque

A double ended queue may be considered as a sequence with restricted access. It is an
ordered collection of elements without a key and no element equality. As there is
element equality, an element value may occur multiple times. There is a first and a last
element. You can only add an element as first or last element and only remove the first
or the last element from the Deque.

A Deque may be used in the implementation of a pattern matching algorithm where
patterns are expressed as regular expressions. Such an algorithm can be described as a
non-deterministic finite state machine constructed from the regular expression. The
implementation of the regular-pattern matching machine may use a deque to keep track
of the states under consideration. Processing a null state requires a stack-like data
structure - one of two things to be done is postponed and put at the front of the n
being postponed forever list. Processing the other states requires a queue-like data
structure, since you do not want to examine a state for the next given character u
you are finished with the current character. Combining the two characteristics results in
a Deque.

PriorityQueue

A PriorityQueue may be considered as a KeySortedBag with restricted access. It is an
ordered collection with zero or more elements. Multiple key values are supported. As
no element equality is defined, multiple element values may occur. Access to elem
is via key only and sorting is maintained by key. Accessing a PriorityQueue is
restricted. You can add an element relative to the ordering relation defined for keys
remove only the first element (e.g., the one with highest priority).

PriorityQueues may be used for implementing a printer queue. A print job’s priority
may depend on the number of pages, time of queuing, and other characteristics. This
priority is the key of the print job. When a user adds a print job it is added relative t
its priority. The printer daemon always removes the job with the highest priority from
the queue.
17-14 CORBAservices: Common Object Services Specification

17

eque)

n
s they
ueues

r
sion.

ration

PriorityQueues also may be used as special queues in workflow management to
prioritize work items.

Queue

A queue may be considered as a sequence with restricted access. It is an ordered
collection of elements with no key and no element equality. There is a first and a last
element. You can only add (enque) an element as last element and only remove (d
the first element from the Queue. That is, a queue exposes FIFO behavior.

You would use a queue in tree traversal to implement a breadth first search algorithm.

Queues may be used for the implementation of all kinds of buffered communicatio
where it is important that the receiving side handles messages in the same order a
were sent. Queues may be used in workflow management environments where q
collect messages waiting for processing.

Stack

A Stack may be considered as a sequence with restricted access. It is an ordered
collection of elements with no key and no element equality. There is a first and a last
element. You can only add (push) an element as last element (at the top) and only
remove (pop) the last element from the Stack (from the top). That is, a Stack exposes
LIFO behavior. The classical application for a stack is the simulation of a calculato
with Reverse Polish Notation. The calculator engine may get an arithmetic expres
Parsing the expression operands are pushed on to the stack. When an operator is
encountered, the appropriate number of operands is popped off the stack, the ope
performed, and the result pushed on the stack.

A Stack also may be used in the implementation of a window manager to maintain the
order in which the windows are superimposed.

17.5 The CosCollection Module

17.5.1 Interface Hierarchies

Collection Interface Hierarchies

The collection interfaces of the Collection Services are organized in two separate
hierarchies, as shown in Figure 17-1 on page 17-17 and Figure 17-2 on page 17-17.
The inner nodes of the hierarchy may be thought of as abstract views. They represent
the basic properties and their combinations. Leaf nodes may be thought of as concrete
interfaces for which implementations are provided and from which instances can be
created via a collection factory. The organization of the interfaces as a hierarchy
enables reuse and the polymorphic usage of the collections from typed languages such
as C++.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-15

17

ts,
Each abstract view is defined in terms of operations and their behavior. The most
abstract view of a collection is a container without any ordering or any specific
element or key properties. This view allows adding elements to and iterating over the
collection.

In addition to the common collection operations, collections whose elements define
equality or key equality provide operations for locating and retrieving elements by a
given element or key value.

Ordered collections provide the notion of well-defined explicit positioning of elemen
either by element key ordering relation or by positional element access.

Sorted collections provide no further operations, but introduce a new semantics;
namely, that their elements are sorted by element or key value. These properties are
combined through multiple inheritance.

The fourth property, uniqueness/multiplicity of elements and keys, is not represented
by a separate abstract view for combination with other properties. This was done to
reduce the complexity of the hierarchy. Instead, operations related to multiplicity are
provided in the base interface from which the interface specializations with multiplicity
are derived.
17-16 CORBAservices: Common Object Services Specification

17
Figure 17-1 Collections Interfaces Hierarchy

The restricted access collections form their own hierarchy as shown in Figure 17-2 on
page 17-17. This abstract view defines the operations that all restricted access
collections have in common.

Figure 17-2 Restricted Access Collections Interface Hierarchy

Collection

Equality
Collection

Sorted
Collection

Ordered
Collection

Sequential
Collection

Equality
Key

Collection

EqualityKey Sorted
 Collection Sorted

Collection

Equality
Key Sorted
Collection

Key Set Map

Key Bag Relation

Set

Bag

Key Sorted
Set

KeySorted
Bag

Sorted

Sorted
Relation

Sorted Set

Sorted Bag
Equality

Sequence

Heap Sequence Map

Key
Collection

Equality
Sequential
 Collection

Stack Queue Priority
Queue

Restricted

Collection

Deque

Access
Object Collection Service: v1.0 The CosCollection Module July 1997 17-17

17

in
f

s

fined
.

Iterator Hierarchy

The iterator interface hierarchy parallels the Collection interface hierarchy shown
Figure 17-3 on page 17-18. The defined interfaces support the fine-grain processing o
very large collections via an iterator only and support a generic programming model
similar to what was introduced with ANSI STL to the C++ world. Concepts like
constness of iterators, reverse iterators, bulk and combined operations are offered to
strengthen the support for the generic programming model.

Figure 17-3 Iterator Interface Hierarchy

The top level Iterator interface represents a generic iterator that can be used for
iteration over and manipulation of all collections independent of their type. The top
level iterator allows you to add, retrieve, replace, and remove elements. There are
operations to clone, assign, and test iterators for equality. There are tests on the iterator
state and you can check whether an iterator is const, created for a given collection, or
created for the same collection as another iterator.

The OrderedIterator interface adds those operations which are useful on collection
with an explicit notion of ordering (all those collections inheriting from the
OrderedCollection interface). An ordered iterator can be moved forward and
backward, set to a position, and its position can be computed. Only ordered iterators
can be used with “reverse” semantics. The SequentialIterator is used with
sequentially ordered collections where it is possible to add elements at a user-de
position so that the iterator offers the capability to add elements relative to its position

Iterator

Equality
Iterator

Sorted
Iterator

Ordered
Iterator

Sequential

Equality
Key

Iterator

EqualityKey Sorted Sorted
Iterator

Equality
Key Sorted

Key
Iterator

Equality
Sequential
 Iterator

 Iterator

Iterator

Iterator
17-18 CORBAservices: Common Object Services Specification

17

isted
The KeyIterator and EqualityIterator interface add operations for positioning an
iterator by key or element value. The sorted versions of these interfaces add respective
backward movements and the capability to define lower and upper bounds in sorted
collections.

An iterator is always created for a collection using the collection as iterator factory.
Each iterator type is supported by each collection type. The Iterators and the
Collections that are supported by all interfaces derived from those collections are l
in Table 17-2 on page 17-19.

Table 17-2 Iterators and Collections

17.5.2 Exceptions and Type Definitions

The following exceptions are used by the subsequently defined interfaces.

module CosCollection {

// Type definitions

typedef sequence<any> AnySequence;

typedef string Istring;

struct NVPair {Istring name; any value;};

typedef sequence<NVPair> ParameterList;

// Exceptions

exception EmptyCollection{};

Supported by all interfaces derived from:

Iterator Collection

OrderedIterator OrderedCollection

SequentialIterator SequentialCollection

EqualitySequentialIterator EqualitySequentialCollection

KeyIterator KeyCollection

EqualityIterator EqualityCollection

EqualityKeyIterator EqualityKeyCollection

SortedIterator SortedCollection

KeySortedIterator KeySortedCollection

EqualitySortedIterator EqualitySortedCollection

EqualityKeySortedIterator EqualityKeySortedCollection
Object Collection Service: v1.0 The CosCollection Module July 1997 17-19

17

n
exception PositionInvalid{};

enum IteratorInvalidReason {is_invalid, is_not_for_collection,
is_const};

exception IteratorInvalid {IteratorInvalidReason why;};

exception IteratorInBetween{};

enum ElementInvalidReason {element_type_invalid,
positioning_property_invalid, element_exists};

exception ElementInvalid {ElementInvalidReason why;};

exception KeyInvalid {};

exception ParameterInvalid {unsigned long which; Istring why;};

AnySequence

A type definition for a sequence of values of type any used in bulk operations.

Istring

A type definition used as place holder for a future IDL internationalized string data
type.

ParameterList

A sequence of name-value pairs of type NVPair and used as a generic parameter list i
a generic collection creation operation.

EmptyCollection

Raised when an operation to remove an element is invoked on an empty collection.

PositionInvalid

Raised when an operation on an ordered collection passes a position out of the allowed
range, that is less than 1 or greater than the number of elements in the collections.

IteratorInvalid

Raised when an operation uses an iterator pointing to nothing, that is, using an invalid
iterator (in_valid) or when an operation uses an iterator which was not created for the
collection (is_not_for_collection) or if one tries to modify a collection via an iterator
that is created with const designation (is_const).

IteratorInBetween

Raised when an operation uses an iterator in a way that does not allow the state in-
between such as all “..._at” operations.
17-20 CORBAservices: Common Object Services Specification

17

ons

nt
ElementInvalid

Raised when one of the operations passes an element that is for one of several reasons
invalid. It is raised

• when the element is not of the expected element type (element_type_invalid).

• if one tries to replace an element by another element changing the positioning
property (positioning_property_invalid).

• when an element is added to a Map and the key already exists (element_exists).

KeyInvalid

Raised when one of the operations passes a key that is not of the expected type.

Paramete rInvalid

Raised when a parameter passed to the generic collection creation operation of the
generic CollectionFactory is invalid.

17.5.3 Abstract Collection Interfaces

The Collection Interface

The Collection interface represents the most abstract view of a collection. Operati
defined in this top level interface can be supported by all collection interfaces in the
hierarchy. Each concrete collection interface offers the appropriate operation semaics
dependent on the collection properties. It defines operations for:

• adding elements

• removing elements

• replacing elements

• retrieving elements

• inquiring collection information

• creating iterators

// Collection

interface Iterator;

interface Command;

interface Collection {

// element type information

readonly attribute CORBA::TypeCode element_type;
Object Collection Service: v1.0 The CosCollection Module July 1997 17-21

17
// adding elements

boolean add_element (in any element) raises (ElementInvalid);

boolean add_element_set_iterator (in any element, in Iterator where)
raises (IteratorInvalid, ElementInvalid);

void add_all_from (in Collection collector) raises (ElementInvalid);

// removing elements

void remove_element_at (in Iterator where) raises (IteratorInvalid,
IteratorInBetween);

unsigned long remove_all ();

// replacing elements

void replace_element_at (in Iterator where, in any element)
raises(IteratorInvalid, IteratorInBetween, ElementInvalid);

// retrieving elements

boolean retrieve_element_at (in Iterator where, out any element)
raises (IteratorInvalid, IteratorInBetween);

// iterating over the collection

boolean all_elements_do (in Command what) ;

// inquiring collection information

unsigned long number_of_elements ();

boolean is_empty ();

// destroying collection

void destroy();

// creating iterators

Iterator create_iterator (in boolean read_only);

};

Type checking information

readonly attribute CORBA::TypeCode element_type;

Specifies the element type expected in the collection. See also “The Operations
Interface” on page 17-118.
17-22 CORBAservices: Common Object Services Specification

17

ady

n
e

ady

n
e
Adding elements

boolean add_element (in any element) raises (ElementInvalid);

Description

Adds an element to the collection. The exact semantics of the add operations
depends on the properties of the concrete interface derived from the Collection that
the collection is an instance of.

If the collection supports unique elements or keys and the element or key is alre
contained in the collection, adding is ignored. In sequential collections, the element
is always added as last element. In sorted collections, the element is added at a
position determined by the element or key value.

If the collection is a Map and contains an element with the same key as the give
element, then this element has to be equal to the given element; otherwise, th
exception ElementInvalid is raised.

Return value

Returns true if the element is added.

Exceptions

The element must be of the expected type; otherwise, the exception ElementInvalid
is raised.

Side effects

All iterators keep their state.

boolean add_element_set_iterator(in any element, in Iterator where) raises
(IteratorInvalid, ElementInvalid);

Description

Adds an element to the collection and sets the iterator to the added element. The
exact semantics of the add operations depends on the properties of the concrete
interface derived from the Collection that the collection is an instance of.

If the collection supports unique elements or keys and the element or key is alre
contained in the collection, adding is ignored and the iterator is just set to the
element or key already contained. In sequential collections, the element is always
added as last element. In sorted collections, the element is added at a position
determined by the element or key value.

If the collection is a Map and contains an element with the same key as the give
element, then this element has to be equal to the given element; otherwise, th
exception ElementInvalid is raised.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-23

17
Return value

Returns true if the element is added.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

Side effects

All other iterators keep their state.

 void add_all_from (in Collection elements) raises (ElementInvalid);

Adds all elements of the given collection to this collection. The elements are added in
the iteration order of the given collection and consistent with the semantics of the add
operation. Essentially, this operation is a sequence of add operations.

Removing elements

void remove_element_at (in Iterator where) raises(IteratorInvalid);

Description

Removes the element pointed to by the given iterator. The given iterator is set to in-
between.

Exceptions

The iterator must belong to the collection and must point to an element of the
collection; otherwise, the exception IteratorInvalid is raised.

Side effects

Iterators pointing to the removed element go in-between. Iterators which do not
point to the removed element keep their state.

 unsigned long void remove_all();

Description

Removes all elements from the collection.

Return value

Returns the number of elements removed.
17-24 CORBAservices: Common Object Services Specification

17

to

t
laced

tput
Side effects

Iterators pointing to removed elements go in-between. All other iterators keep their
state.

Replacing elements

void replace_element_at (in Iterator where, in any element) raises
(IteratorInvalid, IteratorInBetween, ElementInvalid)

Description

Replaces the element pointed to by the iterator by the given element. The given
element must have the same positioning property as the replaced element.

• For collections organized according to element properties such as ordering
relation, the replace operation must not change this element property.

• For key collections, the new key must be equal to the key replaced.

• For non-key collections with element equality, the new element must be equal
the replaced element as defined by the element equality relation.

Sequential collections have a user-defined positioning property and heaps do no
have positioning properties. Element values in sequences and heaps can be rep
freely.

Exceptions

The given element must not change the positioning property; otherwise, the
exception ElementInvalid is raised.

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The iterator must belong to the collection and must point to an element of the
collection; otherwise, the exception IteratorInvalid or IteratorInBetween is raised.

Retrieving elements

boolean retrieve_element_at (in Iterator where, out any element) raises
(IteratorInvalid, IteratorInBetween);

Description

Retrieves the element pointed to by the given iterator and returns it via the ou
parameter element.

Return value

Returns true if an element is retrieved.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-25

17

the

nt is
y of

).

 a

g
Exceptions

The given iterator must belong to the collection and must point to an element of
collection; otherwise, the exception IteratorInvalid or IteratorInBetween is raised.

Note – Whether a copy of the element is returned or the element itself depends on the
element type represented by the any. If it is an object, a reference to the object in the
collection is returned. If the element type is a non-object type, a copy of the eleme
returned. In case of element type object, do not manipulate the element or the ke
the element in the collection in a way that changes the positioning property of the
element.

Iterating over a collection

boolean all_elements_do (in Command what);

Description

Calls the “do_on()” operation of the given Command for each element of the
collection until the “do_on()” operation returns false. The elements are visited in
iteration order (see “The Command and Comparator Interface” on page 17-122

• The “do_on()” operation must not remove elements from or add elements to the
collection.

• The “do_on()” operation must not manipulate the element in the collection in
way that changes the positioning property of the element.

Return value

Returns true if the “do_on()” operation returns true for each element it is applied
to.

Inquiring collection information

The collection operations do have preconditions which when violated raise exceptions.
There are operations for testing those preconditions to enable the user to avoid raisin
exceptions.

 unsigned long number_of_elements ();

Return value

Returns the number of elements contained in the collection.

boolean is_empty ();

Return value

Returns true if the collection is empty.
17-26 CORBAservices: Common Object Services Specification

17

 not
Destroying a collection

void destroy();

Description

Destroys the collection. This includes:

• removing all elements from the collection

• destroying all iterators created for this collection

• destroying the instance of Operations passed at creation time to the collection
implementation.

Note – Removing elements in case of objects means removing object references,
destroying the collected objects.

Object references to iterators of the collections become invalid.

Creating iterators

Iterator create_iterator (in boolean read_only);

Creates and returns an iterator instance for this collection. The type of iterator that is
created depends on the interface type of this collection. The following table describes
the type of iterator that is created for the type of concrete collection.

Table 17-3Collection interfaces and the iterator interfaces supported

Ordered Collection Interfaces Supported Iterator Interface

Bag EqualityIterator

yes SortedBag EqualitySortedIterator

yes EqualitySequence EqualitySequentialIterator

Heap Iterator

KeyBag KeyIterator

yes KeySortedBag KeySortedIterator

KeySet KeyIterator

yes KeySortedSet KeySortedIterator

Map EqualityKeyIterator

yes SortedMap EqualityKeySortedIterator

Relation EqualityKeyIterator

yes Sequence SequentialIterator
Object Collection Service: v1.0 The CosCollection Module July 1997 17-27

17

tance
After creation, the iterator is initialized with the state invalid, that is, “pointing to
nothing.”

If the given parameter read_only is true, the iterator is created with const designation
(i.e., a trial to modify the collection content via this iterator is rejected and raises the
exception IteratorInvalid).

Note – Collections serve as factories for their iterator instances. An iterator is created
in the same address space as the collection for which it is created. An iterator ins
can only point to elements of the collection for which it was created.

The OrderedCollection Interface

interface OrderedIterator;

// OrderedCollection

interface OrderedCollection: Collection {

// removing elements

void remove_element_at_position (in unsigned long position) raises
(PositionInvalid);

void remove_first_element () raises (EmptyCollection);

void remove_last_element () raises (EmptyCollection);

// retrieving elements

boolean retrieve_element_at_position (in unsigned long position, out
any element) raises (PositionInvalid);

boolean retrieve_first_element (out any element) raises
(EmptyCollection);

boolean retrieve_last_element (out any element) raises
(EmptyCollection);

// creating iterators

OrderedIterator create_ordered_iterator(in boolean read_only, in
boolean reverse_iteration);

};

yes SortedRelation EqualityKeySortedIterator

Set EqualityIterator

yes SortedSet EqualitySortedIterator

Table 17-3Collection interfaces and the iterator interfaces supported

yes Sequence SequentialIterator
17-28 CORBAservices: Common Object Services Specification

17

.,

l
Ordered collections expose the ordering of elements in their interfaces. Elements can
be accessed at a position and forward and backward movements are possible (i.e
ordered collection can support ordered iterators). Ordering can be implicitly defined
via the ordering relationship of the elements or keys (as in sorted collections) or
ordering can be user-controlled (as in sequential collections).

In addition to those inherited from the Collection Interface, which all ordered
collections have in common, the OrderedCollection interface provides operations for

• removing elements,

• retrieving elements, and

• creating ordered iterators.

Removing elements

void remove_element_at_position (in unsigned long position) raises
(PositionInvalid);

Description

Removes the element from the collection at a given position. The first element of
the collection has position 1.

Exceptions

The value of "position" must be a valid position in the collection; otherwise, the
exception PositionInvalid is raised. A position is valid if it is greater than or equa
to 1 and less than or equal to number_of_elements().

Side effects

All iterators pointing to the removed element go in-between. Iterators that do not
point to the removed element keep their state.

void remove_first_element () raises (EmptyCollection);

Description

Removes the first element from the collection.

Exceptions

The collection must not be empty; otherwise, the exception EmptyCollection is
raised.

Side effects

All iterators pointing to the removed element go in-between. Iterators that do not
point to the removed element keep their state.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-29

17

he

eter
void remove_last_element () raises (EmptyCollection);

Description

Removes the last element from the collection.

Exceptions

The collection must not be empty; otherwise, the exception EmptyCollection is
raised.

Side effects

All iterators pointing to the removed element go in-between. Iterators that do not
point to the removed element keep their state.

Retrieving elements

boolean retrieve_element_at_position (in unsigned long position, out any
element) raises (PositionInvalid);

Description

Retrieves the element at the given position in the collection and returns it via t
output parameter element. Position 1 specifies the first element.

Return value

Returns true if an element is retrieved.

Exceptions

The value of "position" must be a valid position in the collection; otherwise, the
exception PositionInvalid is raised.

boolean retrieve_first_element (out any element) raises (EmptyCollection);

Description

Retrieves the first element in the collection and returns it via the output param
element.

Return value

Returns true if an element is retrieved.

Exceptions

The collection must not be empty; otherwise, the exception EmptyCollection is
raised.
17-30 CORBAservices: Common Object Services Specification

17

boolean retrieve_last_element (out any element) raises (EmptyCollection);

Description

Retrieves the last element in the collection and returns it via the output
parameter element.

Return value

Returns true if an element is retrieved.

Exceptions

The collection must not be empty; otherwise, the exception EmptyCollection is
raised.

Creating iterators

OrderedIterator create_ordered_iterator (in boolean read_only, in boolean
reverse_iteration);

Description

Creates and returns an ordered iterator instance for this collection.

Which type of ordered iterator actually is created depends on the interface type of
this collection. Table 17-1 on page 17-4 describes which type of ordered iterator is
created for which type of concrete ordered collection.

After creation, the iterator is initialized with the state invalid, that is, “pointing to
nothing.”

Exceptions

If the given parameter read_only is true, the iterator is created with const
designation (i.e., a trial to modify the collection content via this iterator is
rejected and raises the exception IteratorInvalid).

Side effects

If the given parameter reverse_iteration is true, the iterator is created with reverse
iteration semantics. Only ordered iterators can be created with reverse semantics.

The SequentialCollection Interface

interface Comparator;

interface SequentialCollection: OrderedCollection {

// adding elements

void add_element_as_first (in any element) raises (ElementInvalid);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-31

17

ent is
void add_element_as_first_set_iterator (in any element, in Iterator
where) raises (ElementInvalid, IteratorInvalid);

void add_element_as_last (in any element) raises (ElementInvalid);

void add_element_as_last_set_iterator (in any element, in Iterator
where) raises (ElementInvalid, IteratorInvalid);

void add_element_as_next (in any element, in Iterator where) raises
(ElementInvalid, IteratorInvalid);

void add_element_as_previous (in any element, in Iterator where)
raises (ElementInvalid,IteratorInvalid);

void add_element_at_position (in unsigned long position, in any
element) raises(PositionInvalid, ElementInvalid);

void add_element_at_position_set_iterator (in unsigned long
position, in any element, in Iterator where) raises
(PositionInvalid, ElementInvalid, IteratorInvalid);

// replacing elements

void replace_element_at_position (in unsigned long position, in any
element) raises (PositionInvalid, ElementInvalid);

void replace_first_element (in any element) raises (ElementInvalid,
EmptyCollection);

void replace_last_element (in any element) raises (ElementInvalid,
EmptyCollection);

// reordering elements

void sort (in Comparator comparison);

void reverse();

};

Sequential collections expose user-controlled sequential ordering. Determine where
elements are added by comparing to sorted collections where the “where an elem
added“ is determined implicitly by the defined element or key comparison.

The SequentialCollection interface adds all those operations to the
OrderedCollection interface. “The SequentialCollection Interface” on page 17-31
describes operators that are unique for positional element access for

• adding elements,

• replacing elements, and

• re-ordering elements.

Adding elements

void add_element_as_first (in any element) raises (ElementInvalid);
17-32 CORBAservices: Common Object Services Specification

17
Description

Adds the element to the collection as the first element in sequential order.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All iterators keep their state.

void add_element_as_first_set_iterator (in any element, in Iterator where)
raises (ElementInvalid,IteratorInvalid);

Description

Adds the element to the collection as the first element in sequential order and
sets the iterator to the added element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

Side effects

All iterators keep their state.

void add_element_as_last (in any element) raises (ElementInvalid);

Description

 Adds the element to the collection as the last element in sequential order.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All iterators keep their state.

void add_element_as_last_set_iterator (in any element, in Iterator where)
raises (ElementInvalid,IteratorInvalid);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-33

17

ed to
Description

Adds the element to the collection as the last element in sequential order. Sets the
iterator to the added element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

Side effects

All other iterators keep their state.

void add_element_as_next(in any element, in Iterator where) raises
(ElementInvalid, IteratorInvalid);

Description

Adds the element to the collection after the element pointed to by the given iterator.
Sets the iterator to the added element. If the iterator is in the state in-between, the
element is added before the iterator’s “potential next” element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The iterator must belong to the collection and be valid; otherwise, the exception
IteratorInvalid is raised.

Side effects

All iterators keep their state.

void add_element_as_previous (in any element, in Iterator where) raises
(IteratorInvalid, ElementInvalid);

Description

Adds the element to the collection as the element previous to the element point
by the given iterator. Sets the iterator to the added element. If the iterator is in the
state in-between, the element is added after the iterator’s “potential previous”
element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.
17-34 CORBAservices: Common Object Services Specification

17

 the
g

The iterator must belong to the collection and must be valid; otherwise, the
exception IteratorInvalid is raised.

Side effects

All iterators keep their state.

void add_element_at_position (in unsigned long position, in any element)
raises(PositionInvalid, ElementInvalid);

Description

Adds the element at the given position to the collection. If an element exists at
given position, the new element is added as the element preceding the existin
element.

Exceptions

The position must be valid (i.e., greater than or equal to 1 and less than or equal to
number_of_elements() +1); otherwise, the exception PositionInvalid is raised.

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All iterators keep their state.

void add_element_at_position_set_iterator (in unsigned long position, in any
element, in Iterator where) raises (PositionInvalid, ElementInvalid
IteratorInvalid);

Description

Adds the element at the given position to the collection and sets the iterator to the
added element. If an element exists at the given position, the new element is added
as the element preceding the existing element.

Exceptions

The position must be valid (i.e., greater than or equal to 1 and less than or equal to
number_of_elements() +1); otherwise, the exception PositionInvalid is raised.

