
2.11 Partitioning

Section authors: Jin Kyu Gahm, MyungYul Jang, and Lei Deng

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Partitioning

Partition §2.11.1 Stable Partition §2.11.2

Predicate Based 2.4 Permuting 2.5

Sequence
Algorithm 2.1

Refinement of: Predicate Based (§2.4), Permuting (§2.5) and Sequence Al-
gorithm (§2.1).

Input: Iterators first and last delimiting a range of elements [first, last), and
predicate pred applied to values of the elements.

Output: Predicate middle and a modified sequence of elements in the same
range.

Effects: The elements in the range [first, last) after execution are reordered
based on predicate pred such that the elements that satisfy pred precede
the elements that fail to satisfy it. The postcondition is that, for some
iterator middlein the range [first, last), pred(∗i) is true for every iterator i
in the range [first, middle) and false for every iterator i in the range [middle,
last) (1).

1

2.11.1 Partition

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�Partition

Predicate Based 2.4

Partitioning §2.11

Permuting 2.5

Sequence
Algorithm 2.1

Stable Partition §2.11.2

Refinement of: Partitioning (§2.11), and therefore of Predicate Based (§2.4),
Permuting (§2.5), Sequence Algorithm (§2.1).

Prototype: template 〈class ForwardIterator, class Predicate〉
ForwardIterator partition(

ForwardIterator first,
ForwardIterator last,
Predicate pred)

Effects: The elements in the range [first, last) after execution are reordered
based on predicate pred such that the elements that satisfy pred precede
the elements that fail to satisfy it. The relative order of the elements in
both the range [first, middle) and [middle, last) may be different from the
original one after execution.

Asymptotic complexity: Let N = last − first.

• Average case (random data): O(N)

• Worst case: O(N)

Complexity in terms of operation counts:

2

Table 1: Performance of Partition on random sequences with different struc-
tures(sizes and operations counts in multiples of 1,000)

Size Sequence Comp- Assign- Iterator Integer Total
type arisons ments Ops Ops Ops

1 Random(Vector) 1 0.622 4.688 0 6.31
Bidirectional(List) 1 0.49 4.33 0 5.82

Forward(Slist) 1 0.745 3.748 0 5.493
4 Random(Vector) 4 2.35 19.698 0 26.048

Bidirectional(List) 4 2.878 19.697 0 26.575
Forward(Slist) 4 6.355 18.358 0 28.713

16 Random(Vector) 16 11.422 78.954 0 106.376
Bidirectional(List) 16 8.722 72.509 0 97.231

Forward(Slist) 16 34.792 82.795 0 133.587
64 Random(Vector) 64 46.951 317.461 0 428.412

Bidirectional(List) 64 32.113 278.37 0 374.483
Forward(Slist) 64 58.774 250.771 0 373.539

256 Random(Vector) 256 96.457 1047.91 0 1400.36
Bidirectional(List) 256 109.96 1062.2 0 1428.16

Forward(Slist) 256 170.386 938.389 0 1364.78
1024 Random(Vector) 1024 564.394 4600.49 0 6188.88

Bidirectional(List) 1024 694.615 5058.73 0 6777.34
Forward(Slist) 1024 1521.31 4593.31 0 7138.62

• When the type of input is vector
Value Comparisons: (§A.1) N
Value Assignments: (§A.2.1) 0.55N − 4.0
Iterator Operations: (§A.2.2) 4.5N − 7.8
Total Operations: (§A.2.3) 6N − 11.8

• When the type of input is list
Value Comparisons: (§A.1) N
Value Assignments: (§A.3.1) 0.68N − 13
Iterator Operations: (§A.3.2) 4.9N − 41.8
Total Operations: (§A.3.3) 6.6N − 54.8

• When the type of input is slist

3

Value Comparisons: (§A.1) N
Value Assignments: (§A.4.1) 0.4N lg N − 2.6N + 29
Iterator Operations: (§A.4.2) 4.5N − 38.6
Total Operations: (§A.4.3) 7.0N − 77.2

Iterators trace plots:

0

100

200

300

400

500

600

700

800

900

1000

0 1000 2000 3000 4000 5000 6000

’deque_partition.log’

This scans from both front and end. If an element that violates predicate
condition is found from one iteration, that iteration stops then find the
violated value in the other iteration. Then swap two values, then scan rest
elements.

