
8 Set Algorithms

Section authors: Metin Inanc, Lingling Shen, Rongrong Jiang, Qian Huang

Set Algorithms 8

�
 �	

�
 �	�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
 �	

Input-Specialized Algorithms 1.3

Sequence Algorithms 2.1

Includes 8.1
Set

Union 8.2
Set

Intersection 8.3
Set

Difference 8.4

Set
Symmetric

Difference ??

�
 �	

Set algorithms are input-specialized algorithms that deal with sets.

They implement basic mathematical set operations over sets with generic element
types. STL implements set containers with red-black trees. The reason for this
is that operations with sets require fast and bounded search on set members.
This can be achieved with binary search on red-black trees. Red-black trees are
one of the ways of getting balanced binary trees and O(log N) bounded binary
search time, the other alternatives being AVL trees and B-trees. AVL trees are
better balanced than red-black trees; however, they require more operations to
maintain the balance. B-trees would be a better choice with huge sets. Having
set elements in binary search trees assures the precondition that all set elements
should be sorted. Set algorithms can be applied on container classes other than
sets but in this case programmer should take care of the sorting.

There are five set algorithms:

• includes

• set union

• set intersection

1

http://www.cs.rpi.edu/~musser/ca/algorithm-concepts.ps
http://www.sgi.com/tech/stl

• set difference

• set symmetric difference

8.1 Includes

Set Algorithms 8

�
 �	

�
 �	�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
 �	

Input-Specialized Algorithms 1.3

Sequence Algorithms 2.1

Includes 8.1
Set

Union 8.2
Set

Intersection 8.3
Set

Difference 8.4

Set
Symmetric

Difference ??

�
 �	

Refinement of: Set Algorithms (§8), therefore refinement of Sequence Algo-
rithms §2.1, therefore refinement of Input-Specialized Algorithms §1.3.

Prototype: Includes is overloaded and has two versions:

template <class InputIterator1,

class InputIterator2>

bool includes(InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2,

InputIterator2 last2);

template <class InputIterator1,

class InputIterator2,

class StrictWeakOrdering>

bool includes(InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2,

InputIterator2 last2,

StrictWeakOrdering comp);

2

Input: Inputs are two valid ranges of iterators. The range of elements should
be sorted in ascending order. This is guaranteed if set container is used.

Output: A boolean indicating whether the second range is included in the first
one.

Effects: (Taken from http://www.sgi.com/tech/stl)
Includes tests whether the first sorted range includes the second one.

The semantics of the includes operation are slightly different depending on
whether the input contains duplicate keys. When there are no duplicate
keys in both the input sets (e.g., set < Key >), it returns true if and only
if, for every element in [first2, last2), an equivalent element is also present
in [first1, last1). When there are duplicate keys in either input sets or both
(e.g., multiset < Key >), then if a key appears m times in the first set,
and n times in the second set (either m or n could be zero), it returns
false if m < n.

The two versions of the includes are different in that the first version uses
operator< to compare objects, and the second using a function object
comp.

Asymptotic Complexity: Lets first give the required bounds from the STL
library.

Let N = last1− first1, M = last2− first2.

• Worst Case: O(N + M)

• Average Case: O(N + M)

Complexity in terms of operation counts :

(Average Case) The average case for this algorithm depends on the applica-
tion at hand. The running time of the algorithm greatly depends on the
probability of having one of the elements of the second range not included
in the first range. If we define a r.v. X as the rank of the first element
in the second range which is not included in the first range, the expected
value of X E[X] would be proportional to the running time of the algo-
rithm. Distribution of r.v. X greatly depends on the application which uses
includes() function.

3

http://www.sgi.com/tech/stl

(Worst Case) The numbers in the tables below are performed with the worst
case input. The second set is completely included in the first set. Thus
there is no possibility for the algorithm to encounter a key in the second
set which is not in the first set and exit preliminary returning false. Neither
of the sets contains duplicated entries.