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The iterator must belong to the collection; otherwise, the exception IteratorInvalid
is raised.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-35

17
Side effects

All iterators keep their state.

Replacing elements

void replace_element_at_position (in unsigned long position, in any
element) raises (PositionInvalid, ElementInvalid);

Description

Replaces the element at a given position with the given element. The given position
must be valid (i.e., greater than or equal to 1 and less than or equal to
number_of_elements()).

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

void replace_first_element (in any element) raises (ElementInvalid,
EmptyCollection);

Description

Replaces the first element with the given element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The collection must not be empty; otherwise, the exception EmptyCollection is
raised.

void replace_last_element (in any element) raises (ElementInvalid,
EmptyCollection);

Description

Replaces the last element with the given element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The collection must not be empty; otherwise, the exception EmptyCollection is
raised.
17-36 CORBAservices: Common Object Services Specification

17

Re-ordering elements

void sort (in Comparator comparison);

Description

Sorts the collection so that the elements occur in ascending order. The relation of
two elements is defined by the “compare” method, which a user provides when
implementing an interface derived from Comparator. See “The Command and
Comparator Interface” on page 17-122.

Side effects

All iterators in the state in-between go invalid.

All other iterators keep their state.

void reverse ();

Description

Orders elements in reverse order.

Side effects

All iterators in the state in-between go invalid.

All other iterators keep their state.

The SortedCollection Interface

interface SortedCollection: OrderedCollection{};

Sorted collections currently do not provide further operations but define a more
specific behavior; namely, that the elements or their keys are sorted with respect to a
user-defined element or key compare. See “The OrderedCollection Interface” on
page 17-28.

The EqualityCollection Interface

interface EqualityCollection: Collection {

// testing element containment

boolean contains_element (in any element) raises(ElementInvalid);

boolean contains_all_from (in Collection collector)
raises(ElementInvalid);

// adding elements
Object Collection Service: v1.0 The CosCollection Module July 1997 17-37

17
boolean locate_or_add_element (in any element) raises
(ElementInvalid);

boolean locate_or_add_element_set_iterator (in any element, in
Iterator where) raises (ElementInvalid, IteratorInvalid);

// locating elements

boolean locate_element (in any element, in Iterator where) raises (
ElementInvalid, IteratorInvalid);

boolean locate_next_element (in any element, in Iterator where)
raises (ElementInvalid, IteratorInvalid);

boolean locate_next_different_element (in Iterator where) raises
(IteratorInvalid, IteratorInBetween);

// removing elements

boolean remove_element (in any element) raises (ElementInvalid);

unsigned long remove_all_occurrences (in any element) raises
(ElementInvalid);

// inquiring collection information

unsigned long number_of_different_elements ();

unsigned long number_of_occurrences (in any element)
raises(ElementInvalid);

};

Collections whose elements define equality introduce operations which exploit the
defined element equality. These operations are for finding elements by element value
(and adding if not found), for testing containment of a given element, and inquiring the
collection about how many elements of a given value were collected.

Testing element containment

boolean contains_element (in any element) raises (ElementInvalid);

Return value

Returns true if the collection contains an element equal to the given element.

Exceptions

The given elements must be of the expected type; otherwise, the exception
ElementInvalid is raised.

boolean contains_all_from (in Collection collector) raises (ElementInvalid);
17-38 CORBAservices: Common Object Services Specification

17

ch
Return value

Returns true if all the elements of the given collection are contained in the
collection. The definition of containment is given in “contains_element.”

Exceptions

The elements in the given collection must be of the expected type; otherwise, the
exception ElementInvalid is raised.

Adding elements

boolean locate_or_add_element (in any element) raises (ElementInvalid);

Description

Locates an element in the collection that is equal to the given element. If no su
element is found, the element is added as described in add.

Return value

Returns true if the element was found.

Returns false if the element had to be added.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All iterators keep their state.

boolean locate_or_add_element_set_iterator (in any element, in Iterator where)
raises (ElementInvalid, IteratorInvalid);

Description

Locates an element in the collection that is equal to the given element. If no
such element is found, the element is added as described in add. The iterator is
set to the found or added element.

Return value

Returns true if the element was found.

Returns false if the element had to be added.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-39

17

e

iven

to be
Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

Side effects

All other iterators keep their state.

Locating elements

boolean locate_element (in any element, in Iterator where) raises
(ElementInvalid, IteratorInvalid);

Description

Locates an element in the collection that is equal to the given element. Sets th
iterator to point to the element in the collection, or invalidates the iterator if no such
element exists. If the collection contains several such elements, the first element in
iteration order is located.

Return value

Returns true if an element is found.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The iterator must belong to the collection; otherwise, the exception IteratorInvalid
is raised.

Side effects

All iterators keep their state.

boolean locate_next_element (in any element, in Iterator where) raises
(ElementInvalid, IteratorInvalid);

Description

Locates the next element in iteration order in the collection that is equal to the g
element, starting at the element next to the one pointed to by the given iterator. Sets
the iterator to point to the located element. The iterator is invalidated if the end of
the collection is reached and no more occurrences of the given element are left
visited. If the iterator is in the state in-between, locating is started at the iterator’s
“potential next” element.
17-40 CORBAservices: Common Object Services Specification

17

ted
ator

;

h
Return value

Returns true if an element was found.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The iterator must belong to the collection and must be valid; otherwise, the
exception IteratorInvalid is raised.

boolean locate_next_different_element (in Iterator where) raises
(IteratorInvalid, IteratorInBetween);

Description

Locates the next element in iteration order that is different from the element poin
to by the given iterator. If no more elements are left to be visited, the given iter
will no longer be valid.

Return value

Returns true if the next different element was found.

Exception

The iterator must belong to the collection and point to an element of the collection
otherwise, the exception IteratorInvalid or IteratorInBetween is raised.

Removing elements

boolean remove_element (in any element) raises (ElementInvalid);

Description

Removes an element in the collection that is equal to the given element. If no suc
element exists, the collection remains unchanged. In collections with non-unique
elements, an arbitrary occurrence of the given element will be removed.

Return value

Returns true if an element was removed.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

If an element was removed, all iterators pointing to this element go in-between.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-41

17
All other iterators keep their state.

unsigned long remove_all_occurrences (in any element) raises
(ElementInvalid);

Description

Removes all elements from the collection that are equal to the given element and
returns the number of elements removed.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All iterators pointing to elements removed go in-between.

All iterators keep their state.

Inquiring collection information

unsigned long number_of_different_elements ();

Return value

Returns the number of different elements in the collection.

unsigned long number_of_occurrences (in any element) raises
(ElementInvalid);

Return value

Returns the number of occurrences of the given element in the collection.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The KeyCollection Interface

interface KeyCollection: Collection {

// Key type information

readonly attribute CORBA::TypeCode key_type;

// testing containment
17-42 CORBAservices: Common Object Services Specification

17
boolean contains_element_with_key (in any key) raises(KeyInvalid);

boolean contains_all_keys_from (in KeyCollection collector)
raises(KeyInvalid);

// adding elements

boolean locate_or_add_element_with_key (in any element)
raises(ElementInvalid);

boolean locate_or_add_element_with_key_set_iterator (in any
element, in Iterator where) raises (ElementInvalid,
IteratorInvalid);

// adding or replacing elements

boolean add_or_replace_element_with_key (in any element)
raises(ElementInvalid);

boolean add_or_replace_element_with_key_set_iterator (in any
element, in Iterator where) raises (ElementInvalid,
IteratorInvalid);

// removing elements

boolean remove_element_with_key(in any key) raises(KeyInvalid);

unsigned long remove_all_elements_with_key (in any key)
raises(KeyInvalid);

// replacing elements

boolean replace_element_with_key (in any element)
raises(ElementInvalid);

boolean replace_element_with_key_set_iterator (in any element, in
Iterator where) raises (ElementInvalid, IteratorInvalid);

// retrieving elements

boolean retrieve_element_with_key (in any key, out any element)
raises (KeyInvalid);

// computing the keys

void key (in any element, out any key) raises (ElementInvalid);

void keys (in AnySequence elements, out AnySequence keys) raises
(ElementInvalid);

// locating elements

boolean locate_element_with_key (in any key, in Iterator where)
raises (KeyInvalid, IteratorInvalid);

boolean locate_next_element_with_key (in any key, in Iterator where)
raises (KeyInvalid, IteratorInvalid);

boolean locate_next_element_with_different_key (in Iterator where)
raises (IteratorInBetween, IteratorInvalid);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-43

17

ent

n

n.
// inquiring collection information

unsigned long number_of_different_keys ();

unsigned long number_of_elements_with_key (in any key)
raises(KeyInvalid);

};

A KeyCollection is a collection which offers associative access to its elements via a
key. All elements of such a collection are keyed elements (i.e., they do have a key
which is computed from the element value). How to compute the key from an elem
value is user-defined. A user specializes the Operations interface and implements the
operation key() as desired (see “The Operations Interface” on page 17-118). This
information is passed to the collection at creation time.

Type checking information

readonly attribute CORBA::TypeCode key_type;

Specifies the key type expected in the collection. See also “The Operations Interface”
on page 17-118.

Testing containment

boolean contains_element_with_key (in any key) raises (KeyInvalid);

Return value

Returns true if the collection contains an element with the same key as the give
key.

Exceptions

The given key has to be of the expected type; otherwise, the exception KeyInvalid is
raised.

boolean contains_all_keys_from (in KeyCollection collector) raises(KeyInvalid);

Return value

Returns true if all of the keys of the given collection are contained in the collectio

Exceptions

The keys of the given collection have to be of the expected type of this collection;
otherwise, the exception KeyInvalid is raised.
17-44 CORBAservices: Common Object Services Specification

17

uch

ts the
Adding elements

boolean locate_or_add_element_with_key (in any element)
raises(ElementInvalid);

Description

Locates an element with the same key as the key in the given element. If no s
element exists the element is added; otherwise, the collection remains unchanged.

Return value

Returns true if the element is located.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All iterators keep their state.

boolean locate_or_add_element_with_key_set_iterator (in any element, in
Iterator where) raises (ElementInvalid, IteratorInvalid);

Description

Locates an element with the same key as the key in the given element and se
iterator to the located elements (see locate_element_with_key()). If no such
element exists, the element is added and the iterator is set to the element added.

Return value

Returns true if the element is located.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

Side effects

All iterators keep their state.

boolean add_or_replace_element_with_key (in any element) raises
(ElementInvalid);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-45

17

given
Description

If the collection contains an element with the key equal to the key in the given
element, the element is replaced with the given element; otherwise, the given
element is added to the collection.

Return value

Returns true if the element was added.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All iterators keep their state.

boolean add_or_replace_element_with_key_set_iterator (in any element, in
Iterator where) raises (ElementInvalid, IteratorInvalid);

Description

If the collection contains an element with the key equal to the key in the given
element, the iterator is set to that element and the element is replaced with the
element; otherwise, the given element is added to the collection, and the iterator set
to the added element.

Return value

Returns true if the element was added.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

Side effects

All iterators keep their state.

Removing elements

boolean remove_element_with_key (in any key) raises (KeyInvalid);
17-46 CORBAservices: Common Object Services Specification

17

f no

ment.
Description

Removes an element from the collection with the same key as the given key. I
such element exists, the collection remains unchanged. In collections with non-
unique elements, an arbitrary occurrence of such an element will be removed.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

 Side effects

If an element was removed, all iterators pointing to the element go in-between.

All other iterators keep their state.

unsigned long remove_all_elements_with_key (in any key) raises(KeyInvalid);

Description

Removes all elements from the collection with the same key as the given key.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

Side effects

Iterators pointing to elements removed go in-between.

All other iterators keep their state.

Replacing elements

boolean replace_element_with_key (in any element) raises (ElementInvalid);

Description

Replaces an element with the same key as the given element by the given ele
If no such element exists, the collection remains unchanged. In collections with
non-unique elements, an arbitrary occurrence of such an element will be replaced.

Return value

Returns true if an element was replaced.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-47

17

ment,

meter
boolean replace_element_with_key_set_iterator (in any element, in Iterator
where) raises (ElementInvalid, IteratorInvalid);

Description

Replaces an element with the same key as the given element by the given ele
and sets the iterator to this element. If no such element exists, the iterator is
invalidated and the collection remains unchanged. In collections with non-unique
elements, an arbitrary occurrence of such an element will be replaced.

Return value

Returns true if an element was replaced.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

Computing keys

void key (in any element, out any key) raises(ElementInvalid);

Description

Computes the key of the given element and returns it via the output parameter key.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

void keys (in Any Sequence elements, out Any Sequence keys)
raises(ElementInvalid);

Description

Computes the keys of the given elements and returns them via the output para
keys.

Exceptions

The given elements must be of the expected type; otherwise, the exception
ElementInvalid is raised.
17-48 CORBAservices: Common Object Services Specification

17

the

re
Side effects

An implementation may rely on the key operation of a user supplied interface
derived from Operations. An instance of this interface is passed to a collection
at creation time and can be used in the collection implementation.

Locating elements

boolean locate_element_with_key (in any key, in Iterator where) raises
(KeyInvalid, IteratorInvalid);

Description

Locates an element in the collection with the same key as the given key. Sets
iterator to point to the element in the collection, or invalidates the iterator if no such
element exists.

If the collection contains several such elements, the first element in iteration order
is located.

Return value

Returns true if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

boolean locate_next_element_with_key (in any key, in Iterator where) raises
(KeyInvalid, IteratorInvalid);

Description

Locates the next element in iteration order with the key equal to the given key,
starting at the element next to the one pointed to by the given iterator. Sets the
iterator to point to the element in the collection. The given iterator is invalidated if
the end of the collection is reached and no more occurrences of such an element a
left to be visited. If the iterator is in the in-between state, locating starts at the
iterator’s “potential next” element.

Return value

Returns true if an element was found.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-49

17
Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

The given iterator must belong to the collection and must be valid; otherwise, the
exception IteratorInvalid is raised.

boolean locate_next_element_with_different_key (in Iterator where)
raises(IteratorInvalid, IteratorInBetween)

Description

Locates the next element in the collection in iteration order with a key different
from the key of the element pointed to by the given iterator. If no such element
exists, the given iterator is no longer valid.

Return value

Returns true if an element was found.

Exceptions

The given iterator must belong to the collection and must point to an element;
otherwise, the exception IteratorInvalid respectively IteratorInBetween is raised.

Inquiring collection information

unsigned long number_of_different_keys ();

Return value

Returns the number of different keys in the collection.

unsigned long number_of_elements_with_key (in any key) raises(KeyInvalid);

Return value

Returns the number elements with key specified.

Exceptions

The key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

The EqualityKeyCollection Interface

interface EqualityKeyCollection : EqualityCollection, KeyCollection{};
17-50 CORBAservices: Common Object Services Specification

17

 the
Description

This interface combines the interfaces representing the properties “key access” and
“element equality.” See “The EqualityCollection Interface” on page 17-37 and
“The KeyCollection Interface” on page 17-42.

The KeySortedCollection Interface

interface KeySortedCollection : KeyCollection, SortedCollection {

// locating elements

boolean locate_first_element_with_key (in any key, in Iterator
where) raises (KeyInvalid, IteratorInvalid);

boolean locate_last_element_with_key(in any key, in Iterator where)
raises (KeyInvalid, IteratorInvalid);

boolean locate_previous_element_with_key (in any key, in Iterator
where) raises (KeyInvalid, IteratorInvalid);

boolean locate_previous_element_with_different_key(in Iterator
where) raises (IteratorInBetween, IteratorInvalid);

};

This interface combines the interfaces representing the properties “key access” and
“ordering.” See “The KeyCollection Interface” on page 17-42 and “The
SortedCollection Interface” on page 17-37.

Locating elements

boolean locate_first_element_with_key (in any key, in Iterator where)
raises (KeyInvalid, IteratorInvalid);

Description

Locates the first element in iteration order in the collection with the same key as
given key. Sets the iterator to the located element, or invalidates the iterator if no
such element exists.

Return value

Returns true if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

boolean locate_last_element_with_key(in any key, in Iterator where) raises
(KeyInvalid, IteratorInvalid);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-51

17

 the
tor if

ey,

 and

Description

Locates the last element in iteration order in the collection with the same key as
given key. Sets the given iterator to the located element, or invalidates the itera
no such element exists.

Return value

Returns true if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

boolean locate_previous_element_with_key (in any key, in Iterator where)
raises (KeyInvalid, IteratorInvalid);

Description

Locates the previous element in iteration order with a key equal to the given k
beginning at the element previous to the one specified by the given
iterator and moving in reverse iteration order through the elements. Sets the
iterator to the located element or invalidates the iterator if no such element
exists. If the iterator is in the state in-between, locating begins at the iterator’s
“potential previous” element.

Return value

Returns true if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

The given iterator must belong to the collection and be valid; otherwise, the
exception IteratorInvalid is raised.

boolean locate_previous_element_with_different_key(in Iterator where) raises
(IteratorInBetween, IteratorInvalid);

Description

Locates the previous element in iteration order with a key different from the key of
the element pointed to, beginning at the element previous to the one pointed to
moving in reverse iteration order through the elements. Sets the iterator to the
located element, or invalidates the iterator if no such element exists.
17-52 CORBAservices: Common Object Services Specification

17

lity”

e

Return value

Returns true if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

The given iterator must point to an element; otherwise, the exception
IteratorInBetween or IteratorInvalid is raised.

The EqualitySortedCollection Interface

This interface combines the interfaces representing the properties “element equa
and “ordering.” See “The EqualityCollection Interface” on page 17-37 and “The
SortedCollection Interface” on page 17-37. It adds those methods which exploit th
combination of both properties.

interface EqualitySortedCollection : EqualityCollection,
SortedCollection {

// locating elements

boolean locate_first_element (in any element, in Iterator where)
raises (ElementInvalid, IteratorInvalid);

boolean locate_last_element (in any element, in Iterator where)
raises (ElementInvalid, IteratorInvalid);

boolean locate_previous_element (in any element, in Iterator where)
raises
(ElementInvalid, IteratorInvalid);

boolean locate_previous_different_element (in Iterator where) raises
(IteratorInvalid);

};

Locating elements

boolean locate_first_element (in any element, in Iterator where) raises
(ElementInvalid, IteratorInvalid);

Description

Locates the first element in iteration order in the collection that is equal to the
given element. Sets the iterator to the located element or invalidates the iterator if
no such element exists.

Return value

Returns true if an element was found.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-53

17

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

boolean locate_last_element (in any element, in Iterator where) raises
(ElementInvalid, IteratorInvalid);

Description

Locates the last element in iteration order in the collection that is equal to the
given element. Sets the iterator to the located element or invalidates the iterator if
no such element exists.

Return value

Returns true if an element was found.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

boolean locate_previous_element (in any element, in Iterator where) raises
(ElementInvalid, IteratorInvalid);

Description

Locates the previous element in iteration order that is equal to the given
element, beginning at the element previous to the one specified by the given
iterator and moving in reverse iteration order through the elements. Sets the
iterator to the located element, or invalidates the iterator if no such element
exists. If the iterator is in the state in-between, the search begins at the iterator’s
“potential previous” element.

Return value

Returns true if an element was found.

Exceptions

The given element must be of the expected type otherwise the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.
17-54 CORBAservices: Common Object Services Specification

17

ty,”

ty”
boolean locate_previous_different_element (in Iterator where) raises
(IteratorInBetween, IteratorInvalid);

Description

Locates the previous element in iteration order with a value different from the
element pointed to, beginning at the element previous to the one
pointed to and moving in reverse iteration order through the elements. Sets the
iterator to the located element or invalidates the iterator if no such element
exists.

Return value

Returns true if an element was found.

Exceptions

The given iterator must point to an element; otherwise, the exception
IteratorInBetween or IteratorInvalid is raised.

The EqualityKeySortedCollection Interface

interface EqualityKeySortedCollection: EqualityCollection, KeyCollection,
SortedCollection {};

This interface combines the interface representing the properties “element equali
“key access,” and “ordering.”

The EqualitySequentialCollection Interface

This interface combines the interface representing the properties “element equali
and “(sequential) ordering” and offers additional operations which exploit this
combination.

interface EqualitySequentialCollection: EqualityCollection,
SequentialCollection
{

// locating elements

boolean locate_first_element_with_value (in any element, in Iterator
where) raises (ElementInvalid, IteratorInvalid);

boolean locate_last_element_with_value (in any element, in Iterator
where) raises (ElementInvalid, IteratorInvalid);

boolean locate_previous_element_with_value (in any element, in
Iterator where) raises (ElementInvalid, IteratorInvalid);

};
Object Collection Service: v1.0 The CosCollection Module July 1997 17-55

17

Locating elements

boolean locate_first_element_with_value (in any element, in Iterator where)
raises (ElementInvalid, IteratorInvalid);

Description

Locates the first element in iteration order in the collection that is equal to the
given element. Sets the iterator to the located element or invalidates the iterator if
no such element exists.

Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exception ElementInvalid
is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

boolean locate_last_element_with_value (in any element, in Iterator where)
raises (ElementInvalid, IteratorInvalid);

Description

Locates the last element in iteration order in the collection that is equal to the
given element. Sets the iterator to the located element or invalidates the iterator if
no such element exists.

Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exception ElementInvalid
is raised.

The iterator must belong to the collection; otherwise, the exception IteratorInvalid
is raised.

boolean locate_previous_element_with_value (in any element, in Iterator
where) raises (ElementInvalid, IteratorInvalid);
17-56 CORBAservices: Common Object Services Specification

17
Description

Locates the previous element in iteration order that is equal to the given
element, beginning at the element previous to the one specified by the given
iterator and moving in reverse iteration order through the elements. Sets the
iterator to the located element or invalidates the iterator if no such element
exists. If the iterator is in the state in-between, locating begins at the iterators
“potential previous” element.

Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exception ElementInvalid
is raised.

The iterator must belong to the collection and be valid; otherwise, the exception
IteratorInvalid is raised.

17.5.4 Concrete Collections Interfaces

The previously listed “abstract views” on collections combine the properties “key
access,” “ element equality,” and “ ordering relationship” on elements. The
subsequent interfaces add “uniqueness” support for “multiples.” To reduce the
complexity of the hierarchy, this fourth property is not represented by a separate
interface.

The KeySet Interface

interface KeySet: KeyCollection {};

The KeySet offers an interface representing the property “key access” with the
semantics of “unique keys required.” See “The KeyCollection Interface” on
page 17-42.

The KeyBag Interface

interface KeyBag: KeyCollection {};

The KeyBag offers the interface representing the property “key access” with multiple
keys allowed. See “The KeyCollection Interface” on page 17-42.

The Map Interface

interface Map : EqualityKeyCollection {

// set theoretical operations

void difference_with (in Map collector) raises (ElementInvalid);

void add_difference (in Map collector1, in Map collector2)raises
(ElementInvalid);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-57

17

ent
ed”

 Q

;
void intersection_with (in Map collector) raises (ElementInvalid);

void add_intersection (in Map collector1, in Map collector2) raises
(ElementInvalid);

void union_with (in Map collector) raises (ElementInvalid);

void add_union (in Map collector1, in Map collector2)raises
(ElementInvalid);

// testing equality

boolean equal (in Map collector) raises (ElementInvalid);

boolean not_equal (in Map collector) raises(ElementInvalid);

};

The Map offers the interface representing the combination of the properties “elem
equality testable” and “key access” and supports the semantics “unique keys requir
(which implies unique elements). See “The EqualityKeyCollection Interface” on
page 17-50.

With element equality defined, a test on equality for collections of the same type is
possible as well as a meaningful definition of the set theoretical operations.

Set theoretical operations

void difference_with (in Map collector) raises(ElementInvalid);

Description

Makes this collection the difference between this collection and the given
collection. The difference of A and B (A minus B) is the set of elements that are
contained in A but not in B.

The same operation is defined for other collections, too. The following rule applies
for collections with multiple elements: If collection P contains the element X m
times and collection Q contains the element X n times, the difference of P and
contains the element X m-n times if “m > n,” and zero times if “m <= n.”

Exceptions

Elements of the given collection must have the expected type of this collection
otherwise, the exception ElementInvalid is raised.

Side effects

Valid iterators pointing to removed elements go in-between. All other iterators keep
their state.

void add_difference (in Map collector1, in Map collector2) raises
(ElementInvalid);
17-58 CORBAservices: Common Object Services Specification

17

ce to

n;

d B.

;

 this

n;
Description

Creates the difference between the two given collections and adds the differen
this collection.

Exceptions

Elements of the given collections must be of the expected type in this collectio
otherwise, the exception ElementInvalid is raised.

Side effects

Adding the difference takes place one by one so the semantics for add applies here
for raised exceptions and iterator state.

void intersection_with (in Map collector) raises (ElementInvalid);

Description

Makes this collection the intersection of this collection and the given collection.
The intersection of A and B is the set of elements that is contained in both A an

The same operation is defined for other collections, too. The following rule applies
for collections with multiple elements: If collection P contains the element X m
times and collection Q contains the element X n times, the intersection of P and Q
contains the element X “MIN(m,n)” times.

Exceptions

Elements of the given collection must have the expected type of this collection
otherwise, the exception ElementInvalid is raised.

Side effects

Valid iterators of this collection pointing to removed elements go in-between.

All other iterators keep their state.

void add_intersection (in Map collector1, in Map collector2) raises
(ElementInvalid);

Description

Creates the intersection of the two given collections and adds the intersection to
collection.

Exceptions

Elements of the given collections must have the expected type of this collectio
otherwise, the exception ElementInvalid is raised.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-59

17

;

.

n;
Side effects

Adding the intersection takes place one by one so the semantics for add apply here
for raised exceptions and iterator state.

void union_with (in Map collector) raises (ElementInvalid);

Description

Makes this collection the union of this collection and the given collection. The
union of A and B are the elements that are members of A or B or both.

The same operation is defined for other collections, too. The following rule applies
for collections with multiple elements: If collection P contains the element X m
times and collection Q contains the element X n times, the union of P and Q
contains the element X m+n times.

Exceptions

Elements of the given collection must have the expected type of this collection
otherwise, the exception ElementInvalid is raised.

Side effects

Adding takes place one by one so the semantics for add applies here for raised
exceptions and iterator state.

void add_union (in Map collector1, in Map collector2) raises (ElementInvalid);

Description

Creates the union of the two given collections and adds the union to the collection

Exceptions

Elements of the given collections must have the expected type of this collectio
otherwise, the exception ElementInvalid is raised.

