
2.6.4 Quicksort

Section authors: Feng Gao, Jing Xi, Lizhuang Zhao.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Quicksort

Sorting Algorithm 2.6

Comparison
Based 2.2

Permuting 2.5

Sequence
Algorithm 2.1

Refinement of: Sequence Sorting Algorithm (§2.6), therefore of Comparison
Based (§2.2), Permuting (§2.5), Sequence Algorithm (§2.1).

Prototype: template〈class RandomAccessIterator〉
void quicksort(RandomAccessIterator first,

RandomAccessIterator last)

Effects: Standard effects of a Sequence Sorting Algorithm (§2.6). In brief: the
elements in [first, last) after execution are a permutation of the original
elements in the range, and they are in nondecreasing order according the
comparison operator.

Asymptotic complexity: Let N = last − first.

• Average case (random data): O(N log2 N)

• Worst case: O(N2)

Complexity in terms of operation counts:

1



• Average case:

Value assignments: 6.03N log2 N + 98.05N
Value comparisons: 4.47N log2 N + 61.12N
Other Ops: 2.28N log2 N + 22.97N
Total: 12.88N log2 N + 182.05N

• Operation counts:

Performance of Heapsort, Quicksort and Quicksort (Hoare) on Ran-
dom Sequences (Sizes and Operations Counts in Multiples of 1,000)

Size Algorithm Assign Comp- Other Total
ments arisons Ops Ops

1 Heapsort 138 123 24 285
Quicksort 83 53 22 158

H Quicksort 71 47 26 144
4 Heapsort 639 586 113 1338

Quicksort 398 257 110 765
H Quicksort 318 218 120 656

16 Heapsort 2906 2714 516 6136
Quicksort 1823 1196 513 3532

H Quicksort 1415 998 542 2955
64 Heapsort 13033 12329 2321 27683

Quicksort 8091 5385 2378 15837
H Quicksort 6232 4494 2412 13138

256 Heapsort 57762 55205 10305 123274
Quicksort 37737 24940 10730 73407

H Quicksort 27084 19579 10543 57206
1024 Heapsort 253561 244359 45317 543238

Quicksort 162155 108314 47790 318259
H Quicksort 115581 84763 45062 245406

2



QuickSort Iterator trace plot:

0

100

200

300

400

500

600

700

800

900

1000

0 2000 4000 6000 8000 10000 12000

It
e

ra
to

r 
p

o
s
it
io

n

Time

’QuickSortItrace.dat’

One thousand elements

are being sorted by the version of quicksort(median-of-3 pivot selection,
partitioning algorithm in CLPS Chapter 7).

Hoare QuickSort Iterator trace plot:

3



0

100

200

300

400

500

600

700

800

900

1000

0 2000 4000 6000 8000 10000 12000 14000

It
e

ra
to

r 
p

o
s
it
io

n

Time

’HQuickSortItrace.dat’

One thousand elements are being sorted by the version of quicksort(median-
of-3 pivot selection, Hoare’s partitioning algorithm in SGL implementa-
tion). The x-axis is time and the y-axis is iterator position(relative to the
start of the sequence) at that time during an execution of the algorithm.
From time 0 to about time 1000 the first partition is going on, with a pivot
value that partitions the original 1000 elements into about 820 on one side
and 180 on the other. From time 1000 to around 3600, the values in the
180 element sequence are repeatedly partitioned and sorted. From time
3600 to around 13200, the other side is similarly processed.

Worstcase QuickSort Iterator trace plot:

The worstcase quicksort has many bad partitions that is causing it to go
quadratic, so it takes much more time than average quicksort.

4


	Quicksort

