
2.6.3 mergesort

Section authors: Andrew Hill, John Lewis, David Thomas.

- Refinement of: Sequence Sorting Algorithm ($\S2.6$), therefore of Comparison Based ($\S2.2$), Permuting ($\S2.5$), Sequence Algorithm ($\S2.1$), Divide and Conquer Algorithm ($\S1.5$).
- Effects: Standard effects of a Sequence Sorting Algorithm (§2.6). In brief: the elements in [first, last) after execution are a permutation of the original elements in the range, and they are in nondecreasing order according the comparison operator.

Asymptotic complexity: Let N = last - first.

- Average case (random data): $O(N \log N)$
- Worst case: $O(N \log N)$

Complexity in terms of operation counts:

• Average case:

Value comparisons: $1.16N \log_2 N - 3.31N$ Value assignments: $1.2N \log_2 N - 2.14N$

N	comparisons	assignments
10	27	33
100	591	776
1,000	9,762	11863
10,000	127,770	138,592
100,000	1,595,396	1,785,634
1,000,000	19,823,161	21,857,455

• Average Case Computational Time:

- See also Sorting Algorithm Operation Counts (§2.91) for sample counts on random data for mergesort and other sorting algorithms.
- An animation of mergesort (and a number of other algorithms), by Alejo Hausner.