Side effects

Adding the intersection takes place one by one; therefore, the semantics for add
applies here for validity of iterators and raised exceptions.

Testing equality

boolean equal (in Map collector) raises(ElementInvalid);

Return value

Returns true if the given collection is equal to the collection.
17-60 CORBAservices: Common Object Services Specification

17

the
ns

y

e

 the

n;

ith
This operation is defined for other collections, too. Two collections are equal if
number of elements in each collection is the same and if the following conditio
(depending on the collection properties) are fulfilled.

• Collections with unique elements: If the collections have unique elements, an
element that occurs in one collection must occur in the other collections, too.

• Collections with non-unique elements: If an element has n occurrences in on
collection, it must have exactly n occurrences in the other collection.

• Sequential collections: They are sequential collections if they are
lexicographically equal based on element equality defined for the elements of
sequential collection.

Exceptions

Elements of the given collections must have the expected type of this collectio
otherwise, the exception ElementInvalid is raised.

boolean not_equal (in Map collector) raises (ElementInvalid);

Return value

Returns true if the given collection is not equal to this collection.

The Relation Interface

interface Relation : EqualityKeyCollection {

// equal, not_equal, and the set-theoretical operations as defined
for Map

};

The Relation interface offers the interface representing the combination of the
properties “element equality testable” and “key access” and supports the semantics
“multiple elements allowed.” See “The EqualityKeyCollection Interface” on
page 17-50. For a definition of the set-theoretical operation see “The Map Interface”
on page 17-57.

The Set Interface

interface Set : EqualityCollection {

// equal, not_equal, and the set theoretical operations as defined
for Map

};

The Set offers the interface representing the property “element equality testable” w
the semantics of “unique elements required.” See “The EqualityCollection Interface”
on page 17-37.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-61

17

ith

f

r
The Bag Interface

interface Bag : EqualityCollection {

// equal, not_equal, and the set theoretical operations as defined
for Map

};

The Bag offers the interface representing the property “element equality testable” w
the semantics of “multiples allowed.” See “The EqualityCollection Interface” on
page 17-37.

The KeySortedSet Interface

interface KeySortedSet : KeySortedCollection {

long compare (in KeySortedSet collector, in Comparator comparison);

};

The KeySortedSet offers the sorted variant of KeySet. See “The
KeySortedCollection Interface” on page 17-51.

The sorted variant of KeySet introduces a new operation compare which can be
supported only when there is “ordering.” This operation takes an instance of a user-
defined Comparator as given parameter. See “The Command and Comparator
Interface” on page 17-122.

The Comparator defines the comparison to be used for the elements in the context o
this compare operation. Comparison on two KeySortedSets then is a lexicographical
comparison based on this element comparison.

long compare (in KeySortedSet collector, in Comparator comparison) raises
(ElementInvalid);

Description

Compares this collection with the given collection. Comparison yields:

• <0 if this collection is less than the given collection,

• 0 if the collection is equal to the given collection, and

• >0 if the collection is greater than the given collection.

Comparison is defined by the first pair of corresponding elements, in both
collections, that are not equal. If such a pair exists, the collection with the greate
element is the greater one. If such a pair does not exist, the collection with more
elements is the greater one.

The “compare” operation of the user’s comparator (interface derived from
Comparator) must return a result according to the following rules:

>0 if (element1 > element2)

 0 if (element1 = element2)
17-62 CORBAservices: Common Object Services Specification

17
<0 if (element1 < element2)

Return value

Returns the result of the collection comparison.

The KeySortedBag Interface

interface KeySortedBag : KeySortedCollection {

long compare (in KeySortedBag collector, in Comparator comparison);

};

The KeySortedBag is the sorted variant of the KeyBag. See “The
KeySortedCollection Interface” on page 17-51 The additional operation compare is
offered. See “The KeySortedSet Interface” on page 17-62.

The SortedMap Interface

interface SortedMap : EqualityKeySortedCollection {

// equal, not_equal, and the set theoretical operations

long compare (in SortedMap collector, in Comparator comparison);

};

The SortedMap interface is the sorted variant of a Map. See “The
EqualityKeySortedCollection Interface” on page 17-55. The additional operation
compare is offered. See “The KeySortedSet Interface” on page 17-62.

The SortedRelation Interface

interface SortedRelation : EqualityKeySortedCollection {

// equal, not_equal, and the set theoretical operations

long compare (in SortedRelation collector, in Comparator
comparison);

};

The SortedRelation interface is the sorted variant of a Relation. See “The
EqualitySortedCollection Interface” on page 17-53. The additional operation
compare is offered. See “The KeySortedSet Interface” on page 17-62.

The SortedSet Interface

interface SortedSet : EqualitySortedCollection {

// equal, not_equal, and the set theoretical operations

long compare (in SortedSet collector, in Comparator comparison);

};

The SortedSet interface is the sorted variant of a Set. The additional operation
compare is offered. See “The KeySortedSet Interface” on page 17-62.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-63

17
The SortedBag Interface

interface SortedBag: EqualitySortedCollection {

// equal, not_equal, and the set theoretical operations

long compare (in SortedBag collector, in Comparator comparison);

};

The SortedBag interface is the sorted variant of a Bag. See “The
EqualitySortedCollection Interface” on page 17-53. The additional operation
compare is offered. See “The KeySortedSet Interface” on page 17-62.

The Sequence Interface

interface Sequence : SequentialCollection {

// Comparison

long compare (in Sequence collector, in Comparator comparison);

};

The Sequence supports the interface representing the property “sequential ordering.”
This property enables the definition of comparison on two Sequences; therefore, the
operation compare is offered. See “The SequentialCollection Interface” on
page 17-31.

The EqualitySequence Interface

interface EqualitySequence : EqualitySequentialCollection {

// test on equality

boolean equal (in EqualitySequence collector);

boolean not_equal (in EqualitySequence collector);

// comparison

long compare (in EqualitySequence collector, in Comparator
comparison);

};

The EqualitySequence supports the combination of the properties “sequential
ordering” and “element equality testable.” See “The EqualitySequentialCollection
Interface” on page 17-55. This allows the operations equal, not_equal and compare.

The Heap Interface

interface Heap : Collection {};

The Heap does not support any property at all. It just delivers the basic Collection
interface. See “The Collection Interface” on page 17-21.
17-64 CORBAservices: Common Object Services Specification

17
17.5.5 Restricted Access Collection Interfaces

Common data structures, such as a stack, may restrict access to the elements of a
collection. The restricted access collections support these data structures. Stack,
Queue, and Dequeue are essentially restricted access Sequences. PriorityQueue is
essentially a restricted access KeySortedBag. For convenience, these interfaces offer
the commonly used operation names such as push, pop, etc. rather than
add_element, remove_element_at. Although the restricted access collections form
their own hierarchy, the naming was formed in a way that allows mixing-in with the
hierarchy of the combined property collections.

This may be useful to support several views on the same instance of a collection. For
example, a “user view” to a job queue with restricted access of a PriorityQueue and
an “administrator view” to the same print job queue with the full capabilities of a
KeySortedBag.

17.5.6 Abstract RestrictedAccessCollection Interface

The RestrictedAccessCollection Interface

// Restricted Access Collections

interface RestrictedAccessCollection {

// getting information on collection state

boolean unfilled ();

unsigned long size ();

// removing elements

void purge ();

};

boolean unfilled ();

Return value

Returns true if the collection is empty.

unsigned long size ();

Return value

Returns the number of elements in the collection.

void purge ();
Object Collection Service: v1.0 The CosCollection Module July 1997 17-65

17

Description

Removes all elements from the collection. See “The Collection Interface” on
page 17-21.

17.5.7 Concrete Restricted Access Collection Interfaces

The Queue Interface

interface Queue : RestrictedAccessCollection {

// adding elements

void enqueue (in any element) raises (ElementInvalid);

// removing elements

void dequeue () raises (EmptyCollection);

boolean element_dequeue (out any element) raises (EmptyCollection);

};

A Queue may be considered as a restricted access Sequence. Elements are added at
the end of the queue only and removed from the beginning of the queue. FIFO
behavior is delivered.

Adding elements

void enqueue (in any element) raises (ElementInvalid);

Description

Adds the element as last element to the Queue.

Exceptions

The given element must be the expected type; otherwise, the exception
ElementInvalid is raised.

Removing elements

void dequeue () raises (EmptyCollection);

Description

Removes the first element from the queue.

Exceptions

The queue must not be empty; otherwise, the exception EmptyCollection is raised.
17-66 CORBAservices: Common Object Services Specification

17

he
boolean element_dequeue(out any element) raises (EmptyCollection);

Description

Retrieves the first element in the queue, returns it via the output parameter
element, and removes it from the queue.

Return value

Returns true if an element was retrieved.

Exceptions

The queue must not be empty; otherwise, the exception EmptyCollection is raised.

The Dequeue Interface

interface Deque : RestrictedAccessCollection {

// adding elements

void enqueue_as_first (in any element) raises (ElementInvalid);

void enqueue_as_last (in any element) raises(ElementInvalid);

// removing elements

void dequeue_first () raises (EmptyCollection);

boolean element_dequeue_first (out any element) raises
(EmptyCollection);

void dequeue_last () raises (EmptyCollection);

boolean element_dequeue_last (out any element) raises
(EmptyCollection);

};

The Dequeue may be considered as a restricted access Sequence. Adding and
removing elements is only allowed at both ends of the double-ended queue. The
semantics of the Dequeue operation is comparable to the operations described for t
Queue interface. See “The Queue Interface” on page 17-66.

The Stack Interface

interface Stack: RestrictedAccessCollection {

// adding elements

void push (in any element) raises (ElementInvalid);

// removing and retrieving elements

void pop () raises (EmptyCollection);

boolean element_pop (out any element) raises (EmptyCollection);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-67

17
boolean top (out any element) raises (EmptyCollection);

};

The Stack may be considered as a restricted access Sequence. Adding and removing
elements is only allowed at the end of the queue. LIFO behavior is delivered.

Adding elements

void push (in any element) raises (ElementInvalid);

Description

Adds the element to the stack as the last element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Removing elements

void pop () raises (EmptyCollection);

Description

Removes the last element from the stack.

Exceptions

The stack must not be empty; otherwise, the exception EmptyCollection is raised.

boolean element_pop (out any element) raises (EmptyCollection);

Description

Retrieves the last element from the stack and returns it via the output parameter
element and removes it from the stack.

Return value

Returns true if an element is retrieved.

Exceptions

The stack must not be empty; otherwise, the exception EmptyCollection is raised.

Retrieving elements

boolean top (out any element) raises (EmptyCollection);
17-68 CORBAservices: Common Object Services Specification

17
Description

Retrieves the last element from the stack and returns it via the output parameter
element.

Return value

Returns true if an element is retrieved.

Exceptions

The stack must not be empty; otherwise, the exception EmptyCollection is raised.

The PriorityQueue Interface

interface PriorityQueue: RestrictedAccessCollection {

// adding elements

void enqueue (in any element) raises (ElementInvalid);

// removing elements

void dequeue () raises (EmptyCollection);

boolean element_dequeue (out any element) raises (EmptyCollection);

};

The PriorityQueue may be considered as a restricted access KeySortedBag. The
interface is identical to that of an ordinary Queue, with a slightly different semantics
for adding elements.

Adding elements

void enqueue (in any element) raises (ElementInvalid);

Description

Adds the element to the priority queue at a position determined by the ordering
relation provided for the key type.

Exceptions

The Element must be the expected type; otherwise, the exception ElementInvalid is
raised.

Removing elements

void dequeue () raises (EmptyCollection);

Description

Removes the first element from the collection.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-69

17

rs a

 For
st the

uld

n

ray

nts,
Exceptions

The priority queue must be not be empty; otherwise, the exception
EmptyCollection is raised.

boolean element_dequeue (out any element) raises (EmptyCollection);

Description

Retrieves the first element in the priority queue and returns it via the output
parameter element, removes it from the priority queue, and returns the copy to the
user.

Return value

Returns true if an element is retrieved.

Exceptions

The priority queue must not be empty; otherwise, the exception EmptyCollection is
raised.

17.5.8 Collection Factory Interfaces

There is one collection factory defined per concrete collection interface which offe
typed operation for the creation of collection instances supporting the respective
collection interface as its principal interface.

The information passed to a collection implementation at creation time is:

1. Element type specific information required to implement the correct semantics.
example, to implement Set semantics one has to pass the information how to te
equality of elements.

2. Element type specific information that can be exploited by the specific
implementation variants. For example, a hashtable implementation of a Set wo
exploit the information how the hash value for collected elements is computed.

This element type specific information is passed to the collection implementatio
via an instance of a user-defined specialization of the Operations interface.

3. An implementation hint about the expected number of elements collected. An ar
based implementation may use this hint as an estimate for the initial size of the
implementation array.

To enable the support for, and a user-controlled selection of implementation varia
there is a generic extensible factory defined. This allows for registration of
implementation variants and their user-defined selection at creation time.
17-70 CORBAservices: Common Object Services Specification

17

nts to

ests
o the
The CollectionFactory and CollectionFactories Interfaces

interface Operations;

interface CollectionFactory {

Collection generic_create (in ParameterList parameters) raises
(ParameterInvalid);

};

CollectionFactory defines a generic collection creation operation which enables
extensibility and supports the creation of collection instances with the very basic
capabilities.

Collection generic_create (in ParameterList parameters) raises
(ParameterInvalid);

Returns a new collection instance which supports the interface Collection and does not
offer any type checking. A sequence of name-value pairs is passed to the create
operation. The only processed parameter in the given list is “expected_size,” of type
“unsigned long.”

This parameter is optional and gives an estimate of the expected number of eleme
be collected.

Note – All collection interface specific factories defined in this specification inherit
from the interface CollectionFactory to enable their registration with the extensible
generic CollectionFactories factory specified below.

interface CollectionFactories : CollectionFactory {

boolean add_factory (in Istring collection_interface, in Istring
impl_category, in Istring impl_interface, in CollectionFactory
factory);

boolean remove_factory (in Istring collection_interface, in Istring
impl_category, in Istring impl_interface);

};

The interface CollectionFactories specifies a generic extensible collection creation
capability. It maintains a registry of collection factories. The create operation of the
CollectionFactories does not create collection instances itself, but passes the requ
through to an appropriate factory registered with it and passes the result through t
caller. Note that only factories derived from CollectionFactory can be registered with
CollectionFactories.

boolean add_factory (in Istring collection_interface, in Istring impl_category, in
Istring impl_interface, in CollectionFactory factory);

Registers the factory with three pieces of information:
Object Collection Service: v1.0 The CosCollection Module July 1997 17-71

17

d

d

 to
 A

tions

n

it

the

1. collection_interface specifies the collection interface (directly or indirectly derive
from Collection) supported by the given factory. That is, a collection instance
created via the given factory has to support the given interface
collection_interface.

2. impl_interface specifies the implementation interface (directly or indirectly derive
from the interface specified in collection_interface) supported by the registered
factory. Collection instances created via this factory are instances of this
implementation interface.

3. impl_category specifies a named group of equivalent implementation interfaces
which the implementation interface supported by the registered factory belongs.
group of implementation interfaces of a given collection interface are equivalent if
they:

• rely on the same user-defined implementation support, that is, the same opera
defined in the user-defined specialization of the Operations interface.

• are based on essentially the same data structure and deliver comparable
performance characteristics.

The following table lists examples of implementation categories (representing commo
implementations).

Table 17-4Implementation Category Examples

The operation does not check the validity of the registration request in the sense that
checks any of the restrictions on the parameters described above, but just registers the
given information with the factory. It is the responsibility of the user to ensure that
registration is valid.

Implementation
Category

Description

ArrayBased User-defined implementation specific operations do not have to be
defined. The basic data structure used is an array.

LinkedListBased User-defined implementation specific operations do not have to be
defined. The basic data structure used is a simple linked list.

SkipListsBased A compare operation has to be defined for the key element values
that depend on whether or not the collection is a KeyCollection
derived from KeyCollection. The basic data structure are skip lists.

HashTableBased A hash-function has to be defined for key element values that
depend on whether or not the interface implemented is a
KeyCollection derived from KeyCollection. The basic data
structure is a hashtable based on the hash-function defined.

AVLTreeBased A compare operation has to be defined for the key element values
that depend on whether or not the collection is a KeyCollection
derived from KeyCollection. The basic data structure is an AVL
tree.

BStarTreeBased A compare operation has to be defined for key values. The basic
data structure is a B*tree.
17-72 CORBAservices: Common Object Services Specification

17

ieces

ry is
The entry is added if there is not already a factory registered with the same three p
of information; otherwise, the registration is ignored. Returns true if the factory is
added.

boolean remove_factory (in Istring collection_interface, in Istring impl_category,
in Istring impl_interface)

Description

Removes the factory registered with the given three pieces of information from the
registry.

Return value

Returns true if an entry with that name exists and is removed.

create (ParameterList parameters) raises (ParameterInvalid)

The create operation of the CollectionFactories interface does not create instances
itself, but passes through creation requests to factories registered with it. The facto
passed a sequence of name-value pairs of which the only mandatory one is
collection_interface” of type Istring.

collection_interface” of type
Istring

A string which specifies the name of the
collection interface (directly or indirectly
derived from Collection) the collection
instance created has to support.

This name-value pair corresponds to the
collection_interface parameter of the
add_factory() operation.

The following name-value pairs are optional:

“ impl_category” of type Istring A string which denotes the desired
implementation category. This name-value
pair corresponds to the impl_category
parameter of the add_factory() operation.

“ impl_interface” of type Istring A string which specifies a desired
implementation interface. This name-value
pair corresponds to the impl_interface
parameter of the add_factory() operation.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-73

17

hing
ctory.
or a

ith

he
If one or both of these name-value pairs are given, it is searched for a best matc
entry in the factory registry and the request is passed through to the respective fa
“Best matching” means that if an implementation interface is given, it is searched f
factory supporting an exact matching implementation interface first. If no factory
supporting the desired implementation interface is registered, it is searched for a
factory supporting an implementation interface of the same implementation category.

If none of the two name-value pairs are given, the request is passed to a factory
registered as default factory for a given “collection_interface.” For each concrete
collection interface specified in this specification, there is one collection specific
factory defined which serves as default factory and is assumed to be registered w
CollectionFactories.

There must be a name-value pair with name “collection_interface” given and a
factory must be registered for “collection_interface;” otherwise, the
exception ParameterInvalid is raised.

If a desired implementation interface and/or an implementation category is given, a
factory with matching characteristics must be registered; otherwise, the exception
ParameterInvalid is raised.

For factories specified for each concrete collection interface in this specification, t
following additional name-value pairs are relevant:

Those parameters are not processed by the create operation of CollectionFactories
itself, but just passed through to a registered factory.

The RACollectionFactory and RACollectionFactories Interfaces

interface RACollectionFactory {

RestrictedAccessCollection generic_create (in ParameterList
parameters) raises (ParameterInvalid);

};

The interface RACollectionFactory corresponds to the interface
CollectionFactory, but defines an abstract interface.

interface RACollectionFactories : RACollectionFactory {

“ operations” of type
Operations

An instance of a user-defined specialization of
Operations which specifies element- and/or
key-type specific operations.

“ expected_size” of type
unsigned long

is an unsigned long and gives an estimate
about the expected number of elements to be
collected.
17-74 CORBAservices: Common Object Services Specification

17
boolean add_factory (in Istring collection_interface, in Istring
impl_category, in Istring impl_interface, in RACollectionFactory
factory);

boolean remove_factory (in Istring collection_interface, in Istring
impl_category, in Istring impl_interface);

};

The interface RACollectionFactories corresponds to the CollectionFactories
interface. It enables the registration and deregistration of collections with restricted
access as well as control over the implementation choice for a given restricted access
collection at creation time.

The KeySetFactory Interface

interface KeySetFactory : CollectionFactory {

KeySet create (in Operations ops, in unsigned long expected_size);

};

KeySet create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of KeySet. The given instance of Operations passes
user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

The KeyBagFactory Interface

interface KeyBagFactory : CollectionFactory {

KeyBag create (in Operations ops, in unsigned long expected_size);

};

KeyBag create (in Operations ops, in unsigned long expected_size);

Table 17-5Required element and key-type specific user-defined information for
KeySetFactory. []- implied by key_compare.

KeySet

equal compare hash key key_equal key_compare key_hash

x [x] x
Object Collection Service: v1.0 The CosCollection Module July 1997 17-75

17

Creates and returns an instance of KeyBag. The given instance of Operations passes
user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

The MapFactory Interface

interface MapFactory : CollectionFactory {

Map create (in Operations ops, in unsigned long expected_size);

};

Map create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of Map. The given instance of Operations passes user-
defined element and key-type specific information to the collection implementation.
The following table defines the requirements for the element key operations to be
implemented.

The RelationFactory Interface

interface RelationFactory : CollectionFactory {

Relation create (in Operations ops, in unsigned long expected_size);

};

Relation create (in Operations ops, in unsigned long expected_size);

Table 17-6Required element and key-type specific user-defined information for
KeyBagFactory. []- implied by key_compare.

KeyBag

equal compare hash key key_equal key_compare key_hash

x [x] x

Table 17-7Required element and key-type specific user-defined information for
MapFactory. []- implied by key_compare.

Map

equal compare hash key key_equal key_compare key_hash

x x [x] x
17-76 CORBAservices: Common Object Services Specification

17

[]-
Creates and returns an instance of Relation. The given instance of Operations passes
user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

The SetFactory Interface

interface SetFactory : CollectionFactory {

Set create (in Operations ops, in unsigned long expected_size);

};

Set create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of Set. The given instance of Operations passes user-
defined element and key-type specific information to the collection implementation.

The following table defines the requirements for the element key operations to be
implemented.

The BagFactory Interface

interface BagFactory {

Bag create (in Operations ops, in unsigned long expected_size);

};

Bag create (in Operations ops, in unsigned long expected_size);

Table 17-8Required element and key-type specific user-defined information for
RelationFactory.[]- implied by key_compare.

Relation

equal compare hash key key_equal key_compare key_hash

x x [x] x

Table 17-9Required element and key-type specific user-defined information for SetFactory.
implied by compare.

Set

equal compare hash key key_equal key_compare key_hash

[x] x
Object Collection Service: v1.0 The CosCollection Module July 1997 17-77

17

Creates and returns an instance of Bag. The given instance of Operations passes user-
defined element and key-type specific information to the collection implementation.
The following table defines the requirements for the element key operations to be
implemented.

The KeySortedSetFactory Interface

interface KeySortedSetFactory {

KeySortedSet create (in Operations ops, in unsigned long
expected_size);

};

KeySortedSet create (in Operations ops, in unsigned long expected_size)

Creates and returns an instance of KeySortedSet. The given instance of Operations
passes user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

The KeySortedBagFactory Interface

interface KeySortedBagFactory : CollectionFactory {

KeySortedBag create (in Operations ops, in unsigned long
expected_size);

};

KeySortedBag create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of KeySortedBag. The given instance of Operations
passes user-defined element and key-type specific information to the collection
implementation.

Table 17-10 Required element and key-type specific user-defined information for
 BagFactory.[]- implied by compare.

Bag

equal compare hash key key_equal key_compare key_hash

[x] x

Table 17-11 Required element and key-type specific user-defined information for
 KeySortedSetFactory.[]- implied by key_compare.

KeySortedSet

equal compare hash key key_equal key_compare key_hash

x [x] x
17-78 CORBAservices: Common Object Services Specification

17

The following table defines the requirements for the element key operations to be
implemented.

The SortedMapFactory Interface

interface SortedMapFactory : CollectionFactory {

SortedMap create (in Operations ops, in unsigned long
expected_size);

};

SortedMap create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of SortedMap. The given instance of Operations
passes user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

The SortedRelationFactory Interface

interface SortedRelationFactory : CollectionFactory {

SortedRelation create (in Operations ops, in unsigned long
expected_size);

};

SortedRelation create (in Operations ops, in unsigned long expected_size);

Table 17-12 Required element and key-type specific user-defined information for
 KeySortedBagFactory.[]- implied by key_compare.

KeySortedBag

equal compare hash key key_equal key_compare key_hash

x [x] x

Table 17-13 Required element and key-type specific user-defined information for
SortedMapFactory.[]- implied by key_compare.

SortedMap

equal compare hash key key_equal key_compare key_hash

x x [x] x
Object Collection Service: v1.0 The CosCollection Module July 1997 17-79

17
Creates and returns an instance of SortedRelation. The given instance of Operations
passes user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

The SortedSetFactory Interface

interface SortedSetFactory : CollectionFactory {

SortedSet create (in Operations ops, in unsigned long
expected_size);

};

SortedSet create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of SortedSet. The given instance of Operations
passes user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

The SortedBagFactory Interface

interface SortedBagFactory {

SortedBag create (in Operations ops, in unsigned long
expected_size);

};

SortedBag create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of SortedBag. The given instance of Operations
passes user-defined element and key-type specific information to the collection
implementation.

Table 17-14 Required element and key-type specific user-defined information for
 SortedRelationFactory.[]- implied by key_compare.

SortedRelation

equal compare hash key key_equal key_compare key_hash

x x [x] x

Table 17-15 Required element and key-type specific user-defined information for
 SortedSetFactory. []- implied by compare.

SortedSet

equal compare hash key key_equal key_compare key_hash

[x] x
17-80 CORBAservices: Common Object Services Specification

17

r at
The following table defines the requirements for the element key operations to be
implemented.

The SequenceFactory Interface

interface SequenceFactory : CollectionFactory {

Sequence create (in Operations ops, in unsigned long expected_size);

};

Sequence create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of Sequence. No requirements on the element
respectively key operations to be implemented is specified for a Sequence.
Nevertheless one still has to pass an instance of Operations as type checking
information has to be passed to the collection implementation.

Note – As the Sequence interface represents array as well as linked list
implementation of sequentially ordered collections, a service provider should offe
least two implementations to meet the performance requirements of the two most
common access patterns. That is, a service provider should offer an array based
implementation and a linked list based implementation.

The EqualitySequence Factory Interface

interface EqualitySequenceFactory : CollectionFactory {

EqualitySequence create (in Operations ops, in unsigned long
expected_size);

};

EqualitySequence create (in Operations ops, in unsigned long expected_size);

Table 17-16 Required element and key-type specific user-defined information for
 SortedBagFactory. []- implied by compare.