4

0

100

200

300

400

500

600

700

800

900

1000

0 1000 2000 3000 4000 5000 6000

’vector_partition.log’

Since vector uses bidirectional, it’s similar to deque. This scans from both
front and end. If an element that violates predicate condition is found from
one iteration, that iteration stops then find the violated value in the other
iteration. Then swap two values, then scan rest elements.

5

0

100

200

300

400

500

600

700

800

900

1000

0 2000 4000 6000 8000 10000

’list_partition.log’

6

2.11.2 Stable Partition

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Predicate Based 2.4

Partitioning §2.11

Permuting 2.5

Sequence
Algorithm 2.1

Partition §2.11.1 Stable Partition

Refinement of: Partitioning (§2.11), and therefore of Predicate Based (§2.4),
Permuting (§2.5), Sequence Algorithm (§2.1).

Prototype: template 〈class ForwardIterator, class Predicate〉
ForwardIterator stable_partition(

ForwardIterator first,
ForwardIterator last,
Predicate pred)

Effects: The elements in the range [first, last) after execution are reordered
based on predicate pred such that the elements that satisfy pred precede
the elements that fail to satisfy it. It is noted that is that the relative
order of the elements in both the range [first, middle) and [middle, last) is
preserved after execution.

Asymptotic complexity: Let N = last − first.

• Average case (random data with buffer): O(N)

• Worst case (without buffer,
in_place_stable_partition): O(N lg N)

7

If the available memory for a buffer is smaller than the range [first, last),
then the stable_partition function requires O(N lg N) time and perform
N lg N swaps, where N is the size of the range [first, last). If there is
enough available memory for the buffer to contain all of the elements in
the range [first, last), then the stable_partition function requires linear
time, performing N +m assignments operations and applying the predicate
exactly N times, where m is the size of the range [middle, last). If there
is not enough memory, the function is recursively called on halves of the
sequence, making each half stably partitioned and then performs rotation
to create a final range of [first, last) that is stably partitioned.

Complexity in terms of operation counts:

• When the type of input is vector
Value Comparisons: (§A.1) N
Value Assignments: (§A.5.1) 2.5N + 12.8
Iterator Operations: (§A.5.2) 6N
Total Operations: (§A.5.3) 9.5N + 12.8

• When the type of input is list
Value Comparisons: (§A.1) N
Value Assignments: (§A.6.1) 2.6N + 5.7
Iterator Operations: (§A.6.2) 8N
Total Operations: (§A.6.3) 11.6N + 5.7

• When the type of input is slist
Value Comparisons: (§A.1) N
Value Assignments: (§A.7.1) 2.6N + 5.7
Iterator Operations: (§A.7.2) 8N
Total Operations: (§A.7.3) 11.6N + 5.8

Worst case operation counts: When the buffer was disabled and only the
in_place_stable_partition function was called, the worst case happens.

Value Comparisons: (§A.1) N
Value Assignments: (§A.8.1) 0.5N lg N + 9.4N + 0.4
Iterator Operations: (§A.8.2) 2.6N lg N + 63.9N − 100.3
Total Operations: (§A.8.3) 1.2N lg N + 173N − 590

Iterator trace plots:

8

Table 2: Performance of Stable Partition on random sequences with different
structures(sizes and operations counts in multiples of 1,000)

Size Sequence Comp- Assign- Iterator Integer Total
type arisons ments Ops Ops Ops

1 Random(Vector) 1 2.434 6.024 0.005 9.463
Bidirectional(List) 1 2.786 8.024 0.003 11.813

Forward(Slist) 1 2.786 8.024 0.003 11.813
4 Random(Vector) 4 10.553 24.024 0.005 38.582

Bidirectional(List) 4 9.915 32.024 0.003 45.942
Forward(Slist) 4 9.915 32.024 0.003 45.942

16 Random(Vector) 16 39.706 96.024 0.005 151.735
Bidirectional(List) 16 37.664 128.024 0.003 181.691

Forward(Slist) 16 37.664 128.024 0.003 181.691
64 Random(Vector) 64 159.317 384.024 0.005 607.346

Bidirectional(List) 64 173.157 512.024 0.003 749.184
Forward(Slist) 64 173.157 512.024 0.003 749.184

256 Random(Vector) 256 706.576 1536.02 0.005 2498.61
Bidirectional(List) 256 712.186 2048.02 0.003 3016.21

Forward(Slist) 256 712.208 2048.02 0.003 3016.21
1024 Random(Vector) 1024 2519.19 6144.02 0.005 9687.22

Bidirectional(List) 1024 2699.33 8192.02 0.003 11915.4
Forward(Slist) 1024 2699.33 8192.02 0.003 11915.4

0

100

200

300

400

500

600

700

800

900

1000

0 2000 4000 6000 8000 10000 12000

’deque_stable_partition.log’

9

The left line scans the container. If a value violate the predicate condition,
put it into the buffer. This is shown by the middle line. The right line is
just to copy the buffer into the container. If there is nothing to split the
container somehow by the condition(eg. pivot), the middle would not be
shown up and the left and right would be put together as one.