Includes (N=1000, M=1000)

Type Assign Other Compare Total
iterator cnt 0.004 6 2.002 8.006

value cnt 0 0 2 2
Total 0.004 6 4.002 10.006

Includes (N=2000, M=1000)

Type Assign Other Compare Total
iterator cnt 0.004 10.99 3.999 14.993

value cnt 0 0 3.996 3.996
Total 0.004 10.99 7.995 18.989

Includes (N=2000, M=2000)

Type Assign Other Compare Total
iterator cnt 0.004 12 4.002 16.006

value cnt 0 0 4 4
Total 0.004 12 8.002 20.006

Includes (N=4000, M=1000)

Type Assign Other Compare Total
iterator cnt 0.004 21 8.002 29.006

value cnt 0 0 8 8
Total 0.004 21 16.002 37.006

Includes (N=4000, M=2000)

Type Assign Other Compare Total
iterator cnt 0.004 22 8.002 30.006

value cnt 0 0 8 8
Total 0.004 22 16.002 38.006

4

Includes (N=4000, M=4000)

Type Assign Other Compare Total
iterator cnt 0.004 24 8.002 32.006

value cnt 0 0 8 8
Total 0.004 24 16.002 40.006

Curve Fitting for the Total Operation Counts: Curve fitting was per-
formed using polyfit() function of Matlab. All of the figures were drawn
with Gnuplot.

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 1000 2000 3000 4000 5000 6000 7000 8000 9000

To
ta

l N
um

be
r o

f O
pe

ra
tio

ns

N+M

Curve Fitting For Operation Counts Of Includes()

actual data
5.34(N+M)+2397

Worst Case Formula: 5.3441(N + M) + 2397.5

Pseudocode (Actual Code): while (first1 != last1 && first2 != last2)

if (*first2 < *first1)

return false;

else if(*first1 < *first2)

++first1;

else

5

++first1, ++first2;

return first2 == last2;

8.2 Set Union

Set Algorithms 8

�
 �	

�
 �	�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
 �	

Input-Specialized Algorithms 1.3

Sequence Algorithms 2.1

Includes 8.1
Set

Union 8.2
Set

Intersection 8.3
Set

Difference 8.4

Set
Symmetric

Difference ??

�
 �	

Refinement of: Set Algorithms (§8), therefore refinement of Sequence Algo-
rithms §2.1, therefore refinement of Input-Specialized Algorithms §1.3.

Prototype: Set union is overloaded and has two versions:

template <class InputIterator1,

class InputIterator2,

class OutputIterator>

OutputIterator

set_union(InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2,

InputIterator2 last2,

OutputIterator result);

template <class InputIterator1,

class InputIterator2,

class OutputIterator,

class StrictWeakOrdering>

6

OutputIterator

set_union(InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2,

InputIterator2 last2,

OutputIterator result,

StrictWeakOrdering comp);

Input: Inputs are two valid ranges of iterators and an output iterator. The
range of elements should be sorted in ascending order. This is guaranteed
if set container is used.

Output: None. However there are side-effects.

Effects: Set union outputs a set with the sorted range which is the union of
the sorted ranges [first1, last1) and [first2, last2).

The semantics of the union operation are slightly different depending on
whether the input contains duplicate keys. When there are no duplicate
keys in both the input sets (e.g., Set < Key >), set union’s output is
a copy of every element that is contained in [first1, last1), [first2, last2),
or both. When there are duplicate keys in either input sets or both (e.g.,
Multiset < Key >), then if a key appears m times in the first set,
and n times in the second set (either m or n could be zero), it appears
max(m, n) times in the output.

Set union is stable. The relative order of elements with each input set is
preserved and if an element appears in both input sets then it is only copied
from the first set.

The two versions of the set union are different in that the first version uses
operator< to compare objects, and the second using a function object
comp.

Asymptotic complexity: Let N = last1− first1, M = last2− first2.

• Average case: O(N + M)

• Worst case: O(N + M)

Complexity in terms of operation counts: The numbers in these tables
are derived from operation count experiments performed with inputs ran-
domly drawn from a set which is ten times bigger than the input sets.