SortedBag

equal compare hash key key_equal key_compare key_hash

[x] x
Object Collection Service: v1.0 The CosCollection Module July 1997 17-81

17

r at

e
 of

e
Creates and returns an instance of EqualitySequence. The given instance of
Operations passes user-defined element and key-type specific information to the
collection implementation. The following table defines the requirements for the
element key operations to be implemented.

Note – As the EqualitySequence interface represents array as well as linked list
implementations of sequentially ordered collections, a service provider should offe
least two implementations to meet the performance requirements of the two most
common access patterns. That is, a service provider should offer an array based
implementation and a linked list based implementation.

The HeapFactory Interface

interface HeapFactory : CollectionFactory {

Heap create (in Operations ops, in unsigned long expected_size);

};

Heap create (in Operations ops, in unsigned long expected_size);

Returns an instance of a Heap. No requirements for the element key operations to b
implemented is specified for a Heap. Nevertheless, one still has to pass an instance
Operations as type checking information must pass to the collection implementation.

The QueueFactory Interface

interface QueueFactory : RACollectionFactory {

Queue create (in Operations ops, in unsigned long expected_size);

};

Queue create (in Operations ops, in unsigned long expected_size);

Returns an instance of a Queue. No requirements for the element key operations to b
implemented is specified for a Queue. Nevertheless, one still has to pass an instance
of Operations as type checking information must pass to the collection
implementation.

Table 17-17 Required element and key-type specific user-defined information for
EqualitySequenceFactory.

Equality
Sequence

equal compare hash key key_equal key_compare key_hash

x

17-82 CORBAservices: Common Object Services Specification

17

e

be
e
The StackFactory Interface

interface StackFactory : RACollectionFactory {

Stack create (in Operations ops, in unsigned long expected_size);

};

Stack create (in Operations ops, in unsigned long expected_size);

Returns an instance of a Stack. No requirements for the element key operations to b
implemented is specified for a Stack. Nevertheless, one still has to pass an instance of
Operations as type checking information must pass to the collection implementation.

The DequeFactory Interface

interface DequeFactory : RACollectionFactory {

Deque create (in Operations ops, in unsigned long expected_size);

};

Deque create (in Operations ops, in unsigned long expected_size);

Returns an instance of a Deque. No requirements on the element key operations to
implemented is specified for a Deque. Nevertheless, one still has to pass an instanc
of Operations as type checking information must pass to the collection
implementation.

The PriorityQueueFactory Interface

interface PriorityQueueFactory : RACollectionFactory {

PriorityQueue create (in Operations ops, in unsigned long
expected_size);

};

PriorityQueue create (in Operations ops, in unsigned long expected_size);

Returns an instance of a PriorityQueue. The given instance of Operations passes
user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

Table 17-18 Required element and key-type specific user-defined information for
PriorityQueueFactory. [] - implied by key_compare.

PriorityQueue

equal compare hash key key_equal key_compare key_hash

x [x] x
Object Collection Service: v1.0 The CosCollection Module July 1997 17-83

17

ter

only

alue,

be
t with

ment
rder.

e.

n
17.5.9 Iterator Interfaces

Iterators as pointer abstraction

An iterator is in a first approximation of a pointer abstraction. It is a movable poin
to elements of a collection. Iterators are tightly intertwined with collections. An
iterator cannot exist independently of a collection (i.e., the iterator life time cannot
exceed that of the collection for which it is created). A collection is the factory for its
iterators. An iterator is created for a given collection and can be used for this and
this collection.

The iterators specified in this specification form an interface hierarchy which parallels
the collection interface hierarchy. The supported iterator movements reflect the
capabilities of the corresponding collection type.

The top level Iterator interface defines a generic iterator usable for iteration over all
types of collections. It can be set to a start position for iteration and moved via a series
of forward movements through the collection visiting each element exactly once.

The OrderedIterator is supported by ordered collections only. It “knows about
ordering;" therefore, it can be moved in forward and backward direction.

The KeyIterator exploits the capabilities of key collections. It can be moved to an
element with a given key value, advanced to the next element with the same key v
or advanced to the next element with a different key value in iteration order.

The KeySortedIterator is created for key collections sorted by key. The iterator can
advanced to the previous element with the same key value or the previous elemen
a different key value.

The EqualityIterator exploits the capabilities of equality collections. It can be moved
to an element with a given value, advanced to the next element with the same ele
value, or advanced to the next element with a different element value in iteration o

The EqualitySortedIterator is created for equality collections sorted by element valu
The iterator can be advanced to the previous element with the same value or the
previous element with a different value.

Iterators and support for generic programming

Iterators go far beyond being simple “pointing devices.” There are essentially two
reasons to extend the capabilities of iterators.

1. To support the processing of very large collections which allows for delayed
instantiation or incremental query evaluation in case of very large query results.
These are scenarios where the collection itself may never exist as instantiated mai
memory collection but is processed in “finer grains” via an iterator passed to a
client.

2. To enrich the iterator with more capabilities strengthens the support for the generic
programming model, as introduced with ANSI STL to the C++ world.
17-84 CORBAservices: Common Object Services Specification

17

r
pe

of
e

ans

ut it

ble
ents

 the

an
 in a
You can retrieve, replace, remove, and add elements via an iterator. You can test
iterators for equality, compare ordered iterators, clone an iterator, assign iterators, and
destroy them. Furthermore an iterator can have a const designation which is set when
created. A const iterator can be used for access only.

The reverse iterator semantics is supported. No extra interfaces are specified to
support this, but a reverse designation is set at creation time. An ordered iterator fo
which the reverse designation is set reinterprets the operations of a given iterator ty
to work in reverse.

Iterators and performance

To reduce network traffic, combined operations and batch or bulk operations are
offered.

Combined operations are combinations of simple iterator operations often used in
loops. These combinations support generic algorithms. For example, a typical
combination is “test whether range end is reached; if not retrieve_element, advance
iterator to next element.”

Batch or bulk operations support the retrieval, replacement, addition, and removal
many elements within one operation. In these operations, the “many elements” ar
always passed as a CORBA::sequence of elements.

The Managed Iterator Model

All iterators are managed. The real benefit of being managed is that these iterators
never become undefined. Note that “undefined” is different from “invalid.” While
“invalid” is a testable state and means the iterator points to nothing, “undefined” me
you do not know where the iterator points to and cannot inquiry it. Changing the
contents of a collection by adding or deleting elements would cause an unmanaged
iterator to become “undefined.” The iterator may still point to the same element, b
may also point to another element or even “outside” the collection. As you do not
know the iterator state and cannot inquiry which state the iterator has, you are forced
to newly position the unmanaged iterator, for example, via a set_to_first_element().

This kind of behavior, common in collection class libraries today, seems unaccepta
in a distributed multi-user environment. Assume one client removes and adds elem
from a collection with side effects on the unmanaged iterators of another client. The
other client is not able to test whether there have been side effects on its unmanaged
iterators, but would only notice them indirectly when observing strange behavior of
application.

Managed iterators are intimately related to the collection they belong to, and thus, c
be informed about the changes taking place within the collection. They are always
defined state which allows them to be used even though elements have been added or
removed from the collection. An iterator may be in the state invalid, that is pointing to
nothing. Before it can be used it has to be set to a valid position. An iterator in the state
Object Collection Service: v1.0 The CosCollection Module July 1997 17-85

17

ss,
s)

t, it

ns

s
valid may either point to an element (and be valid for all operations on it) or it may be
in the state in-between, that is, not pointing to an element but still “remembering"
enough state to be valid for most operations on it.

A valid managed iterator remains valid as long as the element it points to remains in
the collection. As soon as the element is removed, the according managed iterator
enters a so-called in-between state. The in-between state can be viewed as a vacuum
within the collection. There is nothing the managed iterator can point to. Neverthele
managed iterators remember the next (and for ordered collection, also the previou
element in iteration order. It is possible to continue using the managed iterator (in a
set_to_next_element() for example) without resetting it first.

There are some limitations. Once a managed iterator no longer points to an elemen
remembers the iteration order in which the element stood before it was deleted.
However, it does not remember the element itself. Thus, there are some operatio
which cannot be performed even though a managed iterator is used.

Consider an iteration over a Bag, for example. If you iterate over all different element
with the iterator operation set_to_next_different_element(), then removing the
element the iterator points to leads to an undefined behavior of the collection later on.
By removing the element, the iterator becomes in-between. The
set_to_next_different_element() operation then has no chance to find the next
different element as the collection does not know what is different in terms of the
current iterator state. Likewise, for a managed iterator in the state in-between all
operations ending with “..._at” are not defined. The reason is simple: There is no
element at the iterator’s position - nothing to retrieve, to replace, or to remove in it.
This situation is handled by raising an exception IteratorInvalid.

Additionally, all operations that (potentially) destroy the iteration order of a collection
invalidate the corresponding managed iterators that have been in the state in-between
before the operation was invoked. These are the sort() and the reverse() operation.

The Iterator Interface

// Iterators

interface Iterator {

// moving iterators

boolean set_to_first_element ();

boolean set_to_next_element() raises (IteratorInvalid);

boolean set_to_next_nth_element (in unsigned long n) raises
(IteratorInvalid);

// retrieving elements

boolean retrieve_element (out any element) raises (IteratorInvalid,
IteratorInBetween);
17-86 CORBAservices: Common Object Services Specification

17
boolean retrieve_element_set_to_next (out any element, out boolean
more) raises (IteratorInvalid, IteratorInBetween);

boolean retrieve_next_n_elements (in unsigned long n, out
AnySequence result, out boolean more) raises (IteratorInvalid,
IteratorInBetween);

boolean not_equal_retrieve_element_set_to_next (in Iterator test,
out any element) raises (IteratorInvalid, IteratorInBetween);

// removing elements

void remove_element() raises (IteratorInvalid, IteratorInBetween);

boolean remove_element_set_to_next() raises (IteratorInvalid,
IteratorInBetween);

boolean remove_next_n_elements (in unsigned long n, out unsigned
long actual_number) raises (IteratorInvalid, IteratorInBetween);

boolean not_equal_remove_element_set_to_next (in Iterator test)
raises (IteratorInvalid, IteratorInBetween);

// replacing elements

void replace_element (in any element) raises (IteratorInvalid,
IteratorInBetween, ElementInvalid);

boolean replace_element_set_to_next (in any element)
raises(IteratorInvalid, IteratorInBetween, ElementInvalid);

boolean replace_next_n_elements (in AnySequence elements, out
unsigned long actual_number) raises (IteratorInvalid,
IteratorInBetween, ElementInvalid);

boolean not_equal_replace_element_set_to_next (in Iterator test, in
any element) raises(IteratorInvalid,IteratorInBetween,
ElementInvalid);

// adding elements

boolean add_element_set_iterator (in any element)raises
(ElementInvalid);

boolean add_n_elements_set_iterator (in AnySequence elements, out
unsigned long actual_number) raises (ElementInvalid);

// setting iterator state

void invalidate ();

// testing iterators

boolean is_valid ();

boolean is_in_between ();

boolean is_for(in Collection collector);

boolean is_const ();

boolean is_equal (in Iterator test) raises (IteratorInvalid);

// cloning, assigning, destroying an iterators
Object Collection Service: v1.0 The CosCollection Module July 1997 17-87

17

tes
Iterator clone ();

void assign (in Iterator from_where) raises (IteratorInvalid);

void destroy ();

};

Moving iterators

boolean set_to_first_element ();

Description

The iterator is set to the first element in iteration order of the collection it belongs
to. If the collection is empty, that is, if no first element exists, the iterator is
invalidated.

Return value

Returns true if the collection it belongs to is not empty.

boolean set_to_next_element () raises (IteratorInvalid);

Description

Sets the iterator to the next element in the collection in iteration order or invalida
the iterator if no more elements are to be visited. If the iterator is in the state in-
between, the iterator is set to its “potential next” element.

Return value

Returns true if there is a next element.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

boolean set_to_next_nth_element (in unsigned long n) raises (IteratorInvalid);

Description

Sets the iterator to the element n movements away in collection iteration order or
invalidates the iterator if there is no such element. If the iterator is in the state in-
between the movement to the “potential next” element is the first of the n
movements.

Return value

 Returns true if there is such an element.
17-88 CORBAservices: Common Object Services Specification

17

nt is
y of
Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

Retrieving elements

boolean retrieve_element (out any element) raises (IteratorInvalid,
IteratorInBetween);

Description

Retrieves the element pointed and returns it via the output parameter element.

Return value

Returns true if an element was retrieved.

Exceptions

The iterator must point to an element of the collection; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

Note – Whether a copy of the element is returned or the element itself depends on the
element type represented by the any. If it is an object, a reference to the object in the
collection is returned. If the element type is a non-object type, a copy of the eleme
returned. In case of element type object, do not manipulate the element or the ke
the element in the collection in a way that changes the positioning property of the
element.

boolean retrieve_element_set_to_next (out any element) raises (IteratorInvalid,
IteratorInBetween);

Description

Retrieves the element pointed to and returns it via the output parameter element.
The iterator is moved to the next element in iteration order. If there is a next
element more is set to true. If there are no more next elements, the iterator is
invalidated and more is set to false.

Return value

Returns true if an element was retrieved.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-89

17

ere

boolean retrieve_next_n_elements (in unsigned long n, out AnySequence
result, out boolean more) raises (IteratorInvalid, IteratorInBetween);

Description

Retrieves at most the next n elements in iteration order of the iterator’s collection
and returns them as sequence of anys via the output parameter result. Counting
starts with the element the iterator points to. The iterator is moved behind the last
element retrieved. If there is an element behind the last element retrieved, more is
set to true. If there are no more elements behind the last element retrieved or th
are less than n elements for retrieval, the iterator is invalidated and more is set to
false. If the value of n is 0, all elements in the collection are retrieved until the end
is reached.

Return value

Returns true if at least one element is retrieved.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

boolean not_equal_retrieve_element_set_to_next (in Iterator test, out
any element) raises (IteratorInvalid, IteratorInBetween);

Description

Compares the given iterator test with this iterator.

• If they are not equal, the element pointed to by this iterator is retrieved and
returned via the output parameter element, the iterator is moved to the next
element, and true is returned.

• If they are equal, the element pointed to by this iterator is retrieved and
returned via the output parameter element, the iterator is not moved to the
next element, and false is returned.

Return value

Returns true if this iterator is not equal to the test iterator at the beginning of the
operation.

Exceptions

The iterator and the given iterator test each must be valid and point to an element;
otherwise, the exception IteratorInvalid or IteratorInBetween is raised.

Removing elements

void remove_element () raises (IteratorInvalid, IteratorInBetween);
17-90 CORBAservices: Common Object Services Specification

17

ehind
Description

Removes the element pointed to by this iterator and sets the iterator in-between.

Exceptions

The iterator must be valid and point to an element of the collection; otherwise, the
exception IteratorInvalid or IteratorInBetween is raised.

The iterator must not have the const designation; otherwise, the exception
IteratorInvalid is raised.

Side effects

Other valid iterators pointing to the removed element go in-between.

All other iterators keep their state.

boolean remove_element_set_to_next() (IteratorInvalid, IteratorInBetween);

Description

Removes the element pointed to by this iterator and moves the iterator to the next
element.

Return value

Returns true if a next element exists.

Exceptions

The iterator must be valid and point to an element of the collection; otherwise, the
exception IteratorInvalid is raised.

The iterator must not have the const designation; otherwise, the exception
IteratorInvalid is raised.

Side effects

Other valid iterators pointing to the removed element go in-between.

All other iterators keep their state.

boolean remove_next_n_elements (in unsigned long n, out unsigned long
actual_number) raises (IteratorInvalid, IteratorInBetween);

Description

Removes at most the next n elements in iteration order of the iterator’s collection.
Counting starts with the element the iterator points to. The iterator is moved to the
next element behind the last element removed. If there are no more elements b
the last element removed or there are less than n elements for removal, the iterator
Object Collection Service: v1.0 The CosCollection Module July 1997 17-91

17

is invalidated. If the value of n is 0, all elements in the collection are removed until
the end is reached. The output parameter actual_number is set to the actual
number of elements removed. If the value of n is 0, all elements in the collection
are removed until the end is reached.

Return value

Returns true if the iterator is not invalidated.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The iterator must not have the const designation; otherwise, the exception
IteratorInvalid is raised.

Side effects

Other valid iterators pointing to removed elements go in-between.

All other iterators keep their state.

boolean not_equal_remove_element_set_to_next(in iterator test)
(IteratorInvalid, IteratorInBetween);

Description

Compares this iterator with the given iterator test. If they are not equal the element
this iterators points to is removed and the iterator is set to the next element, and
true is returned. If they are equal the element pointed to is removed, the iterator is
set in-between, and false is returned.

Return value

Returns true if this iterator and the given iterator test are not equal when the
operations starts.

Exception

This iterator and the given iterator test must be valid otherwise the exception
IteratorInvalid or IteratorInBetween is raised.

This iterator and the given iterator test must not have a const designation otherwise
the exception IteratorInvalid is raised.

Side effects

Other valid iterators pointing to removed elements go in-between.

All other iterators keep their state.
17-92 CORBAservices: Common Object Services Specification

17

ment;

ated.

ment;
Replacing elements

void replace_element (in any element) raises (IteratorInvalid,
IteratorInBetween, ElementInvalid);

Description

Replaces the element pointed to by the given element.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The iterator must not have a const designation; otherwise, the exception
IteratorInvalid is raised.

The element must be of the expected element type; otherwise, the ElementInvalid
exception is raised.

The given element must have the same positioning property as the replaced ele
otherwise, the exception ElementInvalid is raised.

For positioning properties, see “The Collection Interface” on page 17-21.

boolean replace_element_set_to_next(in any element) raises (IteratorInvalid,
IteratorInBetween, ElementInvalid);

Description

Replaces the element pointed to by this iterator by the given element and sets the
iterator to the next element. If there are no more elements, the iterator is invalid

Return value

 Returns true if there is a next element.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The iterator must not have a const designation; otherwise, the exception
IteratorInvalid is raised.

The element must be of the expected element type; otherwise, the ElementInvalid
exception is raised.

The given element must have the same positioning property as the replaced ele
otherwise, the exception ElementInvalid is raised.

For positioning properties, see“The Collection Interface” on page 17-21.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-93

17

 are
nts
s

in

is
boolean replace_next_n_elements(in AnySequence elements, out unsigned
long actual_number) raises (IteratorInvalid, IteratorInBetween, ElementInvalid);

Description

Replaces at most as many elements in iteration order as given in elements by the
given elements. Counting starts with the element the iterator points to. If there
less elements in the collection left to be replaced than the given number of eleme
as many elements as possible are replaced and the actual number of element
replaced is returned via the output parameter actual_number.

The iterator is moved to the next element behind the last element replaced. If there
are no more elements behind the last element replaced or the number of elements
the collection to be replaced is less than the number given elements, the iterator is
invalidated.

Return value

Returns true if there is another element behind the last element replaced.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The elements given must be of the expected type; otherwise, the exception
ElementInvalid is raised.

For each element the positioning property of the replaced element must be the same
as that of the element replacing it; otherwise, the exception ElementInvalid is
raised.

For positioning property see “The Collection Interface” on page 17-21.

boolean not_equal_replace_element_set_to_next (in Iterator test, in any
element) raises (IteratorInvalid,IteratorInBetween, ElementInvalid);

Description

Compares this iterator and the given iterator test. If they are not equal, the element
pointed to by this iterator is replaced by the given element, the iterator is set to the
next element, and true is returned. If they are equal, the element pointed to by th
iterator is replaced by the given element, the iterator is not set to the next element,
and false is returned.

Return value

Returns true if this iterator and the given iterator test are not equal before the
operations starts.
17-94 CORBAservices: Common Object Services Specification

17

ment;

ady

n
e
Exceptions

This iterator and the given iterator must be valid and point to an element each;
otherwise, the exception IteratorInvalid or IteratorInBetween is raised.

This iterator must not have a const designation; otherwise, the exception
IteratorInvalid is raised.

The element must be of the expected element type; otherwise, the ElementInvalid
exception is raised.

The given element must have the same positioning property as the replaced ele
otherwise, the exception ElementInvalid is raised.

For positioning property, see “The Collection Interface” on page 17-21.

Adding elements

boolean add_element_set_iterator (in any element) (ElementInvalid);

Description

Adds an element to the collection that this iterator points to and sets the iterator to
the added element. The exact semantics depends on the properties of the collection
for which this iterator is created.

If the collection supports unique elements or keys and the element or key is alre
contained in the collection, adding is ignored and the iterator is just set to the
element or key already contained. In sequential collections, the element is always
added as last element. In sorted collections, the element is added at a position
determined by the element or key value.

Return value

Returns true if the element was added. The element to be added must be of the
expected type; otherwise, the exception ElementInvalid is raised.

Exceptions

If the collection is a Map and contains an element with the same key as the give
element, then this element has to be equal to the given element; otherwise, th
exception ElementInvalid is raised.

Side effects

All other iterators keep their state.

void add_n_elements_set_iterator (in AnySequence elements, out unsigned
long actual_number) (ElementInvalid);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-95

17

antics

r
Description

Adds the given elements to the collection that this iterator points to. The elements
are added in the order of the input sequence of elements and the delivered sem
is consistent with the semantics of the add_element_set_iterator operation. It is
essentially a sequence of add_element_set_iterator operations. The output
parameter actual_number is set to the number of elements added.

Setting iterator state

void invalidate ();

Description

Sets the iterator to the state invalid, that is, “pointing to nothing.” You may also say
that the iterator, in some sense, is set to “NULL.”

Testing iterators

Whenever there is a precondition for an iterator operation to be checked, there is a test
operation provided that enables the user to avoid raising an exception.

boolean is_valid ();

Return value

Returns true if the Iterator is valid, that is points to an element of the collection o
is in the state in-between.

boolean is_for (in Collection collector);

Return value

Returns true if this iterator can operate on the given collection.

boolean is_const ();

Return value

Returns true if this iterator is created with “const” designation.

boolean is_in_between ();

Return value

Returns true if the iterator is in the state in-between.
17-96 CORBAservices: Common Object Services Specification

17

ise,
boolean is_equal (in Iterator test) raises (IteratorInvalid);

Return value

Returns true if the given iterator points to the identical element as this iterator.

Exceptions

The given iterator must belong to the same collection as the iterator; otherwise, the
exception IteratorInvalid is raised.

Cloning, Assigning, Destroying iterators

Iterator clone();

Description

Creates a copy of this iterator.

void assign (in Iterator from_where) raises (IteratorInvalid)

Description

Assigns the given iterator to this iterator.

Exceptions

The given iterator must be created for the same collection as this iterator; otherw
the exception IteratorInvalid is raised.

void destroy();

Description

Destroys this iterator.

The OrderedIterator Interface

interface OrderedIterator: Iterator {

// moving iterators

boolean set_to_last_element ();

boolean set_to_previous_element() raises (IteratorInvalid);

boolean set_to_nth_previous_element(in unsigned long n) raises
(IteratorInvalid);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-97

17
void set_to_position (in unsigned long position) raises
(PositionInvalid);

// computing iterator position

unsigned long position () raises (IteratorInvalid);

// retrieving elements

boolean retrieve_element_set_to_previous(out any element, out
boolean more) raises (IteratorInvalid, IteratorInBetween);

boolean retrieve_previous_n_elements (in unsigned long n, out
AnySequence result, out boolean more) raises (IteratorInvalid,
IteratorInBetween);

boolean not_equal_retrieve_element_set_to_previous (in Iterator
test, out any element) raises (IteratorInvalid, IteratorInBetween);

// removing elements

boolean remove_element_set_to_previous() raises (IteratorInvalid,
IteratorInBetween);

boolean remove_previous_n_elements (in unsigned long n, out unsigned
long actual_number) raises (IteratorInvalid, IteratorInBetween);

boolean not_equal_remove_element_set_to_previous(in Iterator test)
raises (IteratorInvalid, IteratorInBetween);

// replacing elements

boolean replace_element_set_to_previous(in any element) raises
(IteratorInvalid, IteratorInBetween, ElementInvalid);

boolean replace_previous_n_elements(in AnySequence elements, out
unsigned long actual_number) raises (IteratorInvalid,
IteratorInBetween, ElementInvalid);

boolean not_equal_replace_element_set_to_previous (in Iterator
test, in any element) raises (IteratorInvalid,IteratorInBetween,
ElementInvalid);

// testing iterators

boolean is_first ();

boolean is_last ();

boolean is_for_same (in Iterator test);

boolean is_reverse ();

};

Moving iterators

boolean set_to_last_element();
17-98 CORBAservices: Common Object Services Specification

17

ator

he
e

irst
Description

Sets the iterator to the last element of the collection in iteration order. If the
collection is empty (if no last element exists) the given iterator is invalidated.

Return value

Returns true if the collection is not empty.

boolean set_to_previous_element() raises (IteratorInvalid);

Description

Sets the iterator to the previous element in iteration order, or invalidates the iter
if no such element exists. If the iterator is in the state in-between, the iterator is set
to its “potential previous” element.

Return value

Returns true if a previous element exists.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

boolean set_to_nth_previous_element (in unsigned long n) raises
(IteratorInvalid);

Description

Sets the iterator to the element n movements away in reverse collection iteration
order or invalidates the iterator if there is no such element. If the iterator is in t
state in-between, the movement to the “potential previous” element is the first of th
n movements.

Return value

Returns true if there is such an element.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

void set_to_position (in unsigned long position) raises (PositionInvalid);

Description

Sets the iterator to the element at the given position. Position 1 specifies the f
element.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-99

17

 is
Exceptions

Position must be a valid position (i.e., greater than or equal to 1 and less than or
equal to number_of_elements()); otherwise, the exception PositionInvalid is
raised.

Computing iterator position

unsigned long position () raises (IteratorInvalid, IteratorInBetween);

Description

Determines and returns the current position of the iterator. Position 1 specifies the
first element.

Exceptions

The iterator must be pointing to an element of the collection; otherwise, the
exception IteratorInvalid respectively IteratorInBetween is raised.

Retrieving elements

boolean retrieve_element_set_to_previous (out any element, out boolean
more) raises (IteratorInvalid, IteratorInBetween);

Description

Retrieves the element pointed to and returns it via the output parameter element.
The iterator is set to the previous element in iteration order. If there is a previous
element, more is set to true. If there are no more previous elements, the iterator
invalidated and more is set to false.