0

100

200

300

400

500

600

700

800

900

1000

0 2000 4000 6000 8000 10000 12000

’vector_stable_partition.log’

Since vector uses bidirectional, it’s similar to deque. The left line scans the
container. If a value violate the predicate condition, put it into the buffer.
This is shown by the middle line. The right line is just to copy the buffer
into the container. If there is nothing to split the container somehow by
the condition(ex, pivot), the middle would not be shown up and the left
and right would be put together as one.

10

0

100

200

300

400

500

600

700

800

900

1000

0 5000 10000 15000 20000

’list_stable_partition.log’

11

A Curve fitting to measured counts

A.1 Value Comparisons

12

A.2 Vector - Partition

A.2.1 Value Assignments

13

A.2.2 Iterator Operations

14

A.2.3 Total Operations

15

A.3 List - Partition

A.3.1 Value Assignments

16

A.3.2 Iterator Operations

17

A.3.3 Total Operations

18

A.4 Slist - Partition

A.4.1 Value Assignments

19

A.4.2 Iterator Operations

20

A.4.3 Total Operations

21

A.5 Vector - Stable Partition

A.5.1 Value Assignments

22

A.5.2 Iterator Operations

23

A.5.3 Total Operations

24

A.6 List - Stable Partition

A.6.1 Value Assignments

25

A.6.2 Iterator Operations

26

A.6.3 Total Operations

27

A.7 Slist - Stable Partition

A.7.1 Value Assignments

28

A.7.2 Iterator Operations

29

A.7.3 Total Operations

30

A.8 Worst Case

A.8.1 Value Assignments

31

A.8.2 Iterator Operations

32

A.8.3 Total Operations

References

[1] SGI Standard Template Library Reference
http://www.sgi.com/tech/stl

33

http://www.sgi.com/tech/stl

Table 3: Performance of Stable Partition on random sequences of vector type
with and without buffer(sizes and operations counts in multiples of 1,000)

Size With or Comp- Assign- Iterator Total
without buffer arisons ments Ops Ops

1 With 1 2.434 6.024 9.463
Without 1 9.554 54.447 119.278

2 With 2 5.304 12.024 19.333
Without 2 21.223 125.27 288.717

4 With 4 10.553 24.024 38.582
Without 4 43.253 281.011 584.511

8 With 8 21.524 48.024 77.553
Without 8 86.063 508.634 1104.75

16 With 16 39.706 96.024 151.735
Without 16 184.168 1091.24 2351.28

32 With 32 76.96 192.024 300.989
Without 32 391.659 2339.66 5058.67

64 With 64 159.317 384.024 607.346
Without 64 759.442 4727.14 9666.07

128 With 128 311.499 768.024 1207.53
Without 128 1674.91 10291.6 20274.5

256 With 256 706.576 1536.02 2498.61
Without 256 3451.6 21151.7 47407.7

512 With 512 1280.29 3072.02 4863.32
Without 512 7214.78 450004.3 94830.7

1024 With 1024 2519.19 6144.02 9687.22
Without 1024 14926.9 91489.8 188658

34

	Partitioning
	Partition
	Stable Partition

	Curve fitting to measured counts
	Value Comparisons
	Vector - Partition
	Value Assignments
	Iterator Operations
	Total Operations

	List - Partition
	Value Assignments
	Iterator Operations
	Total Operations

	Slist - Partition
	Value Assignments
	Iterator Operations
	Total Operations

	Vector - Stable Partition
	Value Assignments
	Iterator Operations
	Total Operations

	List - Stable Partition
	Value Assignments
	Iterator Operations
	Total Operations

	Slist - Stable Partition
	Value Assignments
	Iterator Operations
	Total Operations

	Worst Case
	Value Assignments
	Iterator Operations
	Total Operations

