
3.3.4 Strongly Connected Components

Section authors: Kaoutar ElMaghraoui, Benjarath Phoophakdee, Fikret Sivrikaya,
Mishella Yoshi

�
�

�
�

�
�

�
�

�
�

�
�

Strongly Connected Components

Structure Based 3.3

Graph Algorithm 3.1

Refinement of: Structure Based Graph Algorithm (§3.3), therefore of Graph
Algorithm (§3.1).

Prototype: template <class Graph, class ComponentMap,

class P, class T, class R>

typename property_traits<ComponentMap>::value_type

strong_components(Graph& g, ComponentMap comp, const

bgl_named_params<P, T, R>& params = all defaults)

Input: The input to the strongly connected components algorithm is a directed
graph.

Output: The strong components() algorithm computes the strongly connected
components of a directed graph using Tarjan’s algorithm based on DFS.
Essentially, the algorithm computes how many connected components are
in the graph, and assigning each component an integer label. The al-
gorithm then records which component each vertex in the graph belongs
to by recording the component number in the component property map.
The ComponentMap type must be a model of Writable Property Map.
The value type should be an integer type, preferably the same as the ver-
tices size type of the graph. The key type must be the graph’s vertex
descriptor type.

1



Effects: The structure of the graph is not altered by the algorithm.

Asymptotic complexity: Let V = number of vertices. Let E = number of edges.

• Average case (random data): O(V + E)

• Complete graph case: O(V + E)

Complexity in terms of algorithm running time: The following co-
efficients were obtained using least squares fitting using Matlab in the
case of Adjacency-List implementation and Microsoft Excel in the case of
Adjacency-Matrix implementation. The time complexity is in milliseconds.

Average Case :

• Adjacency-List implementation:
0.0023V + 0.0012E

• Adjacency-Matrix implementation:
0.0005V 2

Complete Graph Case :

• Adjacency-List implementation:
0.0011V 2 + 8E − 05V + 0.928

Notice that the time bounds in the case of adjacency-matrix is quadratic.
The reason is as follows. As the strongly connected components algorithm
is based on DFS, it traverses all the out-edges of each vertex in a graph.
This structure of the algorithm yields an O(V + E) time bound for the
adjacency-list representation, since the total cost of traversal over the out-
edges is E in this case.

However, for the adjacency-matrix representation, where adjacency infor-
mation is embedded in a V ∗ V matrix, the algorithm needs to go over a
whole row in the matrix, of length V, for each vertex. Therefore the total
cost of traversal over the out-edges is no more E, but V 2 in adjacency-
matrix case.

Additionally, when the graph is complete the running time is also quadratic,
in term of V, when using the adjacency-list representation because E =
O(V 2) so O(V + E) = O(V + V 2) = O(V 2).

2



Experimental Data: To experimentally obtain the time complexity in terms
of the number of edges and the number of vertices, several graphs have
been examined. The graphs have been generated randomly. We have
conducted several experiments to test the performance of the algorithm
for both complete and sparse graphs. To isolate the impact of the number
of vertices and the number of edges, the number of vertices was held
constant while varying the number of edges. Similarly, the number of
edges was held constant while varying the number of vertices.

The tests were performed using a gcc version 3.2 compiler with the boost
library version 1.29.0. For each test, the running time is averaged over
20 runs if the number of vertices is below 500 and averaged over 3 runs
otherwise. The results are presented in the tables below:

3



• Experiment 1: Fixing the edges
In this experiment, the number of edges was held constant at 1600
while the number of vertices was varied. The number of vertices was
multiplied by 2 in each test. The tests have been performed for both
the adjacency-list and adjacency-matrix graph representations.

Results for E = 1600
Adjacency-List Adjacency-Matrix

V Time(ms) V Time(ms)
40 0 40 0
80 0 80 0

160 0 160 16
320 0 320 62
640 0 640 219

1280 0 1280 860
2560 15 2560 3453
5120 16 5120 13766

10240 31 10240 55031
20480 47 20480 220485
40960 94
81920 188

163840 391
327680 750
655360 1547

4



• Experiment 2: Fixing the vertices
In this experiment the number of vertices was held constant at 500
while the number of edges was varied. For each graph generated, the
number of edges was selected randomly from the range [1, V 2]. The
random generation of the number of edges is controlled by dividing
the range into n intervals where n is the number of tests and selecting
E randomly from all these intervals to ensure that we have a good
sampling. The results for both adjacency-list and adjacency-matrix
are shown in the tables below:

Results for V = 500
Adjacency-List Adjacency-Matrix

E Time(ms) E Time(ms)
43721 62 43721 125

283315 328 283315 125
461222 515 461222 125
654847 734 654847 125
982204 1109 982204 125

1370998 1547 1370998 125
1959484 2219 1959484 125
1233838 1422 1233838 125
2185434 2453 2185434 125
2927853 3297 2927853 125
2974943 3360 2974943 125
3557109 4016 3557109 125
3742877 4219 3742877 125
2561375 2891 2561375 125
3831652 4312 3831652 125

5



• Experiment 3: Sparse vs. Complete graph performance
The purpose of this experiment was to test how the algorithm be-
haves when the graph is sparse and when it is complete or dense.
Sparse graphs were constructed by having the number of edges equal
to half the number of vertices. Complete graphs were constructed by
adding an edge between every pair of vertices. The following tables
show results obtained.

Sparse Graph E = V/2 Complete Graph
V Time(ms) V Time(ms)

50 0 50 0
100 0 100 15
200 0 200 47
400 0 400 187
800 0 800 734

1600 0 1600 2938
3200 0 3200 11750
6400 16

12800 31
25600 78
51200 172

102400 359
204800 703
409600 1437
819200 2891

6



Experimental Plots and Discussion :

• Plot 1: Experimenting with vertices for the list case
This plot shows the results of the experiment 1 with the adjacency
list representation. The number of vertices is varied while E is held
constant at 1600 edges. The running time is linear in terms of the
number of vertices.

7



• Plot 2: Experimenting with vertices for the matrix case
The following plot shows the result of experiment 1 in the case of an
adjacency-matrix representation. The running time is shown to be
quadratic in the number of vertices. This confirms the theory. The
coefficient obtained from the curve fitting is 0.0005.

8



• Plot 3: Experimenting with Edges for the list case
This plot shows the results of experiment 2 with adjacency list graph
representation. The number of edges is varied while the number of
vertices is held constant at 500. Again as expected, the running time
is linear in terms of E. The coefficient that was obtained from Matlab
curve fitting is 0.0012.

9



• Plot 4: Experimenting with Edges for the matrix case
This plot shows the results of experiment 2 with the adjacency-matrix
representation. The number of edges should not affect the running
time in this case. The results bear this out since the running time
remains constant even if we vary the number of edges.

10



• Plot 5: Adjacency-List vs. Adjacency-Matrix
This plot shows that the algorithm runs much faster with an adjacency-
list representation as the number of vertices increases, while the num-
ber of edges, E, is held constant. For this experiment, E is fixed at
1600. Note that the graph gets sparser as we increase the number of
vertices with a fixed E.

• Plot 6-7:
The sparse/complete graph experiments have been done with the
adjacency matrix representation. In the sparse graph case the number
of edges generated is equal to half the number of vertices in the graph.
When the graph is sparse, the running time is linear in terms of V and
E. When the graph is dense the running time is quadratic in terms of
the number of vertices. The coefficient obtained from curve fitting
is 0.0011 which is greater than the coefficient obtained from plot 2
(0.0005). This indicates that it is better to use the adjacency matrix
representation when the graph is dense. The results confirm that the
algorithm runs much faster when the graph is sparse.

11



12



Pseudocode: Pseudocode of strongly connected components algorithm. The
Boost Graph Library uses Tarjan’s algorithm based on DFS in implementing
strong components functions. The psuedocode can be found here.

References :

• An animation of an operating strongly connected components algo-
rithm is given here.

This animation shows the DFS-based Strong Components algorithm
of a directed graph G. You can view from the animation a trace of
the two phases of the algorithm: phase one where the finish stack
is set up to contain the vertices in reverse order of a DFS traversal
and phase two where the a DFS traversal is done on the transpose
of G based on the contents of finishStack. You can also view how
finishStrack is being filled up and emptied as the algorithm progresses.

As the animation progresses, the vertices are colored according to
their state in the DFS traversal. Initially all the vertices are white.
When a vertex is discovered it becomes grey and when it is finished
it becomes dark.

You can control the animation by starting it, stoping it, pausing it,
or stepping through it at any time. You can also control the speed of
the animation through the scroll bar provided at the bottom of the
window.

• The BGL reference material for strongly connected components algo-
rithm can be found here.

13

http://www.ecst.csuchico.edu/~juliano/csci356/JAWAA/StrongComponents.html
http://www.ecst.csuchico.edu/~juliano/csci356/JAWAA/Baase_Algo_07-07.html
http://www.boost.org/libs/graph/doc/strong_components.html

	Strongly Connected Components