Return value

Returns true if an element was returned.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

boolean retrieve_previous_n_elements(in unsigned long n, out AnySequence
result, out boolean more) raises (IteratorInvalid, IteratorInBetween);
17-100 CORBAservices: Common Object Services Specification

17

less

t;
Description

Retrieves at most the n previous elements in iteration order of this iterator’s
collection and returns them as sequence of anys via the output parameter result.
Counting starts with the element the iterator is pointing to. The iterator is moved to
the element before the last element retrieved.

• If there is an element before the last element retrieved, more is set to true.

• If there are no more elements before the last element retrieved or there are
than n elements for retrieval, the iterator is invalidated and more is set to false.

• If the value of n is 0, all elements in the collection are retrieved until the end is
reached.

Return value

Returns true if at least one element is retrieved.

Exceptions

The iterator must be valid and pointing to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

boolean not_equal_retrieve_element_set_to_previous (in Iterator test, out any
element) raises (IteratorInvalid, IteratorInBetween);

Description

Compares the given iterator test with this iterator.

• If they are not equal, the element pointed to by this iterator is retrieved and
returned via the output parameter element, the iterator is moved to the previous
element, and true is returned.

• If they are equal, the element pointed to by this iterator is retrieved and
returned via the output parameter element, the iterator is not moved to the
previous element, and false is returned.

Return value

Returns true if this iterator is not equal to the test iterator at the beginning of the
operation.

Exceptions

The iterator and the given iterator test each must be valid and point to an elemen
otherwise, the exception IteratorInvalid or IteratorInBetween is raised.

Replacing elements

boolean replace_element_set_to_previous(in any element) raises
(IteratorInvalid, IteratorInBetween, ElementInvalid);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-101

17

is

ment;

s

placed

re no
e
r is
Description

Replaces the element pointed to by this iterator by the given element and sets the
iterator to the previous element. If there are no previous elements, the iterator
invalidated.

Return value

Returns true if there is a previous element.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The iterator must not have a const designation; otherwise, the exception
IteratorInvalid is raised.

The element must be the expected element type; otherwise, the ElementInvalid
exception is raised.

The given element must have the same positioning property as the replaced ele
otherwise, the exception ElementInvalid is raised.

For positioning properties, see“The Collection Interface” on page 17-21.

boolean replace_previous_n_elements(in AnySequence elements, out
unsigned long actual_number) raises (IteratorInvalid, IteratorInBetween,
ElementInvalid);

Description

At most, replaces as many elements in reverse iteration order as given in
elements. Counting starts with the element the iterator points to. If there are les
elements in the collection left to be replaced than the given number of elements as
many elements as possible are replaced and the actual number of elements re
is returned via the output parameter actual_number.

The iterator is moved to the element before the last element replaced. If there a
more elements before the last element replaced or the number of elements in th
collection to be replaced is less than the number of given elements, the iterato
invalidated.

Return value

Returns true if there is an element before the last element replaced.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.
17-102 CORBAservices: Common Object Services Specification

17

ven

ment;
The elements given must be of the expected type; otherwise, the exception
ElementInvalid is raised.

For each element the positioning property of the replaced element must be the same
as that of the element replacing it; otherwise, the exception ElementInvalid is
raised.

For positioning property, see “The Collection Interface” on page 17-21.

boolean not_equal_replace_element_set_to_previous (in Iterator test, in any
element) raises (IteratorInvalid,IteratorInBetween, ElementInvalid);

Description

Compares this iterator and the given iterator test.
• If they are not equal, the element pointed to by this iterator is replaced by the

given element, the iterator is set to the previous element, and true is returned.

• If they are equal, the element pointed to by this iterator is replaced by the gi
element, the iterator is not set to the previous element, and false is returned.

Return value

Returns true if this iterator and the given iterator test are not equal before the
operations starts.

Exceptions

This iterator and the given iterator each must be valid and point to an element;
otherwise, the exception IteratorInvalid or IteratorInBetween is raised.

This iterator must not have a const designation; otherwise, the exception
IteratorInvalid is raised.

The element must be of the expected element type; otherwise, the ElementInvalid
exception is raised.

The given element must have the same positioning property as the replaced ele
otherwise, the exception ElementInvalid is raised.

For positioning property, see “The Collection Interface” on page 17-21.

Removing elements

boolean remove_element_set_to_previous() raises (IteratorInvalid,
IteratorInBetween);

Description

Removes the element pointed to by this iterator and moves the iterator to the
previous element.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-103

17

less
Return value

Returns true if a previous element exists.

Exceptions

The iterator must be valid and point to an element of the collection; otherwise, the
exception IteratorInvalid is raised.

The iterator must not have the const designation; otherwise, the exception
IteratorInvalid is raised.

Side effects

Other valid iterators pointing to the removed element go in-between.

All other iterators keep their state.

boolean remove_previous_n_elements (in unsigned long n, out unsigned long
actual_number) raises (IteratorInvalid, IteratorInBetween);

Description

Removes at most the previous n elements in reverse iteration order of the iterator’s
collection. Counting starts with the element the iterator points to. The iterator is
moved to the element before the last element removed.

• If there are no more elements before the last element removed or there are
than n elements for removal, the iterator is invalidated.

• If the value of n is 0, all elements in the collection are removed until the
beginning is reached. The output parameter actual_number is set to the actual
number of elements removed.

Return value

Returns true if the iterator is not invalidated.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The iterator must not have the const designation; otherwise, the exception
IteratorInvalid is raised.

Side effects

Other valid iterators pointing to removed elements go in-between.

All other iterators keep their state.

boolean not_equal_remove_element_set_to_previous(in Iterator test) raises
(IteratorInvalid, IteratorInBetween);
17-104 CORBAservices: Common Object Services Specification

17

r is
Description

Compares this iterator with the given iterator test.

• If they are not equal, the element this iterator points to is removed, the iterato
set to the previous element, and true is returned.

• If they are equal, the element pointed to is removed, the iterator is set in-between,
and false is returned.

Return value

Returns true if this iterator and the given iterator test are equal when the operation
starts.

Exceptions

This iterator and the given iterator test must be valid; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

This iterator and the given iterator test must not have a const designation;
otherwise, the exception IteratorInvalid is raised.

Side effects

Other valid iterators pointing to the removed element go in-between.

All other iterators keep their state.

Testing iterators

boolean is_first ();

Return value

Returns true if the iterator points to the first element of the collection it belongs to.

boolean is_last ();

Return value

Returns true if the iterator points to the last element of the collection it belongs to.

boolean is_for_same (in Iterator test);

Return value

Returns true if the given iterator is for the same collection as this.

boolean is_reverse();
Object Collection Service: v1.0 The CosCollection Module July 1997 17-105

17

l
Return value

Returns true if the iterator is created with “reverse” designation.

The SequentialIterator Interface

interface SequentialIterator : OrderedIterator {

// adding elements

boolean add_element_as_next_set_iterator (in any element)
raises(IteratorInvalid, ElementInvalid);

void add_n_elements_as_next_set_iterator(in AnySequence elements)
raises(IteratorInvalid, ElementInvalid);

boolean add_element_as_previous_set_iterator(in any element)
raises(IteratorInvalid, ElementInvalid) ;

void add_n_elements_as_previous_set_iterator(in AnySequence
elements) raises(IteratorInvalid, ElementInvalid);

};

Adding elements

boolean add_element_as_next_set_iterator (in any element)
raises(IteratorInvalid, ElementInvalid);

Description

Adds the element to the collection that this iterator points to (in iteration order)
behind the element this iterator points to and sets the iterator to the element added.
If the iterator is in the state in-between, the element is added before the “potentia
next” element.

Return value

Returns true if the element is added.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

The element added must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All other iterators keep their state.

void add_n_elements_as_next_set_iterator(in AnySequence elements)
raises(IteratorInvalid, ElementInvalid);
17-106 CORBAservices: Common Object Services Specification

17

al

nt

al
Description

Adds the given elements to the collection that this iterator points to behind the
element the iterator points to. The behavior is the same as n times calling the
operation add_element_as_next_set_iterator().

If the iterator is in the state in-between, the elements are added before the “potenti
next” element.

The elements are added in the order given in the input sequence.

boolean add_element_as_previous_set_iterator(in any element)
raises(IteratorInvalid, ElementInvalid)

Description

Adds the element to the collection that this iterator points to (in iteration order)
before the element that this iterator points to and sets the iterator to the eleme
added. If the iterator is in the state in-between, the element is added after the
“potential previous” element.

Return value

Returns true if the element is added.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

The element added must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All other iterators keep their state.

void add_n_elements_as_previous_set_iterator(in AnySequence elements)
raises(IteratorInvalid, ElementInvalid);

Description

Adds the given elements to the collection that this iterator points to previous to the
element the iterator points to. The behavior is the same as n times calling the
operation add_element_as_previous_set_to_next().

If the iterator is in the state in-between, the elements are added behind the “potenti
previous” element.

The elements are added in the reverse order given in the input sequence.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-107

17

the

y,
he

The KeyIterator Interface

interface KeyIterator : Iterator {

// moving the iterators

boolean set_to_element_with_key (in any key) raises(KeyInvalid);

boolean set_to_next_element_with_key (in any key)
raises(IteratorInvalid, KeyInvalid);

boolean set_to_next_element_with_different_key() raises
(IteratorInBetween, IteratorInvalid);

// retrieving the keys

boolean retrieve_key (out any key) raises (IteratorInBetween,
IteratorInvalid);

boolean retrieve_next_n_keys (out AnySequence keys) raises
(IteratorInBetween, IteratorInvalid);

};

 Moving iterators

boolean set_to_element_with_key (in any key) raises (KeyInvalid);

Description

Locates an element in the collection with the same key as the given key. Sets
iterator to the element located or invalidates the iterator if no such element exists.

If the collection contains several such elements, the first element in iteration order
is located.

Return value

Returns true if an element was found.

Exceptions

The key must be of the expected type; otherwise, the exception KeyInvalid is raised.

boolean set_to_next_element_with_key (in any key) raises (IteratorInvalid,
KeyInvalid);

Description

Locates the next element in iteration order with the same key value as the given ke
starting search at the element next to the one pointed to by the iterator. Sets t
iterator to the element located.

• If there is no such element, the iterator is invalidated.

• If the iterator is in the state in-between, locating starts at the iterator’s “potential
next” element.
17-108 CORBAservices: Common Object Services Specification

17

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

The key must be of the expected type; otherwise, the exception KeyInvalid is raised.

boolean set_to_next_element_with_different_key () raises (IteratorInBetween,
IteratorInvalid)

Description

Locates the next element in iteration order with a key different from the key of the
element pointed to by the iterator, starting the search with the element next to the
one pointed to by the iterator. Sets the iterator to the located element.

If no such element exists, the iterator is invalidated.

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInBetween respectively IteratorInvalid is raised.

Retrieving keys

boolean key (out any key) raises(IteratorInvalid,IteratorInBetween);

Description

Retrieves the key of the element this iterator points to and returns it via the output
parameter key.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

boolean retrieve_next_n_keys (in unsigned long n, out AnySequence keys)
raises(IteratorInvalid, IteratorInbetween)
Object Collection Service: v1.0 The CosCollection Module July 1997 17-109

17

s

e
ts. If
Description

Retrieves the keys of at most the next n elements in iteration order, sets the iterator
to the element behind the last element from which a key is retrieved, and returns
them via the output parameter keys. Counting starts with the element this iterator
points to.

• If there is no element behind the last element from which a key is retrieved or
there are less then n elements to retrieve keys from the iterator is invalidated.

• If the value of n is 0, the keys of all elements in the collection are retrieved until
the end is reached.

Return value

Returns true if at least one key is retrieved.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The EqualityIterator Interface

interface EqualityIterator : Iterator {

// moving the iterators

boolean set_to_element_with_value(in any element)
raises(ElementInvalid);

boolean set_to_next_element_with_value(in any element)
raises(IteratorInvalid, ElementInvalid);

boolean set_to_next_element_with_different_value() raises
(IteratorInBetween, IteratorInvalid);

};

Moving iterators

boolean set_to_element_with_value (in any element) raises(ElementInvalid);

Description

Locates an element in the collection that is equal to the given element. Sets th
iterator to the located element or invalidates the iterator if no such element exis
the collection contains several such elements, the first element in iteration order is
located.

Return value

Returns true if an element is found.
17-110 CORBAservices: Common Object Services Specification

17

iven

ted
Exceptions

The element must be of the expected type; otherwise, the expected ElementInvalid
is raised.

boolean set_to_next_element_with_value(in any element) raises
(IteratorInvalid, ElementInvalid);

Description

Locates the next element in iteration order in the collection that is equal to the g
element, starting at the element next to the one pointed to by the iterator. Sets the
iterator to the located element in the collection.

• If there is no such element, the iterator is invalidated.

• If the iterator is in the state in-between, locating is started at the iterator’s
“potential next” element.

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

The element must be of the expected type; otherwise, the exception ElementInvalid
is raised.

boolean set_to_next_different_element () raises (IteratorInvalid,
IteratorInBetween);

Description

Locates the next element in iteration order that is different from the element poin
to. Sets the iterator to the located element, or if no such element exists, the iterator
is invalidated.

Return value

Returns true if the next different element was found.

Exceptions

The iterator must be valid and point to an element of the collection; otherwise, the
exception IteratorInvalid or IteratorInBetween is raised.

The EqualityKeyIterator Interface

interface EqualityKeyIterator : EqualityIterator, KeyIterator {};
Object Collection Service: v1.0 The CosCollection Module July 1997 17-111

17

ment
This interface just combines the two interfaces EqualityIterator (see “The
EqualityIterator Interface” on page 17-110) and KeyIterator (see “The KeyIterator
Interface” on page 17-108).

The SortedIterator Interface

interface SortedIterator : OrderedIterator {};

This interface does not add any new operations but new semantics to the
operations.

The KeySortedIterator Interface

// enumeration type for specifying ranges

enum LowerBoundStyle {equal_lo, greater, greater_or_equal};

enum UpperBoundStyle {equal_up, less, less_or_equal};

interface KeySortedIterator : KeyIterator, SortedIterator

{

// moving the iterators

boolean set_to_first_element_with_key (in any key, in
LowerBoundStyle style) raises(KeyInvalid);

boolean set_to_last_element_with_key (in any key, in UpperBoundStyle
style) raises (KeyInvalid);

boolean set_to_previous_element_with_key (in any key)
raises(IteratorInvalid, KeyInvalid);

boolean set_to_previous_element_with_different_key() raises
(IteratorInBetween, IteratorInvalid);

// retrieving keys

boolean retrieve_previous_n_keys(out AnySequence keys) raises
(IteratorInBetween, IteratorInvalid);

};

Moving iterators

boolean set_to_first_element_with_key (in any key, in LowerBoundStyle style)
raises (KeyInvalid);

Description

Locates the first element in iteration order in the collection with key:

• equal to the given key, if style is equal_lo

• greater or equal to the given key, if style is greater_or_equal

• greater than the given key, if style is greater

Sets the iterator to the located element, or invalidates the iterator if no such ele
exists.
17-112 CORBAservices: Common Object Services Specification

17

ment

ey,

Return value

Returns true if an element was found.

Exceptions

The key must be of the expected type; otherwise, the exception KeyInvalid is raised.

boolean set_to_last_element_with_key(in any key, in UpperBoundStyle style);

Description

Locates the last element in iteration order in the collection with key:

• equal to the given key, if style is equal_up

• less or equal to the given key, if style is less_or_equal
• less than the given key, if style is less

Sets the iterator to the located element, or invalidates the iterator if no such ele
exists.

Return value

Returns true if an element was found.

Exceptions

The key must be of the expected type; otherwise, the exception KeyInvalid is raised.

boolean set_to_previous_element_with_key (in any key) raises(IteratorInvalid,
KeyInvalid);

Description

Locates the previous element in iteration order with a key equal to the given k
beginning at the element previous to the one pointed to and moving in reverse
iteration order through the elements. Sets the iterator to the located element, or
invalidates the iterator if no such element exists. If the iterator is in the state in-
between, the search begins at the iterator’s “potential previous” element.

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

The key must be of the expected type; otherwise, the exception KeyInvalid is raised.

boolean set_to_previous_element_with_different_key() raises
(IteratorInBetween, IteratorInvalid);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-113

17

inted
Description

Locates the previous element in iteration order with a key different from the key of
the element pointed to, beginning search at the element previous to the one po
to and moving in reverse iteration order through the elements. Sets the iterator to
the located element, or invalidates the iterator if no such element exists.

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInBetween or IteratorInvalid is raised.

Retrieving keys

boolean retrieve_previous_n_keys (in unsigned long n, out AnySequence keys)
raises(IteratorInvalid, IteratorInbetween)

Description

Retrieves the keys of at most the previous n elements in iteration order, sets the
iterators to the element before the last element from which a key is retrieved, and
returns them via the output parameter keys. Counting starts with the element this
iterator points to.

• If there is no element previous the one from which the nth key is retrieved or if
there are less than n elements to retrieve keys from, the iterator is invalidated.

• If the value of n is 0, the keys of all elements in the collection are retrieved until
the beginning is reached.

Return value

Returns true if at least one key is retrieved.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The EqualitySortedIterator Interface

interface EqualitySortedIterator : EqualityIterator, SortedIterator
{

// moving the iterator

boolean set_to_first_element_with_value (in any element, in
LowerBoundStyle style) raises (ElementInvalid);

boolean set_to_last_element_with_value (in any element, in
UpperBoundStyle style) raises (ElementInvalid);
17-114 CORBAservices: Common Object Services Specification

17

ment

ment
boolean set_to_previous_element_with_value (in any elementally)
raises (IteratorInvalid, ElementInvalid);

boolean set_to_previous_element_with_different_value() raises
(IteratorInBetween, IteratorInvalid);

};

Moving iterators

boolean set_to_first_element_with_value (in any element, in LowerBoundStyle
style) raises(ElementInvalid);

Description

Locates the first element in iteration order in the collection with value:

• equal to the given element value, if style is equal_lo

• greater or equal to the given element value, if style is greater_or_equal

• greater than the given element value, if style is greater

Sets the iterator to the located element, or invalidates the iterator if no such ele
exists.

Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exception ElementInvalid
is raised.

boolean set_to_last_element_with_value(in any element, in UpperBoundStyle
style) raises (ElementInvalid);

Description

Locates the last element in iteration order in the collection with value:

• equal to the given element value, if style is equal_up

• less or equal to the given element value, if style is less_or_equal

• less than the given element value, if style is less

Sets the iterator to the located element, or invalidates the iterator if no such ele
exists.

Return value

Returns true if an element was found.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-115

17

 and

or is

ists.
Exceptions

The element must be of the expected type; otherwise, the exception ElementInvalid
is raised.

boolean set_to_previous_element_with_value(in any element)
raises(IteratorInvalid, ElementInvalid);

Description

Locates the previous element in iteration order with a value equal to the given
element value, beginning search at the element previous to the one pointed to
moving in reverse iteration order through the elements. Sets the iterator to the
located element, or invalidates the iterator if no such element exists. If the iterat
in the state in-between, the search begins at the iterator’s “potential previous”
element.

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

The element must be of the expected type; otherwise, the exception ElementInvalid
is raised.

boolean set_to_previous_element_with_different_value() raises
(IteratorInBetween, IteratorInvalid);

Description

Locates the previous element in iteration order with a value different from the value
of the element pointed to, beginning search at the element previous to the one
pointed to and moving in reverse iteration order through the elements. Sets the
iterator to the located element, or invalidates the iterator if no such element ex

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInBetween or IteratorInvalid is raised.

The EqualityKeySortedIterator Interface

interface EqualityKeySortedIterator: EqualitySortedIterator,
KeySortedIterator {};
17-116 CORBAservices: Common Object Services Specification

17

l
This interface combines the interfaces KeySortedIterator and
EqualitySortedIterator. This interface does not add any new operations, but new
semantics.

The EqualitySequentialIterator Interface

interface EqualitySequentialIterator : EqualityIterator,
SequentialIterator
{

// locating elements

boolean set_to_first_element_with_value (in any element) raises
(ElementInvalid);

boolean set_to_last_element_with_value (in any element) raises
(ElementInvalid);

boolean set_to_previous_element_with_value (in any element) raises
(ElementInvalid);

};

Moving Iterators

boolean set_to__first_element_with_value (in any element)
raises(ElementInvalid);

Description

Sets the iterator to the first element in iteration order in the collection that is equa
to the given element or invalidates the iterator if no such element exists.

Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exception ElementInvalid
is raised.

boolean set_to_last_element (in any element) raises(ElementInvalid);

Description

Sets the iterator to the last element in iteration order in the collection that is equal
to the given element or invalidates the iterator if no such element exists.

Return value

Returns true if an element was found.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-117

17

iven

Exceptions

The element must be of the expected type; otherwise, the exception ElementInvalid
is raised.

boolean set_to_previous_element_with_value (in any element) raises
(IteratorInvalid, ElementInvalid);

Description

Sets the iterator to the previous element in iteration order that is equal to the g
element, beginning search at the element previous to the one specified by the
iterator and moving in reverse iteration order through the elements. Sets the iterator
to the located element or invalidates the iterator if no such element exists. If the
iterator is in the state in-between, search starts at the “potential precious” element.

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

The element must be of the expected type; otherwise, the exception ElementInvalid
is raised.

17.5.10 Function Interfaces

The Operations Interface

Interface Operations {

// element type specific information

readonly attribute CORBA::TypeCode element_type;

boolean check_element_type (in any element);

boolean equal (in any element1, in any element2);

long compare (in any element1, in any element2);

unsigned long hash (in any element, in unsigned long value);

// key retrieval

any key (in any element);

// key type specific information

readonly attribute CORBA::TypeCode key_type;

boolean check_key_type (in any key);
17-118 CORBAservices: Common Object Services Specification

17

.

f
t or

age

boolean key_equal (in any key1, in any key2);

long key_compare (in any key1, in any key2);

unsigned long key_hash (in any thisKey, in unsigned long value);

// destroying

void destroy();

};

The function interface Operations is used to pass a number of other user-
defined element type specific information to the collection implementation.

The first kind of element type specific information passed is used for typechecking.
There are attributes specifying the element and key type expected in a given collection
In addition to the type information there are two typechecking operations which allow
customizing the typechecking in a user-defined manner. The “default semantics” o
these operations is a simple check on whether the type code of the given elemen
key exactly matches the type code specified in the element key type attribute.

Dependent on the properties as represented by a collection interface the respective
implementation relies on some element type specific or key type specific information
to be passed to it. For example one has to pass the information “element comparison”
to implementation of a SortedSet or “key equality” to the implementation of a
KeySet to guarantee uniqueness of keys. To pass this information, the Operations
interface is used.

The third use of this interface is to pass element or key type specific
information relevant for different categories of implementations. (Performing)
implementations of associative collections essentially can be partitioned into the
categories comparison-based or hashing-based. An AVL-tree implementation for a
KeySet (for example) is key-comparison-based; therefore, it relies on key comparison
defined and a hash table implementation of KeySet hashing-based (which relies on the
information how a hash key values). Passing this information is the third kind of us
of the Operations interface.

The operations defined in the Operations interface are in summary:

• element type checking and key type checking

• element equality and the ordering relationship on elements

• key equality and ordering relationship on keys

• key access

• hash information on elements and keys

In order to pass this information to the collection, a user has to derive and implement
an interface from the interface Operations. Which operations you have to implement
depends on the collection interface and the implementation category you want to use.
An instance of this interface is passed to a collection at creation time and then can be
used by the implementation.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-119

17

t

t a

ed
Ownership for an Operations instance is passed to the collection at creation
time. That is, the same instance of Operations respectively a derived interface canno
be used in another collection instance. The collection is responsible for destroying the
Operations instance when the collection is destroyed.

Operations only defines an abstract interface. Specialization and implementation are
part of the application development as is the definition and implementation of
respective factories and are not listed in this specification.

Element type specific operations

readonly attribute CORBA::TypeCode element_type;

Description

Specifies the type of the element to be collected.

boolean check_element_type (in any element);

Description

A collection implementation may rely on this operation being defined to use it
for its type checking. A default implementation may be a simple test whether
the type code of the given element exactly matches element_type. For object
references, sometimes a check on equality of the type codes is not desired bu
check on whether the type of the given element is a specialization of the
element_type.

Return value

Returns true if the given element passed the user-defined element type-
checking.

boolean equal (in any element1, in any element2);

Return value

Returns true if element1 is equal to element2 with respect to the user-defined
semantics of element equality.

Note – If case compare is defined, the equal operation has to be consistently defin
(i.e., is implied by the defined element comparison).

long compare (in any element1, in any element2);
17-120 CORBAservices: Common Object Services Specification

17

ess
Return value

Returns a value less than zero if element1 < element2, zero if the values are
equal, and a value greater than zero if element1 > element2 with respect to the
user-defined ordering relationship on elements.

unsigned long hash (in any element, in unsigned long value);

Return value

Returns a user-defined hash value for the given element. The given value specifies
the size of the hashtable. This information can be used for the implementation of
more or less sophisticated hash functions. Computed hash values have to be l
than value.

Note – The definition of the hash function has to be consistent with the defined
element equality (i.e., if two elements are equal with respect to the user-defined
element equality they have to be hashed to the same hash value).

Computing the key

any key (in any element);

Description

Computes the (user-defined) key of the given element.

Key type specific information

readonly attribute CORBA::TypeCode key_type;

Description

Specifies the type of the key of the elements to be collected.

boolean check_key_type (in any key);

Return value

Returns true if the given key passed the user-defined element type-checking.

boolean key_equal (in any key1, in any key2);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-121

17

f

t

an

y
t
Return value

Returns true if key1 is equal to key2 with respect to the user-defined semantics o
key equality.

Note – If case key_compare is defined, the key_equal operation has to be
consistently defined (i.e., is implied by the defined key comparison). When both key
and element equality are defined, the definitions have to be consistent in the sense tha
element equality has to imply key equality.

key_compare (in any key1, in any key2);

Return value

Returns a value less than zero if key1 < key2, zero if the values are equal, and a
value greater than zero if key1 > key2 with respect to the user-defined ordering
relationship on keys.

unsigned long key_hash (in any key, in unsigned long value);

Return value

Returns a user defined hash value for the given key. The given value specifies the
size of the hashtable. This information can be used for the implementation of more
or less sophisticated hash functions. Computed hash values have to be less th
value.