7

Input sets do not contain duplicate keys. All the keys drawn for the first
input set are put back, shuffling is performed and then keys for the second
input set are drawn randomly. Thus two input sets are overlapping with
very high probability. The key type used is integer.

Set union (N=1000, M=1000)

Type Assign Other Compare Total
iterator cnt 0.024 9.69 3.798 13.512

value cnt 1.898 0 6.69 8.588
Total 1.922 9.69 10.488 22.1

Set union (N=1000, M=2000)

Type Assign Other Compare Total
iterator cnt 0.024 15.358 5.575 20.957

value cnt 2.786 0 10.356 13.142
Total 2.81 15.358 15.931 34.099

Set union (N=1000, M=4000)

Type Assign Other Compare Total
iterator cnt 0.024 26.813 9.215 36.052

value cnt 4.607 0 17.815 22.422
Total 4.631 26.813 27.03 58.474

Set union (N=2000, M=2000)

Type Assign Other Compare Total
iterator cnt 0.024 19.368 7.585 26.977

value cnt 3.792 0 13.37 17.162
Total 3.816 19.368 20.955 44.139

Set union (N=2000, M=4000)

Type Assign Other Compare Total
iterator cnt 0.024 30.707 11.141 41.872

value cnt 5.569 0 20.705 26.274
Total 5.593 30.707 31.846 68.146

8

Set union (N=4000, M=4000)

Type Assign Other Compare Total
iterator cnt 0.024 38.769 15.184 53.977

value cnt 7.591 0 26.769 34.36
Total 7.615 38.769 41.953 88.337

Curve Fitting for the Total Operation Counts:

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 1000 2000 3000 4000 5000 6000 7000 8000 9000

To
ta

l N
um

be
r o

f O
pe

ra
tio

ns

N+M

Curve Fitting For Operation Counts Of set_union()

actual data
11.126(N+M)+625.5

Average Case Formula: 11.126(N + M) + 625.5

Pseudocode (Actual Code): while (first1 != last1 && first2 != last2) {

if (*first1 < *first2) {

*result = *first1;

++first1;

}

else if (*first2 < *first1) {

*result = *first2;

++first2;

}

9

else {

*result = *first1;

++first1;

++first2;

}

++result;

}

return copy(first2, last2,

copy(first1, last1, result));

8.3 Set Intersection

Set Algorithms 8

�
 �	

�
 �	�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
 �	

Input-Specialized Algorithms 1.3

Sequence Algorithms 2.1

Includes 8.1
Set

Union 8.2
Set

Intersection 8.3
Set

Difference 8.4

Set
Symmetric

Difference ??

�
 �	

Refinement of: Set Algorithms (§8), therefore refinement of Sequence Algo-
rithms §2.1, therefore refinement of Input-Specialized Algorithms §1.3.

Prototype: Set intersection is overloaded and has two versions:

template <class InputIterator1,

class InputIterator2,

class OutputIterator>

OutputIterator

set_intersection(InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2,

10

InputIterator2 last2,

OutputIterator result);

template <class InputIterator1,

class InputIterator2,

class OutputIterator,

class StrictWeakOrdering>

OutputIterator

set_intersection(InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2,

InputIterator2 last2,

OutputIterator result,

StrictWeakOrdering comp);

Input: Inputs are two valid ranges of iterators and an output iterator. The
range of elements should be sorted in ascending order. This is guaranteed
if set container is used.

Output: None. However there are side-effects.

Effects: Set intersection outputs a set with the sorted range which is the inter-
section of the sorted ranges [first1, last1) and [first2, last2).

The semantics of the intersection operation are slightly different depending
on whether the input contains duplicate keys. When there are no duplicate
keys in both the input sets (e.g., Set < Key >), set intersection’s output
is a copy of every element that is contained in both [first1, last1) and
[first2, last2). When there are duplicate keys in either input sets or both
(e.g., Multiset < Key >), then if a key appears m times in the first set,
and n times in the second set (either m or n could be zero), it appears
min(m, n) times in the output.

Set intersection is stable. The relative order of elements with each input
set is preserved and if an element appears in both input sets then it is only
copied from the first set.

