
Itrace, an Iterator Tracing Tool

Michael LaSpina David R. Musser

Draft, April 20, 2002



1. Introduction

Itrace is a tool for analyzing the memory access patterns of generic algo-
rithms in C++. It provides an iterator adaptor that maintains a log of
time vs. position data, which can then be output to a file and fed directly
to a program such as Gnuplot for viewing. Itrace also provides facilities for
comparing different algorithms (e.g. overlayed graphs), as well as different
data structures and their impact on the performance of algorithms.



2. Usage

Itrace is controlled through the use of several command line options. Below
is a brief overview of each of the available options.



Option Meaning
h Help. Provides a lising of all the support algo-

rithms and containers, as well as the options listed
here.

c Adds a container to the set of containers to be
tested. The default is vector

gc Adds a graph container to the set of containers to
be tested.

a Adds an algorithm to the set of algorithms to be
tested. The default is sort

ga Adds a graph algorithm to the set of algorithms to
be tested.

n Sets the size of the data set. The default is 1000.
vertices Sets the number of vertices in the graph. The de-

fault is 1000.
edge Sets the number of edges in the graph. The default

is 1000.
v Specifies an additional argument to be used by an

algorithm. This is algorithm specific.
e External data. Itrace will try to read data values

from stdin, if there aren’t enough, random values
will be used.

r Reuses the same data set for all tests.
f Sets the data filter. The default is to filter out time

gaps and to adjust the data so the initial time is
zero.

o Changes the file name for the gnuplot commands
that are generated. The default is results.plot.

s Changes the plot style. This must be a valid Gnu-
plot style. The default is “dots.”



2.1. Algorithms and Containers

For each algorithm you would like Itrace to analyze add one -a <algorithm>

argument, where <algorithm> is the name of the algorithm to test. For
example:

$ ./itrace -a sort -a stable sort

will run both sort and stable sort on vectors of 1000 elements. For
each test that Itrace runs, it produces a text file containing the time
versus position data. Additionally, Itrace will produce a file that contains
a series of Gnuplot commands. This file can be passed to Gnuplot to
produce an overlayed graph of all the data sets Itrace produced.

Containers work in much the same way. So,

$ ./itrace -c vector -c deque

will run sort using a vector and deque with 1000 elements each. It will
produce one data file for each container, and also a file containing Gnuplot
commands.

Finally, multiple containers and algorithms can be combined.

$ ./itrace -a sort -a stable sort -c vector -c deque

Will test sort and stable sort with both vector and deque respectively.
Producing one data file for each combination and also a set of Gnuplot
commands.



2.2. Working with Graphs

Itrace provides support for working with the generic graph algorithms
provided by the Boost Graph Library (BGL). Testing graph algorithms
with Itrace is very similar to working with sequence algorithms. However,
the names of the program options are slightly different. For example, to
test Dijkstra’s Shortest Paths algorithm on an adjacency list represtation
of a graph with 1000 vertices and 1000 edges:

$ ./itrace -gc adj list -ga dijkstra -vertices 1000 -edges 1000

The graph will default to 1000 vertices or 1000 edges if either parameter
is left out, but there is neither a default graph container nor a default graph
algorithm.

2.3. Data Options

Itrace provides several options for control over the data sets used during
testing. The simplest is -n, which controls the number of elements in each
container tested. When using multiple algorithms or containers often it is
desirable to use the same data set in each test. Itrace provides this with
the -r option. For example:

$ ./itrace -r -a sort -a stable sort

This will test sort and stable sort using the same data set. This option
is particularly useful for comparing worst case behavior. Another option



helpful for testing worst case behavior is -e, which allows Itrace to retrieve
values from standard input. Typically, these values are redirected from a
file or piped in from another program. For example:

$ ./itrace -e -a sort -a stable sort < values.txt

The above snippet will test sort and stable sort using the first 2000
values in the file values.txt (1000 for each test). If the input source does
not contain enough values Itrace will display a warning that no more values
were available from standard input and will retrieve any additional values
from its random number generator.

Often, the data generated by Itrace will contain time gaps. Some of
this is due the additional overhead logging introduces, but some of it is due
to external factors. For example, events such as cache misses and virtual
memory paging may be caused by other processes. Depending on the load
on the system, this can introduce large gaps in the graphs produced by
Itrace. To alleviate this, Itrace can filter data sets to remove these gaps
before ouputting the results. This is performed using the -f <filter>

switch, where <filter> is the name of the filter to be used. Below is a
table of all the filtering modes support:



Filter Action
simple Removes time gaps in the data set according to a

threshold. The threshold is a compile time con-
stant and defaults to 5.

normalized Adjusts the data set so that its initial time is zero.
raw No filtering is performed.

default Both simple and normalized modes are used.

For simple mode filtering the threshold can be controlled by defining
the constant ITRACE THRESHOLD to the desired value. It’s recommended
this value be defined in the Itrace makefile.

Some algorithms have need for additional parameters. For example,
partial sort takes three parameters. Two of the parameters denote the
sequence of valued to sort, and the third denotes how many of the values
should be sorted. Thus, partial sort can be used to sort the first half of a
sequence or the first third, etc, depending on the value of third parameter.
Itrace provides the -v option for supplying an additional argument to an
algorithm. In the case of partial sort, we can supply an additional
argument to indicate how many of the value we wish to sort. This will
generate an iterator trace of sorting the first 500 values in a 1000 element
sequence.

$ ./itrace -a partial sort -v 500

Most algorithms do not require an additional argument, and those
that do have appropriate defaults. Unneeded arguments are ignored by
algorithms that do not use them. Unlike all of the other command line



parameters accepted by Itrace, additional arguments are sensitive to their
order. Since they need to be associated with a specific algorithm, any -v
option must immediately follow the algorithm it applies to. For example,
the following uses are incorrect:

$ ./itrace -v 500 -a partial sort

$ ./itrace -a partial sort -c deque -v 500

Instead they should appear as:

$ ./itrace -a partial sort -v 500

$ ./itrace -a partial sort -v 500 -c deque

The following table presents the algorithms that make use of additional
arguments and their meaning.

Algorithm Type Meaning
partial sort Integer Indicates the number of values to sort.
nth element Integer Which value in the sequence to parti-

tion around.
rotate Integer Indicates how many positions to rotate

each value.


	Introduction
	Usage
	Algorithms and Containers
	Working with Graphs
	Data Options