Note – The definition of the hash function has to be consistent with the defined ke
equality (i.e., if two elements are equal with respected to the user defined elemen
equality they have to be hashed to the same hash value).

Destroying the Operations instance

void destroy();

Destroys the operations instance.

The Command and Comparator Interface

Command and Comparator are auxiliary interfaces.
17-122 CORBAservices: Common Object Services Specification

17
A collection service provider may either provide the interfaces only or a default
implementation that raises an exception whenever an operation of these interfaces is
called. In either case, a user is forced to provide his/her implementation of either the
interfaces or a derived interface to make use of them in the operations
all_elements_do, and sort.

The Command Interface

An instance of an interface derived from Command is passed to the operation
all_elements_do to be applied to all elements of the collection.

interface Command {

boolean do_on (in any element);

};

The Comparator Interface

An instance of a user defined interface derived from Comparator is
passed to the operation sort as sorting criteria.

interface Comparator {

long compare (in any element1, in any element2);

};

The compare operation of the user’s comparator (interface derived from Comparator)
must return a result according to the following rules:

>0 if (element1 > element2)

 0 if (element1 = element2)

<0 if (element1 < element2)
Object Collection Service: v1.0 The CosCollection Module July 1997 17-123

17

ery

the

s

e fact
is

 Appendix A OMG Object Query Service

 A.1 Object Query Service Differences

Identification and Justification of Differences

The relationship between the Object Collection Service (OCS) and the Object Qu
Service (OQS) is two-fold. The Object Query Service uses collections as query result
and as scope of query evaluation.

The get_result operation of CosQuery::Query for example and the evaluate
operation of CosQuery::QueryEvaluator may return a collection as result or may
return an iterator to the query result.

There may be a QueryEvaluator implementation that takes a collection instance
passed as input parameter to evaluate a query on this collection which specifies
scope of evaluation. The query evaluator implementation relies on the Collection
interface and the generic Iterator being supported by the collection passed.

A CosQuery::QueryableCollection is a special case of query evaluator which allow
a collection to serve directly as the scope to which a query may be applied. As
QueryableCollection is derived from Collection a respective instance can serve to
collect a query result to which further query evaluation is applied.

Both usages of collections - as query result and as scope of evaluation - rely on th
that a minimum collection interface representing a generic aggregation capability
supported as a common root for all collections. Further, they rely on a generic iterator
that can be used on collections independent of their type.

Summarizing, Object Query Service essentially depends on a generic collection service
matching some minimal requirements. As Object Query Service was defined when
there was not yet any Object Collection Service specification available a generic
collection service was defined as part of the Query Service specification.

The CosQueryCollection module defines three interfaces:

• CollectionFactory: provides a generic creation capability

• Collection: defines a generic aggregation capability

• Iterator: offers a minimal interface to traverse a collection.

Those interfaces specify the minimal requirements of OQS to a generic collection
service. The following discusses whether it is possible to replace CosQueryCollection
module by respective interfaces in the CosCollection module as defined in this
specification. Differences are identified and justified.

In anticipation of the details given in the next paragraph we can summarize:
17-124 CORBAservices: Common Object Services Specification

17

n

ified

el

t

s,
e

e. In

tion
• The CosCollection::Collection top level collection interface matches the
CosQueryCollection::Collection interface except for minor differences.
Collections as defined in the CosCollection module can be used with Query
Service.

• The CosCollection::Collection top level collection interface proposes an operatio
which one may consider as an overlap with the Object Query Service function. The
operation all_elements_do which can be considered a special case of query
evaluation.

• The CosCollection::Iterator top level iterator interface is consistent with
CosQueryCollection::Iterator interface in the sense that operations defined in
CosQueryCollecton::Iterator are supported in CosCollection::Iterator. In
addition a managed iterator semantics is defined which is reflected in the spec
side effects on iterators for modifying collection operations. This differs from the
iterator semantics defined in the Object Query Service specification but is
considered a requirement in a distributed environment.

• There are a number of operations in the CosCollection::Iterator interface you do
not find in the CosQueryCollection::Iterator interface. They are defined in the
CosCollection::Iterator interface to provide support for performing distributed
processing of very large collections and to support the generic programming mod
as introduced with ANSI STL to the C++ world.

• The restricted access collections which are part of this proposal do not inherit from
the top level CosCollection::Collection interface. They cannot be used with Objec
Query Service as they are. But this is in the inherent nature of the restricted access
semantics of these collections and is not considered to be a problem. Nevertheles
the interfaces of the restricted access collections allow combining them with th
collections of the combined property collections hierarchy via multiple inheritance
to enable usage of restricted access collections within the Object Query Servic
doing so, the restricted access collections lose the guarantee for restricted access,
but only support interfaces offering the commonly used operation names for
convenience.

• The CosQueryCollection::CollectionFactory defines the exact same interface as
CosCollection::CollectionFactory.

Replacing the interfaces defined in the Object Query Service CosQuery::Collection
module by the respective interface defined in this specification, the Object Collec
Service enables the following inheritance relationship:
Object Collection Service: v1.0 The CosCollection Module July 1997 17-125

17

the
Figure 17-4 Inheritance Relationships

A detailed comparison of the interfaces is given in the following sections and is
outlined along the CosQueryCollection module definitions.

CosQueryCollection Module Detailed Comparison

Exception Definitions

The following mapping of exceptions holds true:

• CosQueryCollection::ElementInvalid maps to CosCollection::ElementInvalid

• CosQueryCollection::IteratorInvalid maps to CosCollection::IteratorInvalid
(with IteratorInvalidReason not_for_collection)

• CosQueryCollection::PositionInvalid maps to CosCollection::IteratorInvalid
(with IteratorInvalidReason is_invalid) and CosCollection::IteratorInBetween

Type Definitions

There are a number of type definitions in the CosQueryCollection module for the
mapping of SQL data types and for defining the type Record. These types are Object
Query Service specific; therefore, they are not part of the Object Collection Service
defined in this specification. Object Query Service may move these definitions to
CosQuery module.

OCS

Collection

OQS
Queryable
Collection

OCS Collection
Any

Any
Queryable

OCS Collection
17-126 CORBAservices: Common Object Services Specification

17

s

his

g.

pe
CollectionFactory Interface

The CosQueryCollection::CollectionFactory interface defines the same interface a
CosCollection::CollectionFactory and with it the same generic creation capability.

While the generic create operations of CosQueryCollection::CollectionFactory do
not raise any exceptions, the respective operation in the
CosCollection::CollectionFactory raises exception “ParameterInvalid.”

Collection Interface

The CosQueryCollection::Collection interface defines a basic collection interface,
without restricting specializations to any particular type such as equality collections or
ordered collections.

Collection Element Type

The element type of Object Query Service collections is a CORBA any to meet the
general requirement that collections have to be able to collect elements of arbitrary
type. The same holds true for the proposed Object Collection Service defined in t
specification.

Using the CORBA any as element type implies the loss of compile time type checkin
The Object Collection Service as defined here-in considers support for run-time type
checking as important; therefore, it offers respective support. In the interface
Collection this is reflected by introducing a read-only attribute “element_type” of ty
TypeCode which enables a client to inquiry the element type expected.

This differs from Object Query Service collections which do not define any type
checking specific support.

Collection Attributes

The following attribute is defined in the OQS Collection interface:

cardinality

This read-only attribute maps to the operation number_of_elements() in
CosCollection::Collection. This is semantically equivalent. The name of the operation
was chosen consistently with the overall naming scheme of the Collection Service.

Collection Operations

The following operations are defined in the Object Query Service Collection interface.

void add_element (in any element) raises (ElementInvalid)

This operation maps - except for side effects on iterators due to managed iterator
semantics - to

boolean add_element(in any element) raises (ElementInvalid)

Object Collection Service: v1.0 The CosCollection Module July 1997 17-127

17
void add_all_elements (in Collection elements) raises (ElementInvalid)

This operation maps - except for side effects on iterators due to managed iterator
semantics - to

void add_all_from (in Collection collector) raises (ElementInvalid).

void insert_element_at (in any element, in Iterator where) raises
(IteratorInvalid, ElementInvalid)

This operation maps - except for side effects on iterators due to managed iterator
semantics - to

boolean add_element_set_iterator(in any element, in Iterator where) raises
(IteratorInvalid, ElementInvalid).

void replace_element_at (in any element, in Iterator where) raises
(IteratorInvalid, PositionInvalid, ElementInvalid);

This operations maps to

void replace_element_at (in Iterator where, in any element) raises
(IteratorInvalid, IteratorInBetween,ElementInvalid).

void remove_element_at (in Iterator where) raises (IteratorInvalid,
PositionInvalid)

This operation maps - except for side effects on iterators due to managed iterator
semantics - to

void remove_element_at (in Iterator where) raises (IteratorInvalid,
IteratorInBetween).

void remove_all_elements ()

This operation maps - except for side effects on iterators due to managed iterator
semantics - to

unsigned long remove_all ().

any retrieve_element_at (in Iterator where) raises (IteratorInvalid,
PositionInvalid)
17-128 CORBAservices: Common Object Services Specification

17

d

n

 that

port

QS

d to
This operation maps to

boolean retrieve_element_at (in Iterator where, out any element) raises
(IteratorInvalid, IteratorInBetween).

Iterator create_iterator ()

This operation maps to

Iterator create_iterator (in boolean read_only).

The parameter “read_only“ parameter is used to support const iterators. This is
introduced to support the iterator centric ANSI STL like programming model.

Where different operation names are used in the Object Collection Service defined
here-in this is done to maintain consistency with the Collection Service overall naming
scheme.

Side effects to iterators specified differ from those specified in the Query Service
collection module as the Object Collection Service defined here-in specifies a manage
iterator model which we consider necessary in a distributed environment. For more
details in the managed iterator semantics see chapter “Iterator Interfaces.”

The top-level CosCollection::Collection interface proposes all the methods defined i
CosQueryCollection::Collection. There are some few additional operations defined
in CosCollection::Collection:

boolean is_empty()

This operation is provided as there are collection operations with the precondition
the collection must not be empty. To avoid an exception, the user should have the
capability to test whether the collection is empty.

void destroy()

This operation is defined for destroying a collection instance without having to sup
the complete LifeCycleObject interface.

void all_elements_do(in Command command)

This operation is added for convenience; however, it seems to be an overlap with O
functionality. This frequently used trivial query should be part of the collection service
itself. A typical usage of this operation may be, for example, iterating over the
collection to print all element values. Note that the Command functionality is very
restricted to enable an efficient implementation. That is, the command is not allowe
change the positioning property of the element applied to and must not remove the
element.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-129

17

and

Iterator Interface

The CosQueryCollection::Iterator corresponds to CosCollection::Iterator.
CosCollection::Iterator is supported for all collection interfaces of the Object
Collection Service derived from Collection. The Object Collection Service iterator
interfaces defined in this specification are designed to support an iterator centric
generic programming model as introduced with ANSI STL. This implies very powerful
iterators which go far beyond simple pointing devices as one needs to be able to
retrieve, add, remove elements from/to a collection via an iterator. In addition iterator
interfaces are enriched with bulk and combined operations to enable an efficient
processing of collections in distributed scenarios. Subsequently, the
CosCollection::Iterator is much more powerful than the
CosQueryCollection::Iterator.

Iterator Operations

The following operations are defined in the CosQueryCollection::Iterator interface:

• any next () raises (IteratorInvalid, PositionInvalid)

This operation maps to

boolean retrieve_element_set_to_next (out any element) raises (IteratorInvalid,
IteratorInBetween)

• void reset ()

This operation maps to

boolean set_to_first_element() of the Object Collection Service Iterator interface.

• boolean more ()

This operation maps to

boolean is_valid() && ! is_inbetween()

Due to the support for iterator centric and generic programming there are number of
additional operations in the CosCollection::Iterator interface:

• set_to_next_element, set_to_next_nth_element

• retrieve_element, retrieve_next_n_elements,
not_equal_retrieve_element_set_to_next

• remove_element, remove_element_set_to_next, remove_next_n_elements,
not_equal_remove_element_set_to_next

• replace_element, replace_element_set_to_next, replace_next_n_elements,
not_equal_replace_element_set_to_next

• add_element_set_iterator, add_n_elements_set_iterator

• invalidate

• is_in_between, is_for, is_const, is_equal

• clone, assign, destroy
17-130 CORBAservices: Common Object Services Specification

17

t

or

es.

 in

ct

rvice

,

ink

e
 that
Most of the operations can be implemented as combinations of other basic iterator
operations so that the burden put on Object Query Service providers who implemen
such an interface should not be too high.

 A.2 Other OMG Object Services Defining Collections

There are several object services that define collections, that is Naming Service,
Property Service, and the OMG RFC "System Management: Common Management
Facility, Volume 1" submission, for example.

These services define very application specific collections. The Naming Service f
example defines the interface NamingContext or the Property Service an interface
PropertySet. Both are very application specific collections and may be implemented
using the Object Collection Service probably wrappering an appropriate Object
Collection Service collection rather than specializing one of those collection interfac

The collections defined in the System Management RFC form a generic collection
service. But the service defines collection members that need to maintain back
references to collections in which they are contained to avoid dangling references
collections. This was considered as inappropriate heavyweight for a general object
collection service. The collections in the System Management RFC may use Obje
Collection Service collections for their implementation up to some extent even reuse
interfaces.

 A.3 OMG Persistent Object Services

Collections as persistent objects in the sense defined by the Persistent Object Se

• may support the CosPersistencePO::PO interface. This interface enables a client
being aware of the persistent state to explicitly control the PO’s relationship with its
persistent data (connect/disconnect/store/restore)

• may support the CosPersistence::SD interface which allows objects to synchronize
their transient and persistent data

• have to support one of protocols used to get persistent data in and out of an object
like DA, ODMG, or DDO.

Support for these interfaces does not effect the collection interface.

Persistent queryable collections may request index support for collections. “Indexing
of collections” enables to exploit underlying indices for efficient query evaluation. We
do not consider “indexed collections” as part of the Object Collection Service but th
that indexing support can be achieved via composing collections defined in the Object
Collection Service proposed.

 A.4 OMG Object Concurrency Service

Any implementation of the Object Collection Service probably will have to implement
concurrency support. But we did not define any explicit concurrency support in th
collection interfaces as part of the Object Collection Service because we consider
Object Collection Service: v1.0 The CosCollection Module July 1997 17-131

17

ow
as an implementation issue that can be solved by specialization. This also would all
to reuse the respective interfaces of the Object Concurrency Service rather than
introducing a collection specific support for concurrency.
17-132 CORBAservices: Common Object Services Specification

17

s

iners

s

 is,
s a

t

f
 Appendix B Relationship to Other Relevant Standards

 B.1 ANSI Standard Template Library

The ISO/ANSI C++ standard, as defined by ANSI X3J16 and OSI WG21, contain
three sections defining the Containers library, the Iterators library and the Algorithms
library, which form the main part of the Standard Template L ibrary. Each section
describes in detail the class structure, mandatory methods and performance
requirements.

Containers

The standard describes two kinds of container template classes, sequence conta
and so called associative containers. There is no inheritance structure relating the
container classes.

Sequence containers organize the elements of a collection in a strictly linear
arrangement. The following sequence containers are defined

• vector: Is a generalization of the concept of an ordinary C++ array the size of
which can be dynamically changed. It’s an indexed data structure, which allow
fast, that is, constant time random access to its elements. Insertion and deletion of
an element at the end of a vector can be done in constant time. Insertion and
deletion of an element in the middle of the data structure may take linear time.

• deque: Like a vector it is an indexed structure of varying size, allowing fast, that
constant time random access to its elements. In addition to what a vector offer
deque also offers constant time insertion and deletion of an element at the
beginning.

• list: Is a sequence of varying size. Insertion and deletion of an element at any
position can be done in constant time. But only linear-time access to an element a
an arbitrary position is offered.

Associative containers provide the capability for fast, O(log n), retrieval of elements
from the collections by “contents”, that is, key value. The following associative
containers are provided:

• set: Is a collection of unique elements which supports fast access, O(log n), to
elements by element value.

• multiset: Allows multiple occurrences of the same element and supports fast access,
O(log n), to elements by value.

• map: Is a collection of (key, value) pairs which supports unique keys.It is an
indexed data structure which offers fast, O(log n), access to values by key.

• multimap: Is a collection of (key, value) pairs which allows multiple occurrences o
the same key.

Container adapters are the well known containers with restricted access, that is:

• stack
Object Collection Service: v1.0 The CosCollection Module July 1997 17-133

17

et
e

I

ad of
one

er
• queue

• priority_queue

As roughly sketched ANSI STL specifies performance requirements for container
operations. Those enforce up to some extent the kind of implementation. If you look at
the performance requirements for vector, deque and list they correspond to array and
list like implementations.

This differs from what the here-in discussed Object Collection Service proposes. The
collection classes vector, deque, and list all map to the same interface Sequence. The
different performance profiles are delivered via the implementation choice.

Algorithms

Different from other container libraries ANSI STL containers offer a very limited s
of operations at the containers themselves. Instead, all higher level operations lik
union, find, sort, and so on are offered as so called generic algorithms. A generic
algorithm is a global template function that operates on all containers - supporting the
appropriate type of iterator. There are approximately 50 algorithms offered in ANS
STL.

There are:

• non-mutating sequence algorithms

• mutating sequence algorithms

• sorting and related algorithms

• generalized numeric algorithms

The basic concept here is the separation of data structures and algorithms. Inste
implementing an algorithm for each container in the library you provide a generic
operating on all containers.

If one implements a new container and ensures that an appropriate iterator type is
supported one gets the respective algorithms “for free”. One may also implement new
generic algorithms working on iterators only which will apply to all containers
supporting the iterator type.

In addition, because the algorithms are coded as C++ global template functions,
reduction of library and executable size is achieved (selective binding).

Iterators

The key concept in ANSI STL that enables flexibility of STL are Iterator classes.
Iterator classes in ANSI STL are C++ pointer abstractions. They allow iteration ov
the elements of a container.
17-134 CORBAservices: Common Object Services Specification

17

r
 it is

imal,
e
re

n

c

d
ry
s via

eneric
Their design ensures, that all template algorithms work not only on containers in the
library but also on built-in C++ data type array. Algorithms work on iterators rathe
then on the containers themselves. An algorithms does not even “know” whether
working with an ordinary C++ pointer or an iterator created for a container of the
library.

There are:

• input iterator, output iterator

• forward iterator

• bidirectional iterator

• random access iterator

• const, reverse, insert iterators

Consideration on choice

The collection class concept as defined by the ANSI standard is designed for opt
local use within programs written in C++. In some sense they are extensions of th
language and heavily exploit C++ language features. No considerations, of course, a
given to distribution of objects or language neutrality.

Some of the advantages clearly visible in a local C++ environment cannot be carried
over into a distributed and language neutral environment. Some of them are even
counterproductive.

In summary, the following list of issues are the reason why the ANSI collection class
standard has not been considered as a basis for this proposal:

• Aiming with its design at high performance and small code size of C++
applications ANSI STL seems to have avoided inheritance and virtual
functions. As no inheritance is defined, polymorphic use of the defined collectio
classes is not possible.

• The ANSI STL programming model of generic programming is very C++ specifi
one. ANSI STL containers, iterators, and algorithms are designed as C++ language
extension. Containers are smooths extensions of the built-in data type array an
iterators are smooth extensions of ordinary C++ pointers. Container in the libra
are processed by generic algorithms via iterators in the same way as C++ array
ordinary pointers. Rather then subclassing and adding operations to a container one
extends a container by writing a new generic algorithm. This is a programming
model just introduced to the C++ world with ANSI STL and for sure not the
programming model Smalltalk programmers are used to.

• As a consequence of the separation of data structures and algorithms containers in
ANSI STL up to some extent expose implementation. As an
example consider the two sequential containers list and vector. The
algorithms sort and merge are methods of the list container. vector
on the other hand can support efficient random access and therefore use the g
Object Collection Service: v1.0 The CosCollection Module July 1997 17-135

17

he

s).

 is
 a

r

an

algorithms sort and merge. Subsequently you do not find them as methods in t
vector interface. This requires rework of clients when server implementations
changes from list to vector or deque because of changing access patterns.

• The IDL concept has no notion of global (template) functions. The only conceivable
way to organize the algorithms is by collecting them in artificial algorithm object(
The selective binding advantage is lost in a CORBA environment and careful
placement of the algorithm object(s) near the collection must be exercised.

• In the ANSI STL approach the reliance on generic programming as algorithms
substantial. We believe that this concept is not scalable. It is difficult to imagine
generic sort in a CORBA environment is effective without the knowledge of
underlying data structures. Each access to a container has to go via an iterato
mediated somehow by the underlying request broker, which is not a satisfactory
situation.Object Collection Services will be used in an wide variety of
environments, ranging from simple telephone lists up to complex large stores using
multiple indices, exhibiting persistent behavior and concurrently accessed via
Object Query Service. We do not believe that generic algorithms scale up in such
environments.

 B.1.1 ODMG-93

Release 1.1 of the ODMG specification defines a set of collection templates and
iterator template class.

An abstract base class Collection<T> is defined from which all concrete collections
classes are derived. The concrete collection classes supported are Set<T>, Bag<T>,
List<T>, Varray<T>. In addition an Iterator class Iterator<T> is defined for iteration
over the elements of the collection.

Set and Bag are unordered collections and Bag allows multiples. List is an ordered
collection that allows multiples. The Varray<T> is a one dimensional array of varying
length.

Collection<T> offers the test empty() and allows to ask for the current number of
elements, cardinality(). Further the tests is_ordered() and allows_duplicates() are
offered.There is a test on whether an element is contained in a given collection.
Operations for insertion, insert_element(), and removal, remove_element() are
provided. Last not least there is a remove_all() operation.

Each of the derived classes provides an operator== and an operator!= and an
operation create_iterator().

A Set<T> is derived from Collection<T> and offers in addition operations
is_subset_off(), is_proper_subset_of(), is_superset_of(), or is
proper_superset_of() a suite of set-theoretical operations to form the union,
difference, intersection of two sets.

A Bag<T> offers the same interface as Set<T> but allows multiples.
17-136 CORBAservices: Common Object Services Specification

17

t

e

ed

the
A List<T> offers specific operations to retrieve or remove the first respectively las
element in the list or to insert an element as first respectively last element. Retrieving,
removing, and replacing an element at a given position is supported. Inserting an
element before or after a given position is possible.

Varray<T> exposes the characteristics of a one dimensional array of varying length.
An array can be explicitly re-sized. The operator[] is supported. The operations to
find, remove, retrieve, and replace an element at a given position are supported.

An instance Iterator<T> is created to iterate over a given collection.The operator=
and operator == are defined. There is a reset() operation moving an iterator to the
beginning of the collection. There is an operation advance() and overloaded the
operator++ to move the iterator to the next element. Retrieving and replacing the
element currently “pointed to” is possible. A check on whether iteration is not yet
finished is offered, not_done().For convenience in iteration there is an operation
next(), combining “check end of iteration, retrieval of an element, and moving to the
next element”.

ODMG-93 structure is very similar to the proposed Object Collections Service.
ODMG-93 Set <T> and Bag<T> correspond very well to Set and Bag as defined
herein. List<T> maps one-to-one to an EqualitySequence. A Varray<T> maps to an
EqualitySequence too. That the interfaces List<T> and Varray <T> map to the sam
interface in the Object Collection Service proposed reflects that List<T> and
Varray<T> somehow expose the underlying kind of implementation structure assum
- namely a list like structure respectively a table like structure. In the Object Collection
Service proposed the different kinds of implementation of a sequence like interface are
not reflected in the interface but only in the delivered performance profile. This is
reason why List<T> and Varrary<T> map to the same interface EqualitySequence.
The Iterator interface maps to the top level Iterator interface of the iterator hierarchy
of the Object Collection Service.