The two versions of the set intersection are different in that the first version
uses operator< to compare objects, and the second using a function object
comp.

11

Asymptotic complexity: Let N = last1− first1, M = last2− first2.

• Average case: O(N + M)

• Worst case: O(N + M)

Complexity in terms of operation counts: The numbers in these tables
are derived from operation count experiments performed with inputs ran-
domly drawn from a set which is ten times bigger than the input sets.
Input sets do not contain duplicate keys. All the keys drawn for the first
input set are put back, shuffling is performed and then keys for the second
input set are drawn randomly. Thus two input sets are overlapping with
very high probability. The key type used is integer.

Set intersection (N=1000, M=1000)

Type Assign Other Compare Total
iterator cnt 0.004 7.893 3.795 11.692

value cnt 0 0 4.372 4.372
Total 0.004 7.893 8.167 16.064

Set intersection (N=1000, M=2000)

Type Assign Other Compare Total
iterator cnt 0.004 12.786 5.573 18.363

value cnt 0 0 7.987 7.987
Total 0.004 12.786 13.56 26.35

Set intersection (N=1000, M=4000)

Type Assign Other Compare Total
iterator cnt 0.004 22.597 9.211 31.812

value cnt 0 0 14.741 14.741
Total 0.004 22.597 23.952 46.553

Set intersection (N=2000, M=2000)

Type Assign Other Compare Total
iterator cnt 0.004 15.782 7.581 23.367

value cnt 0 0 8.975 8.975
Total 0.004 15.782 16.556 32.342

12

Set intersection (N=2000, M=4000)

Type Assign Other Compare Total
iterator cnt 0.004 25.569 11.139 36.712

value cnt 0 0 16.426 16.426
Total 0.004 25.569 27.565 53.138

Set intersection (N=4000, M=4000)

Type Assign Other Compare Total
iterator cnt 0.004 31.586 15.181 46.771

value cnt 0 0 18.247 18.247
Total 0.004 31.586 33.428 65.018

Curve Fitting for the Total Operation Counts:

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 1000 2000 3000 4000 5000 6000 7000 8000 9000

To
ta

l N
um

be
r o

f O
pe

ra
tio

ns

N+M

Curve Fitting for Operation Counts of set_intersection()

actual data
8.34(N+M)+954

Average Case Formula: 8.3477(N + M) + 954.9

Iterator Trace Plot for set intersection() Iterator trace plots are get from
the output of the program itrace, the parameters used are -a set intersection
-c vector -n 1000.

13

http://www.cs.rpi.edu/~musser/ca/index_18.html

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 1000 2000 3000 4000 5000 6000

Ite
ra

to
r P

os
iti

on

Time

Iterator Trace Plot for set_intersection -c vector -n 1000

iterator_1
iterator_2

Pseudocode (Actual Code): while (first1 != last1 && first2 != last2)

if (*first1 < *first2)

++first1;

else if (*first2 < *first1)

++first2;

else {

*result = *first1;

++first1;

++first2;

++result;

}

return result;

14

8.4 Set Difference

Set Algorithms 8

�
 �	

�
 �	�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
 �	

Input-Specialized Algorithms 1.3

Sequence Algorithms 2.1

Includes 8.1
Set

Union 8.2
Set

Intersection 8.3
Set

Difference 8.4

Set
Symmetric

Difference ??

�
 �	

Refinement of: Set Algorithms (§8), therefore refinement of Sequence Algo-
rithms §2.1, therefore refinement of Input-Specialized Algorithms §1.3.

Prototype: Set difference is overloaded and has two versions:

template <class InputIterator1,

class InputIterator2,

class OutputIterator>

OutputIterator

set_difference(InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2,

InputIterator2 last2,

OutputIterator result);

template <class InputIterator1,

class InputIterator2,

class OutputIterator,

class StrictWeakOrdering>

OutputIterator

set_difference(InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2,

InputIterator2 last2,

15

OutputIterator result,

StrictWeakOrdering comp);

Input: Inputs are two valid ranges of iterators and an output iterator. The
range of elements should be sorted in ascending order. This is guaranteed
if set container is used.