In summary the Object Collection Service proposed is a superset of the ODMG-93
proposed collections and iterators.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-137

17
 Appendix C References

 C.1 List of References

OMG, CORBAservices: Common Object Services Specification, Volume 1, March
1996.
17-138 CORBAservices: Common Object Services Specification

Index
A
abort

see rollback
absolute_time 14-9
Abstract Collection Interfaces 17-21
Abstract interface hierarchy 17-4
Abstract Interfaces 16-28
Abstract RestrictedAccessCollection Interface 17-65
Access by key 17-3
Access Control 15-111
access control 15-3
Access Control Interceptor 15-154
Access Control Model 15-19
Access Decision Object 15-161
Access Decision Policies 15-163
Access Decision Time 15-155
access identity 15-14
Access Policies 15-21, 15-129
Access Policies Supported by This Specification 15-22
AccessDecision Use of AccessPolicy and RequiredRights 15-134
accountability 15-2
Add Type Operation 16-62
Add_Link Operation 16-51
Additional ObjectID 16-4
adjudication 15-71
Admin Interface 16-70
Administering Security Policy 15-111
Administration of security information 15-3
Administration of Time 14-18
administrative interfaces 15-51
Administrative Model 15-71
Administrator’s Interfaces 15-123
Administrator’s View 15-44
AlreadyBound 3-9, 3-11
ANSI Standard Template Library 17-133
Application Access Policies 15-63
Application Access Policy 15-20
application access policy 15-19
Application Activities 15-64
application audit policies 15-23
Application Components 15-47
Application Developer View 15-43
Application Developer’s Interfaces 15-84
Application Interfaces - Security Functionality Level 1 15-201
Application Interfaces - Security Functionality Level 2 15-201
Application Interfaces for Non-repudiation 15-207
application objectxlii, 4-1
Asymmetric key technology 15-38
atomicity 10-45, 10-48, 10-52

glossary definition 10-81
Attribute status 14-16
Attributes and Set Operations 16-48
Audit Administration Interfaces 15-138
Audit Channel Objects 15-163
Audit Decision Objects 15-162
Audit Event Families and Types 15-215
audit identity 15-14
audit objects 15-162
Audit Policies 15-138
Audit Services 15-164
audit_channel 15-110

audit_needed 15-109
audit_write 15-110
Auditing 15-23
Auditing Application Activities 15-64
authenticate 15-93
authentication 15-3
Authentication of principals 15-92
Authorization 15-3
authorization_service Field 15-188
availability 15-2

B
Bag Interface 17-62
Bag, SortedBag 17-10
BagFactory Interface 17-77
Basic Time Service 14-4
Bind Time 15-154
Bind Time - Client Side 15-153
Bind Time - Target Side 15-154
Binding 15-220
binding 15-48
Binding and Interceptor 15-221
Binding Handle 15-194
BindingIterator interface 3-12

next_n operation 3-12
next_one operation 3-12

Bindings and Object Reference 15-48
Bridges 15-171

C
callback interface

described 58
call-back object 8-24
cancel_timer 14-16
CannotProceed 3-10
Changes to Support the Current Pseudo-Object 15-230
CLI 5-34
Client and Target Invoke 15-224
Client Side 15-175
ClientSecureInvocation 15-141
Client-Target Binding 15-220
Collectible elements and the operations interface17-7
Collectible elements and type safety 17-7
Collectible elements of key collections 17-8
collection 11-4, 11-10

model 11-12
Collection factories 17-2, 17-5
Collection Factory Interfaces 17-70
Collection Interface 17-21
Collection interface 11-14

add_all_elements operation 11-17
add_element operation 11-16
create_iterator operation 11-18
insert_element_at operation 11-17
remove_all_elements 11-18
remove_element_at operation 11-17
replace_element_at operation 11-17
retrieve_element_at operation 11-18

Collection Interface Hierarchies 17-15
Collection interfaces 17-2
CollectionFactory and CollectionFactories Interfaces 17-71
July 1997 Index-1

Index
CollectionFactory interface 11-14
Collections 17-2
Combined Collections 17-10
combined privileges delegation 15-29
Command and Comparator Interface 17-122
Common collection types 17-2
Common Facilities 15-234
common facilities xlii
compare_time 14-10
Complete evidence 15-67
Component Protection 15-52
Components 15-188
composite delegation 15-29
compound copy request 6-27
compound externalization 64, 8-25
compound life cycle 63, 9-3, 9-36, 9-37

and containment roles 6-42
and relationship service 6-37, 6-39, 6-41
copy operation example 6-27–6-30
copying, moving relationships 6-39–6-41
copying, moving roles 6-37–6-39
copying, moving, removing nodes 6-35–6-37
copying, moving, removing objects 6-33–6-35

compound name3-1, 3-2, 3-11, 3-17
compound object 56
compound operations 9-36

propagation 9-37
Concepts 15-124
concepts of 55
Concrete Restricted Access Collection Interfaces 17-66
concurrency control service

overview 49, 7-1
ConcurrencyControl module

OMG IDL 7-8–7-9
Confidentiality 15-17
confidentiality 15-1
Conformance Criteria 16-68
Conformance Details 15-235
Conformance Requirements for Implementation Conformance

Classes 16-71
Conformance Requirements for Trading Interfaces as Server 16-69
connect 4-18
Connection interface 5-37

operations 5-37
ConnectionFactory interface 5-37

operations 5-37
Consolidated OMG IDL 14-20, 15-196, 16-74, 16-93, 16-99
Constraint Language 16-93
Constraint Language BNF 16-95
Constraint Recipe Languag 16-99
consumer 4-2
ConsumerAdmin interface 4-16, 4-17, 4-26

for_consumers operation 4-16
obtain_pull_supplier operation 4-17
obtain_push_supplier operation 4-17

ContainedInRole interface 8-26
containment relationship 9-1, 9-9

defining 9-49–9-50
example 9-23
overview 9-47

ContainsRole interface 8-26

ContextId 15-178
continue_authentication 15-94
Control Attributes 15-22
Control interface 10-21
control object 10-21, 10-27, 10-56
Control of privileges delegated 15-27
Control of privileges used 15-28
Control of target restrictions 15-28
Controls Used Before Initiating Object Invocations 15-27
Coordinator interface 10-24

create_subtransaction operation 10-27
get_parent_status operation 10-24
get_status operation 10-24
get_top_level_status operation 10-25
get_transaction_name operation 10-27
hash_top_level_tran operation 10-26
hash_transaction operation 10-25
is_ancestor_transaction operation 10-25
is_descendant_transacation operation 10-25
is_related_transaction operation 10-25
is_same_transaction operation 10-25
is_top_level_transaction operation 10-25
register_resource operation 10-26
register_subtran_aware operation 10-26
rollback_only operation 10-26

coordinator object 10-28, 10-29, 10-38, 10-39, 10-49, 10-56
glossary definition 10-81

copy 15-96
CORBA 55

documentation set xliii
object references 64
standard requests 4-1

CORBA Interoperable Object Reference with Security 15-171
CORBA Module Changes for Replaceability Conformance15-229
CORBA Module Changes to Support Security Level 1 15-226
CORBA Module Changes to Support Security Level 2 15-227
CORBA Module Deprecated Interfaces 15-231
CORBA OMG IDL based Specification of the Trading

Function 16-74
CosCompoundExternalization

Node interface 8-6
CosCompoundExternalization module

OMG IDL 8-20–8-21
CosCompoundExternalizationNode interface 8-5
CosCompoundLifeCycle module

OMG IDL 6-30–6-33
CosCompoundLifeCycleOperations interface 6-26
CosConcurrencyControl module

overview 7-7
CosContainment module

attributes and operations 9-49–9-50
OMG IDL 9-48

CosEventChannelAdmin module
OMG IDL 4-15–4-16

CosEventComm module
OMG IDL 4-8

CosExternalization module
OMG IDL 8-12

CosExternalizationContainment module
OMG IDL 8-26
see also CosCompoundExternalization module 8-26
Index-2 CORBAservices: Common Object Services Specification

Index

33
see also CosContainment module 8-26
CosExternalizationReference module

OMG IDL 8-28
see also CosCompoundExternalization module 8-28
see also CosReference module 8-28

CosGraphs

TraversalCriteria interface 6-41
CosGraphs module 8-24

OMG IDL 9-39–9-41
CosLicensingManager module

OMG IDL for 12-17
CosLifeCycle module

OMG IDL 6-10–6-11
CosLifeCycleContainment module

andCosCompoundLifeCycle and CosContainment modules 6-42
OMG IDL 6-42

CosLifeCycleLifeCycleObject interface 6-37
CosLifeCycleReference module

OMG IDL 6-44
CosNaming module

OMG IDL 3-6–3-8
CosPersistenceDDO module 5-31–5-33

OMG IDL 5-31
CosPersistenceDS_CLI module

OMG IDL 5-35–5-36
CosPersistencePDS module

OMG IDL 5-20
CosPersistencePDS_DA module 5-21–5-29

OMG IDL 5-22
CosPersistencePID module

OMG IDL 5-9
CosPersistencePO module

OMG IDL 5-12
CosPropertyService 13-4
CosQuery module

OMG IDL for 11-23
CosQueryCollection module

OMG IDL for 11-14
CosReference module

attributes and operations 9-50–9-51
CosRelationships module

OMG IDL 9-20–9-23
CosStream module

OMG IDL 8-15–8-16
CosTime 14-4, 14-5
CosTransactions module

datatypes defined by 10-15
OMG IDL 10-65–10-68

CosTSInteroperation module
PIDL 10-58, 10-69

CosTSPortability module
PIDL 10-69

CosTypedEventComm module
OMG IDL 4-22

Creating iterators 17-27
Credentials 15-56, 15-96
cryptographic keys 15-4
Curren 15-217
Current 15-56
Current interface 10-37

Cursor interface 5-38
operations 5-38

CursorFactory interface 5-38
operations 5-38

D
DA protocol 5-19

compared to ODMG-93 protocol 5-30
DADO 5-26
DAObject interface 5-24

boolean dado_same (inDAObject d) operation 5-24
DataObjectID dado_oid() operation 5-24
PID_DA dado_pid() operation 5-24
void dado_free() operation 5-24
void dado_remove() operation 5-24

DAObjectFactory interface 5-24
DAObjectFactory create() operation 5-25

DAObjectFactoryFinder interface 5-25
find_factory operation 5-25

Data Definition Language
see DDL

data objects5-27, 5-28
and dynamic access to attributes 5-28

Data Types 15-86
datastore 5-7, 5-13, 5-17, 5-18, 5-26, 5-34, 5-43

and DDO protocol 5-31
Datastore_CLI interface 5-40

and CLI 5-43
operations 5-41–5-43

DCE Association Options Reduction Algorithm 15-193
DCE Authorization Services 15-191
DCE RPC Authentication Services 15-192
DCE RPE Protection Levels 15-192
DCE Security Parameters 15-193
DCE Security Services 15-191
DCEAuthorizationDCE 15-191
DCEAuthorizationName 15-191
DCEAuthorizationNone 15-191
DCE-CIOP 15-186
DCE-CIOP Operational Semantic 15-192
DCE-CIOP with Security 15-185
DDL 5-21, 5-26, 5-27, 5-28
DDO

storing,restoring,deleting 5-40
DDO interface

attributes 5-32
short add_data() operation 5-32
short add_data_property (in short data_id) operation 5-32
short get_data_count() operation 5-32
short get_data_property_count (in short data_id) operation 5-
void get_data operation 5-33
void get_data_property operation 5-33
void set_data operation 5-33
void set_data_property operation 5-33

DDO protocol 5-19, 5-30
define 13-10, 13-16
Defining 13-9, 13-15
defining and modifying properties 13-9
Delegation 15-25, 15-113
Delegation Options 15-30
Delegation Policies 15-140
July 1997 Index-3

Index
Delegation Schemes 15-27
Delegation State 15-134
delete 9-30, 13-12, 13-13
Deleting 13-12
deleting properties 13-12
Deque 17-14
DequeFactory Interface 17-83
Dequeue Interface 17-67
Describe Link Operation 16-52
Describe Operation 16-41
Describe Proxy Operation 16-58
Describe Type Operation 16-65
design goals, of event service interfaces 48
destroy 3-18
destroy operation 3-13
Destroying 13-21
Destroying a collection 17-27
destroying the iterator 13-20, 13-21
Determining 13-14
determining defined property 13-14
direct access protocol

see PDS_DA protocol
direct attribute protocol

see DA protocol
distributed objects 6-3
Domain 15-218
Domain Management 15-125
Domain Manager 15-126
Domain Managers 15-74
Domain objects 15-49
DomainAccessPolicy 15-132, 15-136
DomainAccessPolicy Use of Privilege Attributes 15-133
DomainAccessPolicy Use of Rights and Rights Families 15-134
Domains 15-33, 15-132
Domains and Interoperability 15-38
Domains at Object Creation 15-73
dynamic data object protocol

see DDO protocol
Dynamic Property Evaluation interface 16-67
Dynamic Property Module 16-88
DynamicAttributeAccess interface 5-28

any attribute_get(in string name) operation 5-28
AttributeNames attribute_names() operation 5-28
void attribute_set(in string name, in any value) operation 5-28

E
edge structure 9-46
EdgeIterator interface 9-47

destroy operation 9-47
next_n operation 9-47
next_one operation 9-47

encryption 15-17
End User View 15-43
Enhancements to the CORBA Module 15-226
Enterprise Management View 15-42
Enum ComparisonType 14-7
Enum EventStatus 14-14
Enum OverlapType 14-7
Enum TimeComparison 14-7
Enum TimeType 14-14
Environment Domains 15-52

Equality collection 17-3
EqualityCollection Interface 17-37
EqualityIterator Interface 17-110
EqualityKeyCollection Interface 17-50
EqualityKeyIterator Interface 17-111
EqualityKeySortedCollection Interface 17-55
EqualityKeySortedIterator Interface 17-116
EqualitySequence 17-11
EqualitySequence Factory Interface 17-81
EqualitySequence Interface 17-64
EqualitySequentialCollection Interface 17-55
EqualitySequentialIterator Interface 17-117
EqualitySortedCollection Interface 17-53
EqualitySortedIterator Interface 17-114
Establishing a Security Association 15-168
Establishing Credentials 15-54
Establishing the Binding and Interceptors 15-221
event channel48, 56, 57, 4-5, 4-13

adding consumers 4-16
adding consumers to 4-17
adding consumers to typed 4-26
adding pull consumer to typed 4-28
adding pull consumers to 4-18
adding pull suppliers to 4-18
adding push consumers to 4-19
adding push suppliers to 4-17
adding push suppliers to typed 4-28
adding suppliers 4-16
adding suppliers to 4-17
adding suppliers to typed 4-27
and CORBA requests 4-10
decoders 4-31
defined 4-2, 4-10
encoders 4-31
filtering 4-28–4-29
implementing typed 4-30–4-31
sample use 4-32–4-33

event communication
mixed 4-11
multiple 4-12
pull model 48, 4-2, 4-7, 4-11
push model48, 4-2, 4-6, 4-10
typed pull model 4-20
typed push model 4-19

event consumer4-2, 4-6, 4-10
proxy 4-13

Event Service 15-233
event service

and CORBA scoping 4-5
and license service 12-13, 12-15
design goal of interfaces 48
overview 48, 4-1

event supplier4-2, 4-6, 4-10
proxy 4-13

event_time 14-17
EventChannel interface 56, 4-13, 4-16
exception 4-27
Exceptions 16-23

Additional Exceptions for Link Interface 16-26
Additional Exceptions for Lookup Interface 16-24
Additional Exceptions for Proxy Offer Interface 16-27
Index-4 CORBAservices: Common Object Services Specification

Index
Additional Exceptions For Register Interface 16-25
For CosTrading module 16-23

exceptions
described 58
InvalidName 3-10

Exceptions and Type Definitions 17-19
export 16-2
Export Operation 16-39
Export Proxy Operation 16-55
Exporter 16-4
Exporter Policies 16-18
Extended Time Service 14-26
Extension to the Use of Current 15-217
Extensions to CORBA for Domains and Policies 15-218
Extensions to Object Interfaces for Security 15-218
Extensions to the Object Interface 15-127
External Security Services 15-164
externalization

defined 8-1
externalization service

and compound life cycle 8-6
and inheritance and use of objects 8-7
and life cycle service 64
and persistent object service 8-17
and relationship service64, 8-5, 8-24
and transaction service 8-17
interface summary 8-10
overview 50

externalizing a node 8-21
externalizing a relationship 8-23
externalizing a role 8-22

F
Facilities Used on Accepting Object Invocations 15-30
factory finder 6-7, 6-13, 6-21, 8-3
factory keys

and kind field 6-14, 6-16
factory object48, 6-4

definition 6-18
FactoryFinder interface 6-8, 6-13–6-14

find_factories operation 6-13
Features (security) 15-92
Federated Policy Domains 15-35
Federated query example 16-19
FileStreamFactory interface 8-8, 8-12, 8-13

create operation 8-13
Final target 15-26
Finding Domain Managers 15-74
Finding the Policies 15-74
Finding What Security Facilities Are Supported 15-217
framework 11-10
Friendly Time Object 14-26
Full-service Trader 16-73
Fully Describe Type Operation 16-65
Function Interfaces 17-3, 17-118
Functional Interfaces 16-30

G
General Security Data Module 15-196
generic factory

criteria parameters 6-17–6-18

generic factory interface 6-5
GenericFactory interface 6-14–6-18, 6-22

and criteria parameter 6-17
and criteria parameters 6-17
create_object operation 6-15, 6-17
supports operation 6-16

get 13-11, 13-12, 13-15, 13-18
get_active_credentials 15-102
get_all_properties 13-12
get_all_property_names 13-11
get_attributes 15-99, 15-105
get_component operation 3-16
get_credentials 15-107
get_number_of_properties 13-11
get_policy 15-103, 15-108
get_properties 13-11
get_property_value 13-11
get_security_features 15-97, 15-102
get_security_mechanisms 15-103
get_security_names 15-104
Getting 13-17
global identifier 58
Goals

Consistency 15-4
Scalability 15-4

Goals of Secure DCE-CIOP 15-185
graphical notation 57
graphs of related objects 9-3

copying to 6-33
creating traversal criteria for 8-24
destroying 6-35
examples 9-33
moving 6-34
removing 6-34
traversal of 9-35, 9-37
traversing 9-36

Guidelines for a Trustworthy System 15-245

H
Handling Multiple Credentials 15-56
Heap 17-11
Heap Interface 17-64
HeapFactory Interface 17-82

I
IDAPI standard 5-34
Identification 15-3
Identity domains 15-37
Immediate invoker 15-26
Implementation-Level Security Object Interfaces 15-155
Implementor’s Security Interfaces 15-147
Implementor’s View of Secure Invocations 15-76
Implementor’s View of Secure Object Creation 15-81
Implications of Assurance 15-226
import 16-2
ImportAttributes 16-29
Importer 16-4
Importer Policies 16-17
Initiator 15-26
Integrity 15-17
integrity 15-1
July 1997 Index-5

Index

2-
Interceptor 15-148
Interceptor Interfaces 15-150, 15-223
Interceptors 15-219, 15-221
Interface Changes Required for Interceptors 15-225
Interface Hierarchies 17-15
interface inheritance.see subtyping
interface repository 61
Interfaces 15-92
Intermediate 15-26
Intermediate Objects in a Chain of Objects 15-60
internalization

object’s model 8-5
internalizing a node 8-21, 8-22
internalizing a relationship 8-23
internalizing a role 8-23
Interoperability 15-225
Interoperability Model 15-166
Interoperating between ORB Technology Domains 15-39
Interoperating between Security Policy Domains 15-170
Interoperating between Security Technology Domains 15-39
Interoperating between Underlying Security Services 15-170
Interoperating with Multiple Security Mechanisms 15-169
interval 14-10
InvalidName exception 3-10
Invocation Delegation Policy 15-144
Invocation Time Policies 15-152
IOR Security Components for DCE-CIOP 15-186
is_valid 15-99
Iterating over a collection 17-26
Iterator Hierarchy 17-18
Iterator interface 11-14

any next operation 11-18
boolean more operation 11-19
void reset operation 11-19

Iterator Interfaces 17-3, 17-84
Iterators 17-5
Iterators and performance17-6, 17-85
Iterators and support for generic programming 17-84
Iterators as pointer abstraction 17-84

K
Key collection 17-3
Key collections 17-8
KeyBag Interface 17-57
KeyBag, KeySortedBag 17-11
KeyBagFactory Interface 17-75
KeyIterator Interface 17-108
KeySet Interface 17-57
KeySet, KeySortedSet 17-12
KeySetFactory Interface 17-75
KeySortedBag Interface 17-63
KeySortedBagFactory Interface 17-78
KeySortedCollection Interface 17-51
KeySortedIterator Interface 17-112
KeySortedSet Interface 17-62
KeySortedSetFactory Interface 17-78

L
Legal Property Value Types 16-94
library names

PIDL operations 3-18

license service
and event service 12-13, 12-15
and life cycle service 12-19
and properties service 12-23
and relationship service 12-26
and security service 12-26
example implementation 12-27
exceptions 12-19
overview 12-8
sample implementation 12-14

LicenseServiceManager interface 12-13, 12-17
check_use operation 12-13
end_use operation 12-13
obtain_producer_specific_license_service operation 12-19, 1

27
start_use operation 12-13

licensing attributes
examples of 12-24

life cycle service
and license service 12-19
and naming service 63, 6-15
and relationship service 63
client’s model 6-4
overview 48, 6-1, 6-21

LifeCycleObject interface 48, 6-6, 6-11–6-13, 6-22, 6-25
and crieteria parameter 6-17
copy operation 6-11
move operation 6-12
NoFactory exception for copy operation 6-11
remove operation 6-13

Link 16-49
Link Creation Policies 16-18
Link Interface 16-70
Link Traversal Control 16-18
LinkAttributes 16-30
Linked Trader 16-72
Linking to External Security Services 15-164
Linking Traders 16-3
Links 16-11
List Offers Operation 16-48
List Proxies Operation 16-48
List Types Operation 16-64
Listing 13-11
listing and getting properties 13-11
LName interface 3-3, 3-15

delete_component operation 3-17
destroy operation 3-16
equal operation 3-17
insert_component operation 3-16
less_than operation 3-17
num_components operation 3-17

LNameComponent interface 3-3, 3-13, 3-15
get_id operation 3-15
get_kind attribute 3-3
get_kind operation 3-15
set_id operation 3-15
set_kind operation 3-15

LockCoordinator interface 7-9
drop_locks operation 7-10

locks 50, 61, 7-1, 7-2–7-7
and nested transactions 7-6
Index-6 CORBAservices: Common Object Services Specification

Index
intention read and write 7-4
mode compatibility 7-5
multiple possession semantics 7-5
read,write,upgrade 7-4
transaction-duration 7-6

LockSet interface 7-9, 7-10–7-11
change_model operation 7-11
get_coordinator operation 7-11
lock operation 7-11
try_lock 7-11
unlock operation 7-11

LockSetFactory interface 7-13
create operation 7-13
create_related operation 7-13
create_transactional operation 7-13
create_transactional_related operation 7-13

Lookup 16-30
Lookup Interface 16-69

M
Making a Secure Invocation 15-58
Managed Iterator Model 17-85
Managed iterators 17-6
Managing Security Environment Domains 15-41
Managing Security Policy Domains 15-40
Managing Security Technology Domains 15-41
Map Interface 17-57
Map, SortedMap 17-12
MapFactory Interface 17-76
Mask Type Operation 16-66
MD5 message digest algorithm 12-30
Message Definitions 15-179
Message Protection 15-17, 15-154
Message protection domains 15-37
Message-Level Interceptors 15-149, 15-223
Messages 15-18, 15-168
messages 15-70
meta-policy 15-13
Modify Link Operation 16-53
Modify Operation 16-42
MTCompleteEstablishContext 15-179
MTContinueEstablishContext 15-180
MTDiscardContext 15-180
MTEstablishContext 15-179
MTMessageError 15-181
MTMessageInContext 15-181
Multiple Credentials 15-56
Multiple Security Mechanisms 15-169

N
name 3-2

binding 3-1
binding operations 3-8
component attributes 3-2
components 3-2
compound 3-2
resolution 3-1
simple 3-2
structure 3-18

name binding 3-1
name component

attributes 3-15
names library47, 3-3, 3-13

PIDL 3-13–3-14
namespace adminstration 3-5
name-to-object association 3-1
naming context47, 3-1, 3-5, 3-6

and property lists 59
deleting 3-11

naming graph 3-1
example 3-2

Naming Service 15-233
naming service

and internationalization 3-3, 3-6
design of 3-4
overview 47

NamingContext interface 3-8, 3-13, 3-18
bind operation 3-8
bind_context operation 3-9
bind_new_context operation 3-11
destroy operation 3-11
list operation 3-12
new_context operation 3-11
rebind operation 3-8
rebind_context operation 3-9
resolve operation 3-9
unbind operation 3-10

nested queries 11-20
nested transaction 64
new_interval 14-12
new_universal_time 14-12
next 13-19, 13-20
no delegation 15-28
Node interface 6-35, 9-35, 9-44

add_role operation 9-45
copy operation 6-35
externalize_node operation 8-21
internalize_node operation 8-21, 8-22
move operation 6-36
related_object attribute 9-45
remove operation 6-37
remove_role operation 9-46
roles_of_node attribute 9-45
roles_of_type operation 9-45

NodeFactory interface 9-46
create_node operation 9-46

nodes
creating 9-46

NoFactory 6-40
Non-repudiation 15-3, 15-31, 15-66, 15-115, 15-163
Non-repudiation credentials and policies 15-66
non-repudiation evidence 15-31
non-repudiation for receipt of messages 15-70
non-repudiation policy 15-31
Non-repudiation Policy Management 15-145
Non-repudiation Service Data Types 15-116
Non-repudiation Service Operations 15-117
Non-repudiation services 15-32
non-repudiation services 15-67
non-repudiation services for adjudication 15-71
NoProtection 15-191
NotCopyable 6-40
July 1997 Index-7

Index

9

NotMovable 6-40
NotRemovable 6-37

O
Object Interfaces for Securit 15-218
Object Invocation Access Policy 15-20
Object Management Group xli

address of xliii
object model xliii
Object Reference 15-100
object request broker xlii
Object Security Services 15-49
object service

context xlii
specification defined xliii

Object System Implementor’s View 15-45
Objects 15-60
ODBC standard 5-34
ODMG-93 17-136
ODMG-93 protocol 5-19, 5-30, 5-43, 10-79

integration with transaction service 10-80
Offer Id Iterator 16-45
Offer Identifier 16-9
Offer Iterator 16-35
Offer Selection 16-9
OMG 13-3
OMG Constraint Language BNF 16-93
OMG Constraint Recipe Language 16-99
OMG IDL xliii, 56, 3-3
OMG Trading Function Module 16-74
Operation Access 15-75
operational interfaces 15-50
Operational Semantics 15-175
OperationFactory interface

create_compound_operations operation 6-33
operations 3-15
Operations Interface 17-7, 17-118
Operations interface 6-33

copy operation 6-33
destroy operation 6-35
move operation 6-34
remove operation 6-34

OperationsFactory interface 6-33
Operator Restrictions 16-94
OQL-93 Basic Query Language 11-7
OQL-93 Query Language 11-6
ORB Core and ORB Services 15-219
ORB Interoperability 15-225
ORB Security Services 15-76
ORB Services 15-47, 15-219
ORB Services and Interceptors 15-148
Ordering of elements 17-3
OSI TP protocol 10-76

exported transactions 10-78
imported transactions 10-77
transaction identifiers 10-77

Overlapping Policy Domains 15-36
overlaps 14-11
override_default_credentials 15-101
override_default_mechanism 15-103
override_default_QOP 15-101

P
PDS 5-43

see persistent data service
PDS interface 5-19–5-20

and DA protocol 5-25
PDS connect operation 5-20
void delete operation 5-20
void disconnect operation 5-20
void restore operation 5-20
void store operation 5-20

PDS_ClusteredDA interface 5-29
ClusterID cluster_id() operation 5-29
ClusterIDs clusters_of() operation 5-29
PDS_ClusteredDA copy_cluster(in PDS_DA source)

operation 5-29
PDS_ClusteredDA create_cluster(in string kind) operation 5-2
PDS_ClusteredDA open_cluster(in ClusterID cluster)

operation 5-29
string cluster_kind() operation 5-29

PDS_DA interface 5-21, 5-25
and ODMG-93 protocol 5-30
DAObject get_data() operation 5-25
DAObject lookup(in DAObjectID id) operation 5-25
DAObjectFactoryFinder data_factories() operation 5-26
PID_DA get_object_pid(in DAObject dao) operation 5-25
PID_DA get_pid() operation 5-25
void set_data(in DAObject new_data) operation 5-25

PDS_DA protocol 5-21, 5-25
and data objects 5-26

persistent data service5-7, 5-17, 5-26, 5-27
overview 5-18

persistent data service interface
see PDS interface

persistent identifier 5-7
compared to CORBA object reference 5-9

persistent object interface
see PO interface

persistent object manager 5-11
and PO interface 5-13
purpose of 5-17

Persistent Object Service 15-233
persistent object service

and clients 5-5
and CORBA accessor operations 5-27
and CORBA Dynamic Invocation interface 5-28
and CORBA persistent reference handling5-2, 5-3
and datastore 5-6
and factory finders 5-25
and factory objects 5-24
and object implementation 5-6
and persistent data service 5-6
and query service 5-42
and transaction service 5-42
overview 49

PID
see persistent identifier

PID interface 5-8
PID_CLI interface 5-38

attributes 5-39
PID_DA interface 5-23

DAObjectID attribute 5-23
Index-8 CORBAservices: Common Object Services Specification

Index
PIDL 67, 3-3
PO interface 5-12–5-13

... connect operation 5-13
void delete operation 5-13
void disconnect operation 5-13
void restore operation 5-13
void store operation 5-13

Policies 15-74, 15-218
Policy Details 15-75
Policy Domain Hierarchies 15-34
Policy domain managers 15-50
Policy Domains 15-124
POM interface

...connect operation 5-16
OMG IDL 5-16
void delete operation 5-16
void disconnect operation 5-16
void restore operation 5-16
void store operation 5-16

Preferences 16-10
Principal Authentication 15-163
Principal authenticator 15-55
principal_authenticator 15-108
Principals 15-92
Principals and Their Security Attributes 15-14
PriorityQueue 17-14
PriorityQueue Interface 17-69
PriorityQueueFactory Interface 17-83
Privilege Attributes 15-21, 15-133
Privilege Delegation 15-26
privilege delegation 15-25
ProducerSpecificLicenseService interface 12-13, 12-14, 12-17

check_use operation 12-20, 12-21, 12-27
end_use operation 12-20, 12-27
start_use operation 12-20, 12-27

proof of delivery 15-32
proof of origin 15-32
propagation 10-30–10-34, 10-38, 10-41, 10-55, 10-59, 10-62

deep 9-37
glossary definition 10-83
none 9-38
shallow 9-37

propagation context 67
PropagationCriteriaFactory interface 8-24

create operation 6-41, 8-24
Properties 16-7

Dynamic 16-8
modifiable 16-8

properties
defining and modifying with modes 13-15

properties service
and license service 12-23

PropertiesIterator 13-19
PropertiesIterator interface 13-19
Property 13-23
property list 4-1, 12-23
property modes

getting and setting 13-17
property service

object classification 13-1
object usage count 13-1

Property service IDL 13-23
PropertyNamesIterator 13-20
PropertyNamesIterator interface 13-20
PropertySet 13-9
PropertySetDef 13-14
PropertySetDef interface 13-14
PropertySetDefFactory 13-22
PropertySetDefFactory interface 13-22
PropertySetFactory 13-21
PropertySetFactory interface 13-21
Protecting Messages 15-168
Protection boundaries 15-53
Protocol Enhancements 15-171
proxies and Time 14-23
Proxy 16-54
Proxy Interface 16-70
Proxy Trader 16-73
ProxyPullConsumer interface 4-18

connect_pull_supplier operation 4-18
ProxyPullSupplier 4-18
ProxyPullSupplier interface 4-3, 4-18

connect_pull_consumer operation 4-18
ProxyPushConsumer interface 4-3, 4-17

connect_push_supplier operation 4-18
disconnect_push_supplier operation 4-18

ProxyPushSupplier interface 4-19
connect_push_consumer operation 4-19

pseudo object67, 3-3, 3-13, 3-18
creating library name 3-14

Public 15-14
Public key technology 15-38
PullConsumer interface 4-3, 4-10, 4-21

disconnect_pull_consumer operation 4-7
PullSupplier interface 56, 4-7, 4-9

disconnect_pull_supplier operation 4-7, 4-10
pull operation 4-9
try_pull operation 4-9

PushConsumer interface 56, 4-6, 4-8, 12-27
disconnect_push_consumer operation 4-9
push operation 4-8

PushSupplier interface 4-3, 4-9
disconnect_push_supplier operation 4-7, 4-9

Q
quality of service 56, 4-3, 4-4, 4-6, 4-12
query collection 11-10
query evaluator 11-3

defined 11-19
Query Example 16-19
query framework 11-10
query framework interfaces

overview of 11-10
Query interface

execute operation 11-26
get_result operation 11-27
get_status operation 11-27
prepare operation 11-26
readonly attribute 11-26

query object
defined 11-21

Query Operation 16-31
July 1997 Index-9

Index
query service
and transaction service 11-2
list of interfaces for 11-23

Query Trader 16-71
queryable collection

defined 11-20
QueryableCollection interface 11-25
QueryEvaluator interface

attributes for 11-25
QueryManager interface

create operation 11-26
Queue 17-15
Queue Interface 17-66
QueueFactory Interface 17-82

R
RACollectionFactory and RACollectionFactories Interfaces 17-74
Readonly attribute inaccuracy 14-9
Readonly attribute tdf 14-9
Readonly attribute time 14-9
Readonly attribute time_interval 14-10
Readonly attribute utc_time 14-9
received_credentials 15-107
received_security_features 15-107
Recipe Syntax 16-99
recoverable object 10-5

and nested transactions 10-29
recoverable server 10-6, 10-39

glossary definition 10-83
implementing 10-35

RecoveryCoordinator interface 10-27
replay_completion operation 10-27

reference model xlii
reference relationship 9-1, 9-9

defining 9-50–9-51
overview 9-47

reference restriction 15-25
refresh 15-99
Register 16-36
register 14-17
Register Interface 16-69
Relation Interface 17-61
Relation, SortedRelation 17-13
RelationFactory Interface 17-76
relationship

and nodes, defined 9-35
creating 9-24
destroying 9-26
determining roles 9-26

Relationship between implementation objects for associations 15-
80

relationship between main objects 15-82
relationship factory attributes6-42, 6-45
Relationship interface 6-39, 8-23, 8-26, 9-25

copy operation 6-39
destroy operation 9-26
externalize_role operation 8-23
internalize_relationship operation 8-23
life_cycle_propagation operation 6-41
move operation 6-40
named_roles attribute 9-26

propagation_for operation 8-24
relationship service

and base level operations 9-17
and cardinality9-2, 9-18
and compound life cycle 9-3
and containment relationship 9-47–9-48
and CORBA object references 64
and degree 9-2
and entity 9-2
and levels of service 9-3, 9-7–9-10
and license service 12-26
and reference relationship 9-47–9-48
and semantics 9-2
and type9-1, 9-14
attribute and operation rationale 9-15
interface summary 9-11–9-13
overview 50

Relationship to Object Services and Common Facilities 15-232
Relationship to Other Relevant Standards 17-133
RelationshipFactory interface 9-23

create operation 9-24
degree attribute 9-25
named_role_types attribute 9-25
relationship_type attribute 9-25

RelationshipIterator interface 9-32
destroy operation 9-32
next_n operation 9-32
next_one operation 9-32

relationships
and defining role attributes 9-30
and operations on roles 9-26–9-30
containment 8-25
reference 8-25

Remove Link Operation 16-52
Remove Type Operation 16-64
Replaceable Security Service 15-163
Replaceable Security Services 15-78
Replacing Access Decision Policies 15-163
Replacing Audit Services 15-164
Representation of Literals 16-95
representation of Time 14-1
Request-Level Interceptors 15-149, 15-222
required_rights_object 15-108
RequiredRights 15-134
RequiredRights Interface 15-130
Resetting 13-19
resetting

position in an iterator 13-20
resetting position in iterator 13-20
Resetting the position in an iterator 13-19
Resolve Operation 16-45
Resource interface 10-27

commit operation 10-29
commit_one_phase operation 10-29
forget operation 10-29
prepare operation 10-28
rollback operation 10-29

resource manager 10-9, 10-64, 10-74
mappings to 10-72

resource object
defined 10-5
Index-10 CORBAservices: Common Object Services Specification

Index
Restricted Access Collection Interfaces 17-65
Restricted Access Collections17-4, 17-14
RestrictedAccessCollection Interface 17-65
Retrieval 13-15
retrieval of PropertySet constraints 13-15
Rights 15-22, 15-129
Rights Families 15-130, 15-134
Rights Families and Values 15-215
RM

see resource manager
role factory attributes 6-43, 6-45
Role interface6-37, 8-22, 9-26, 9-46

check_minimum_cardinality operation 9-29
copy operation 6-38
destroy operation 9-29
destroy_relationships operation 9-28
externalize_propagation operation 8-23
externalize_role operation 8-22
get_edges operation 9-47
get_other_related_object operation 9-27
get_other_role operation 9-27
get_relationships operation 9-28
how_many operation 9-28
internalize_role operation 8-23
life_cycle_propagation operation 6-39
link operation 9-29
move operation 6-38
related_object attribute 9-27
unlink operation 9-30

RoleFactory interface 9-27, 9-30
and max_cardinality attribute 9-31
and min_cardinality attribute 9-31
and role_type attribute 9-31
create_role operation 9-30
related_object_type attribute 9-32

roles
and cardinality9-29, 9-31

rollback
glossary definition 10-84

S
Scoping Policies 16-13
SD interface 5-11
SECIOP 15-178
SECIOP Message Header 15-177
SECIOP Protocol State Tables 15-182
Secure DCE-CIOP 15-186
Secure DCE-CIOP Operational Semantics 15-192
Secure Interoperability 15-243
Secure Interoperability Bridges 15-171
Secure Inter-ORB Protocol (SECIOP) 15-177
Secure Invocation and Delegation Policies 15-140
Secure Invocation Interceptor 15-152
Secure Object Invocations 15-15, 15-168
Secure Time 14-18
secure_universal_time 14-12, 14-17
SecureUniversalTime 14-3
Securing the Binding Handle to the Target 15-194
Security 15-1

Goals 15-3
Security Administration Interfaces 15-205

Security and Interoperability 15-165
Security Architecture 15-42
Security Association 15-168
security association 15-16
Security at the Target 15-59
Security Attributes 15-57
Security Audit 15-109
Security auditing 15-3
Security Components of the IOR 15-172
Security context 15-80
Security Context Object 15-158
Security Data Modul 15-196
security domains 15-4
Security environment domain 15-33
Security Environment Domains 15-36, 15-41
Security Facilities 15-217
Security Features 15-3, 15-92
Security Functionality Conformance 15-85
Security Functionality Level 1 15-85, 15-236
Security Functionality Level 2 15-85, 15-238
Security Information in the Object Reference 15-167
Security Interceptors 15-150
Security Mechanism Types 15-169
Security Mechanisms 15-63, 15-216
Security Mechanisms for Secure Object Invocations 15-168
security name 15-15
Security Object Models 15-54
Security of communication 15-3
Security Operations on Current 15-104
Security Policies 15-65, 15-72, 15-125, 15-128
Security policies and domain objects 15-49
Security Policy 15-76
Security Policy Domains 15-34, 15-40, 15-170
Security Reference Model 15-12
Security Replaceability 15-241
Security Replaceability Ready 15-85
Security Replaceable Service Interfaces 15-210
Security Service 15-1
security service

and license service 12-26
security specification 15-2
Security Technology 15-51
Security technology domain 15-33
Security Technology Domains 15-37, 15-41
see also data objects
Selecting Security Attributes 15-57
Selection of ORB Services 15-47
Send and Receive Message 15-224
sending Time across the network 14-23
Sequence 17-13
Sequence Interface 17-64
SequenceFactory Interface 17-81
SequentialCollection Interface 17-31
Service Offers 16-7
Service Type Repository 16-59
Service Type Repository Module 16-89
set 13-18, 13-19
set _security_features 15-97
Set, SortedSet 17-13
set_credentials 15-106
set_data 14-16
July 1997 Index-11

Index
set_privileges 15-58, 15-98
set_security_features 15-58
set_timer 14-16
SetFactory Interface 17-77
Setting Security Policy Details 15-75
simple delegation 15-28
simple name 3-2
Simple Trader 16-72
SNA LU protocol 10-76, 10-78

incoming communication 10-79
outgoing communication 10-79
transaction identifiers 10-78

SortedBag Interface 17-64
SortedCollection Interface 17-37
SortedIterator Interface 17-112
SortedMap Interface 17-63
SortedMapFactory Interface 17-79
SortedRelation Interface 17-63
SortedRelationFactory Interface 17-79
SortedSet Interface 17-63
SortedSetFactory Interface 17-80
source of Time 14-2
spans 14-11
Specific ORB Security Services and Replaceable Security

Services 15-78
Specifying Delegation Options 15-30
Specifying Use of Rights for Operation Access 15-75
SQL Query Language 11-6
Stack 17-15
Stack Interface 17-67
StackFactory Interface 17-83
Stand-alone Trader 16-72
Standard Data Type 15-213
Standardized Capability Supported Policies 16-15
Stream interface 8-12, 8-13

begin_context operation 8-14
end_context operation 8-14
externalize operation 8-13
flush operation 8-14
internalize operation 8-13, 8-14
internalize_from_stream operation 8-15

stream object
creating 8-12, 8-13
data format 8-29–8-31
externalizing 8-13
externalizing group 8-14
internalizing 8-13, 8-14

stream service 8-3
and begin_context request 8-3
and externalize_to_stream request8-3, 8-4
and internalize_from_stream request 8-3
and readonly key attribute 8-3

Streamable interface 8-4, 8-7, 8-17
externalize_to_stream operation 8-18
internalize_from_stream 8-18
is_identical operation 8-17

streamable object
and inheritance 8-17
creating

StreamableFactory interface

create_uninitialized operation 8-19
creation key 8-17

StreamableFactory interface 8-19
StreamFactory interface 8-8, 8-12

create operation 8-12
StreamIO interface 8-4, 8-8, 8-16

read_ operation 8-19
read_object operation 8-18, 8-19
read_t operation 8-16
write_ operation 8-18, 8-30
write_object operation 8-18
write_operation 8-16

SubtransactionAwareResource interface 10-29
commit_substransaction operation 10-30
commit_subtransaction operation 10-30

subtransactions 10-7, 10-12, 10-52, 10-54, 10-55, 10-59, 10-63
subtyping 55, 59
Summary of CORBA 2 Core Changes 15-217
supplier 4-2
SupplierAdmin interface 4-3, 4-16, 4-17

for_suppliers operation 4-16
obtain_pull_consumer operation 4-17
obtain_push_consumer operation 4-17

SupportAttributes 16-29
Symmetric key technology 15-38
synchronization of Time 14-18
synchronized data interface

see SD interface
System- and Application-Enforced Policies 15-35
system audit policies 15-23

T
TAG_ASSOCIATION_OPTIONS 15-193
Target 15-59
Target Side 15-176
target_requires field 15-190
target_supports field 15-189
TargetSecureInvocation 15-141
Technology Support for Delegation Options 15-30
Terminator interface

rollback operation 10-23
terminator object 10-38
Threats in a Distributed Object System 15-2
time 14-11
Time Interval Object (TIO) 14-10
Time Interval Objects (TIOs) 14-3
Time Service 15-233
Time Service interface 14-11
Time Service Requirements 14-1
Time Service requirements 14-1
time_set 14-16
time_to_interval 14-10
TimeBase 14-4, 14-5
Timer Event Handler 14-3, 14-15
Timer Event Service 14-3, 14-4, 14-13, 14-16, 14-22
TimeUnavailable 14-4, 14-8
traced delegation 15-29
Trader Attributes 16-21
Trader Policies 16-16
trading object service 16-2
transacations
Index-12 CORBAservices: Common Object Services Specification

Index
resource manager 10-64
transaction abort

see Resource interface
rollback operation 10-29

transaction context 10-18
management of 10-21
propagation of 10-21

transaction originator 10-13, 10-19, 10-22, 10-43
glossary definition 10-84

Transaction Service 15-232
transaction service

and concurrency control service 64
and orb interoperability 66
and persistent object service 65
application use of 10-31

transactional client 10-4, 10-34
glossary defintion 10-84

transactional object 10-4
example 10-40

transactional server
defined 10-6

TransactionalLockSet interface 7-9
TransactionalLockSet interface operations 7-12
TransactionalObject interface 10-30
TransactionFactory interface 10-38
transactions

checked 10-32–10-34, 10-36
consistency property 10-53
consistency property,glossary definition 10-81
coordinator object 10-28, 10-29, 10-38, 10-39, 10-49, 10-56
distributed 10-36
durability 10-52
durability, glossary definition 10-82
flat 10-6, 10-7, 10-9, 10-36
flat,glossary definition 10-82
implicit propagation 10-37
interposition 10-45, 10-56, 10-59
interposition, glossary defintion 10-82
isolation 10-7, 10-9, 10-13, 10-23
isolation, glossary definition 10-82
propagation 10-30–10-34, 10-38, 10-41, 10-55, 10-59, 10-62,

10-83
propagation to resource manager 10-74
recoverable object 10-5, 10-29
recoverable server 10-6, 10-35
recoverable server, glossary defintion 10-83
recoverable server,example 10-39
resource manager 10-9, 10-74
terminator object 10-38
two-phase commit protocol65, 10-12, 10-27, 10-45, 10-48, 10-

53, 10-57, 10-64, 10-76, 10-79
two-phase commit, glossary definition 10-85

TraveralCriteria interface
next_n operation 9-44

traversal criteria
creating 6-41, 9-36
example of 9-37

Traversal interface
destroy operation 9-43
next_n operation 9-43
next_one operation 9-42

ScopedEdge structure 9-42
traversal object 9-35, 9-36

creating 9-41
TraversalCriteria interface 9-36, 9-43

destroy operation 9-44
next_one operation 9-43
visit_node operation 9-44
Weighted_Edge structure 9-43

TraversalFactory interface 9-41
create_traversal_on operation 9-42

Trusted Computing Base 15-53
Trustworthy System 15-245
Type checking information 17-22
Type Definitions 17-19
Type InaccuracyT 14-6
Type IntervalT 14-6
Type safety 17-7
Type TdfT 14-6
Type TimerEventT 14-15
Type TimeT 14-6
Type UtcT 14-6
TypedConsumerAdmin interface

obtain_typed_pull_supplier operation 4-26
obtain_typed_push_supplier operation 4-26

TypedProxyPullSupplier interface 4-28
TypedProxyPushConsumer interface 4-28
TypedPullSupplier interface 4-21
TypedPushConsumer interface 4-20
TypedSupplierAdmin interface 4-27

obtain_typed_pull_consumer operation 4-27
obtain_typed_push_consumer operation 4-27

U
Unique entries (collections) 17-4
universal object identity 59
Universal Time Coordinated (UTC) 14-1
Universal Time Object (UTO) 14-8
Universal Time Objects (UTOs) 14-3
universal_time 14-4, 14-12
UniversalTime 14-3
Unmask Type Operation 16-66
unregister 14-17
Use of AccessPolicy and RequiredRights 15-134
Use of Interfaces for Access Control 15-111
Use of Interfaces for Delegation 15-113
Use of Privilege Attributes 15-133
Use of Rights and Rights Families 15-134
User sponsor 15-55
UserEnvironment interface

operations 5-37
Users’ View of the Security Model 15-42
Using Interceptors 15-222
uto_from_utc 14-12

V
Values for Standard Data Types 15-213
Vault 15-79, 15-156
View of the Security Model 15-42

W
Withdraw Operation 16-41
July 1997 Index-13

Index
Withdraw Proxy Operation 16-58
Withdraw Using Constraint Operation 16-44

X
X/Open xlii
X/Open CLI standard 5-34
X/Open TX interface 10-70–10-72
X/Open XA interface 10-64
Index-14 CORBAservices: Common Object Services Specification

-

CORBAservices: Common
Object Services Specification

TO: CORBAservices Readers

FROM: OMG Headquarters

RE: Update package for CORBAservices

DATE: July 30, 1997

In addition to the usual update pages, this update package
contains the following new or changed information:

• Overview (chapter 1) - added Object Collections
Service
Note: print complete chapter

• General Design Principles (chapter 2) - added Object
Collections Service on page 2-12 and General Interoper
ability Requirements on page 2-13.
Note: print complete chapter

• Time Service (chapter 14) - replaced the type definition
of type TimeT from “ulonglong” to “unsigned long
long” (and associated text changes) and substituted the
word “minutes” in place of “seconds” in the description
of the type TdfT.
Note: print complete chapter

• Object Collection Specification (chapter 17) - new spec-
ification
Note: print complete chapter

Refer to the next page for complete update instructions.

Pages to remove from CORBA
services (March 1997)

Pages to add from this update
package (footer July 1997)

Title and copyright Title and copyright

Table of Contents (footer reads
March 1997)

Table of Contents (footer reads July
1997)

List of Figures (footer reads March
1997)

List of Figures (footer reads July
1997)

List of Tables (footer reads March
1997)

List of Tables (footer reads July
1997)

Preface (footer reads March 1997) Preface (footer reads July 1997)

Chapter 1 - Overview (footer reads
March 1997)

Chapter 1 - Overview (footer reads
July 1997)

Chapter 2 - General Design
Principles (footer reads March
1995)

Chapter 2 - General Design Princi-
ples (footer reads July 1997)

Chapter 14 - Time Service (footer
reads November 1996)

Chapter 14 - Time Service (footer
reads July 1997)

--- Chapter 17 - Object Collection Ser-
vice (footer reads July 1997)

Index (footer reads March 1997) Index (footer reads July 1997)

	0.1 About This Document
	0.1.1 Object Management Group
	0.1.2 X/Open

	0.2 Intended Audience
	0.3 Need for Object Services
	0.3.1 What Is an Object Service Specification?

	0.4 Associated Documents
	0.5 Structure of this Manual
	0.6 Acknowledgements
	Overview
	1.1 Summary of Key Features
	1.1.1 Naming Service
	1.1.2 Event Service
	1.1.3 Life Cycle Service
	1.1.4 Persistent Object Service
	1.1.5 Transaction Service
	1.1.6 Concurrency Control Service
	1.1.7 Relationship Service
	1.1.8 Externalization Service
	1.1.9 Query Service
	1.1.10 Licensing Service
	1.1.11 Property Service
	1.1.12 Time Service
	1.1.13 Security Service
	1.1.14 Object Trader Service
	1.1.15 Object Collections Service

	General Design Principles
	2.1 Service Design Principles
	2.1.1 Build on CORBA Concepts
	2.1.2 Basic, Flexible Services
	2.1.3 Generic Services
	2.1.4 Allow Local and Remote Implementations
	2.1.5 Quality of Service is an Implementation Char...
	2.1.6 Objects Often Conspire in a Service
	2.1.7 Use of Callback Interfaces
	2.1.8 Assume No Global Identifier Spaces
	2.1.9 Finding a Service is Orthogonal to Using It

	2.2 Interface Style Consistency
	2.2.1 Use of Exceptions and Return Codes
	2.2.2 Explicit Versus Implicit Operations
	2.2.3 Use of Interface Inheritance

	2.3 Key Design Decisions
	2.3.1 Naming Service: Distinct from Property and T...
	2.3.2 Universal Object Identity

	2.4 Integration with Future Object Services
	2.4.1 Archive Service
	2.4.2 Backup/Restore Service
	2.4.3 Change Management Service
	2.4.4 Data Interchange Service
	2.4.5 Internationalization Service
	2.4.6 Implementation Repository
	2.4.7 Interface Repository
	2.4.8 Logging Service
	2.4.9 Recovery Service
	2.4.10 Replication Service
	2.4.11 Startup Service
	2.4.12 Data Interchange Service

	2.5 Service Dependencies
	2.5.1 Event Service
	2.5.2 Life Cycle Service
	2.5.3 Persistent Object Service
	2.5.4 Relationship Service
	2.5.5 Externalization Service
	2.5.6 Transaction Service
	2.5.7 Concurrency Control Service
	2.5.8 Query Service
	2.5.9 Licensing Service
	2.5.10 Property Service
	2.5.11 Time Service
	2.5.12 Security Service
	2.5.13 Trader Service
	2.5.14 Collections Service

	2.6 Relationship to CORBA
	2.6.1 ORB Interoperability Considerations: Transac...
	2.6.2 Life Cycle Service
	2.6.3 Naming Service
	2.6.4 Relationship Service
	2.6.5 Persistent Object Service
	2.6.6 General Interoperability Requirements

	2.7 Relationship to Object Model
	2.8 Conformance to Existing Standards

	Time Service Specification
	14.1 Introduction
	14.1.1 Time Service Requirements
	14.1.2 Representation of Time
	14.1.3 Source of Time
	14.1.4 General Object Model
	14.1.5 Conformance Points

	14.2 Basic Time Service
	14.2.1 Object Model
	14.2.2 Data Types
	14.2.3 Exceptions
	14.2.4 Universal Time Object (UTO)
	14.2.5 Time Interval Object (TIO)
	14.2.6 Time Service

	14.3 Timer Event Service
	14.3.1 Object Model
	14.3.2 Usage
	14.3.3 Data Types
	14.3.4 Exceptions
	14.3.5 Timer Event Handler
	14.3.6 Timer Event Service

	14.4 Conformance

	Object Collection Specification
	17.1 Overview
	17.2 Service Structure
	17.2.1 Combined Property Collections
	17.2.2 Iterators
	17.2.3 Function Interfaces
	17.2.4 List of Interfaces Defined

	17.3 Combined Collections
	17.3.1 Combined Collections Usage Samples

	17.4 Restricted Access Collections
	17.4.1 Restricted Access Collections Usage Samples...

	17.5 The CosCollection Module
	17.5.1 Interface Hierarchies
	17.5.2 Exceptions and Type Definitions
	17.5.3 Abstract Collection Interfaces
	17.5.4 Concrete Collections Interfaces
	17.5.5 Restricted Access Collection Interfaces
	17.5.6 Abstract RestrictedAccessCollection Interfa...
	17.5.7 Concrete Restricted Access Collection Inter...
	17.5.8 Collection Factory Interfaces
	17.5.9 Iterator Interfaces
	17.5.10 Function Interfaces