Output: None. However there are side-effects.

Effects: Set difference outputs a set with the sorted range which is the set
difference of the sorted ranges [first1, last1) and [first2, last2).

The semantics of the set difference operation are slightly different depend-
ing on whether the input contains duplicate keys. When there are no
duplicate keys in both the input sets (e.g., Set < Key >), set difference’s
output is a copy of every element that is contained in [first1, last1) but
not in [first2, last2). When there are duplicate keys in either input sets
or both (e.g., Multiset < Key >), then if a key appears m times in the
first set, and n times in the second set (either m or n could be zero), it
appears max(m− n, 0) times in the output.

Set difference is stable. The relative order of elements with each input set
is preserved and if an element appears in both input sets then it is only
copied from the first set.

The two versions of the set difference are different in that the first version
uses operator< to compare objects, and the second using a function object
comp.

Asymptotic complexity: Let N = last1− first1, M = last2− first2.

• Average case: O(N + M)

• Worst case: O(N + M)

Complexity in terms of operation counts: The numbers in these tables
are derived from operation count experiments performed with inputs ran-
domly drawn from a set which is ten times bigger than the input sets.
Input sets do not contain duplicate keys. All the keys drawn for the first
input set are put back, shuffling is performed and then keys for the second
input set are drawn randomly. Thus two input sets are overlapping with
very high probability. The key type used is integer.

16

Set difference (N=1000, M=1000)

Type Assign Other Compare Total
iterator cnt 0.014 8.689 3.796 12.499

value cnt 0 0 15.724 15.724
Total 0.014 8.689 19.52 28.223

Set difference (N=1000, M=2000)

Type Assign Other Compare Total
iterator cnt 0.014 13.358 5.574 18.946

value cnt 0 0 16.415 16.415
Total 0.014 13.358 21.989 35.361

Set difference (N=1000, M=4000)

Type Assign Other Compare Total
iterator cnt 0.014 22.811 9.212 32.037

value cnt 0 0 18.168 18.168
Total 0.014 22.811 27.38 50.205

Set difference (N=2000, M=2000)

Type Assign Other Compare Total
iterator cnt 0.014 17.366 7.582 24.962

value cnt 0 0 33.176 33.176
Total 0.014 17.366 40.758 58.138

Set difference (N=2000, M=4000)

Type Assign Other Compare Total
iterator cnt 0.014 26.707 11.14 37.861

value cnt 0 0 34.411 34.411
Total 0.014 26.707 45.551 72.272

Set difference (N=4000, M=4000)

17

Type Assign Other Compare Total
iterator cnt 0.014 34.768 15.182 49.964

value cnt 0 0 70.326 70.326
Total 0.014 34.768 85.508 120.29

Curve Fitting for the Total Operation Counts:

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 1000 2000 3000 4000 5000 6000 7000 8000 9000

To
ta

l N
um

be
r o

f O
pe

ra
tio

ns

N+M

Curve Fitting For Operation Counts Of set_symmetric_difference()

actual data
23.359(N+M)-5940

Average Case Formula: 23.359(N + M)− 5940.5

Itrace for set symmetric difference() function Iterator trace plots are
get from the output of the program itrace, the parameters used are -a
set symmetric difference -c vector -n 1000.

18

http://www.cs.rpi.edu/~musser/ca/index_18.html

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 1000 2000 3000 4000 5000 6000

Ite
ra

to
r P

os
iti

on

Time

Iterator Trace Plot for set_symmetric_difference -c vector -n 1000

iterator_1
iterator_2

Pseudocode (Actual Code) : while (first1 != last1 && first2 != last2)

if (*first1 < *first2) {

*result = *first1;

++first1;

++result;

}

else if (*first2 < *first1) {

*result = *first2;

++first2;

++result;

}

else {

++first1;

++first2;

}

return copy(first2, last2,

copy(first1, last1, result));

19

	Set Algorithms
	Includes
	Set Union
	Set Intersection
	Set Difference

