
4 Merging Algorithm Concepts

Section authors: David R. Musser, Alessandro Assis, Amir Youssefi, Michal Sofka.

4.1 Merging Algorithm

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Sequence
Algorithm 2.1

Comparison
Based 2.2

Permuting 2.5

Merging

A merging algorithm is an algorithm (§1.2) that takes two sorted sequences
(§2.1) as inputs and combines them into a single sorted sequence.

Refinement of: Comparison Based (§2.2), Permuting (§2.5), Sequence Algo-
rithm (§2.1).

1



4.2 Divide-and-Conquer Merging Algorithm

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

'

&

$

%

'
&

$
%

�
�

�
�

Sequence
Algorithm 2.1

Comparison
Based 2.2

Permuting 2.5

Merging 4.1

Divide
&

Conquer
Merging

Divide
&

Conquer 1.5

Strategy
Based 1.4

A divide-and-conquer-merge-algorithm is a merging algorithm (§4.1) whose com-
putation is based on the divide-and-conquer (§1.5) strategy.

Refinement of: Merging Algorithm (§4.1) Divide-and-Conquer Algorithm (§1.5),
therefore of Comparison Based (§2.2), Permuting (§2.5), Sequence Algo-
rithm (§2.1), Strategy Based Algorithms (§1.4).

2



4.3 Copy Merge Algorithm

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Sequence
Algorithm 2.1

Comparison
Based 2.2

Permuting 2.5

Merging 4.1

Copy
Merge

Copy merge copies all elements from a sorted sequence [first1,last1) and an-
other sorted sequence [first2, last2) into a single output sequence [result,result+
[last1-first1)+[last2-first2) ,such that the resulting sequence is sorted in
ascending order.

Refinement of: Merging Algorithm (§4.1), therefore of Comparison Based
(§2.2), Permuting (§2.5), Sequence Algorithm (§2.1).

Prototype1: template 〈class InputIterator1, class InputIterator2, class OutputIterator〉
OutputIterator merge(InputIterator1 first1,

InputIterator1 last1,
InputIterator2 first2,
InputIterator2 last2,
OutputIterator result);

Prototype2: template 〈class InputIterator1, class InputIterator2, class OutputIterator, class StrictWeakOrdering〉
OutputIterator merge(InputIterator1 first1,

InputIterator1 last1,
InputIterator2 first2,
InputIterator2 last2,

3



OutputIterator result,
StrictWeakOrdering comp);

Prototype3: template 〈class InputIterator1, class InputIterator2, class BackInsertIterator〉
BackInsertIterator merge
(InputIterator1 first1,
InputIterator1 last1,
InputIterator2 first2,
InputIterator2 last2,
BackInsertIterator result);

Prototype3 is a special case of Prototype1, where the BackInsertIterator is
used as the OutputIterator.

Input: Iterators first1 and last1 delimiting a sorted sequence [first1,last1).
Iterators first2 and last2 delimiting a sorted sequence [first2,last2).

Output: Iterator result delimiting a sorted sequence [result,result+[last1-first1)+[last2-first2).

Effects: The elements in [first1,last1) and [first2, last2) are concate-
nated and compared such that the resulting sequence [result,result+(last1-
first1)+(last2 - first2)] is sorted in ascending order.

Asymptotic complexity: Let N = (last1 - first1) + (last2 - first2).

Average case (random data): O(N)

Worst case (random data): O(N)

Complexity in terms of operation counts:

Worst case:

Value comparisons: N − 1
Value assignments: N
Iterator operations: 0
Integer operations: 0

See also Merging Algorithm Operation Counts (§4.5) for sample counts on
random data for copy merge and inplace merge (§4.4) algorithms.

Animation: See Copy Merge Animation

4

http://www.cs.rpi.edu/~youssefi/ca/CopyMerge.html


Iterator trace plot:

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2000 4000 6000 8000 10000

’vector_copy_merge.log’

Two sorted sequences of one thousand elements each are being merged by
the version of copy merge implemented in SGI STL. During all the time,
the minimum values from each sequence are compared and the minimum
element of those two is placed on the output sequence.

Pseudocode: [1] Merge(A,p,q,r)
n1 ← q-p+1
n2 ← r-q
for i ← 1 to n1 do

L[i] ← A[p+i-1]
for j ← 1 to n2 do

5

http://www.cs.rpi.edu/~musser/ca/restricted/iterator-tracing-screen.pdf
http://www.sgi.com/tech/stl/


R[j] ← A[q+j]
L[n1 + 1]←∞
R[n2 + 1]←∞
i ← 1
j ← 1
for k ← p to r do

if L[i] ≤ R[j]
then A[k] ← L[i]

i ← i+1
else A[k] ← R[j]

j ← j+1

4.4 Inplace Merge Algorithm

�
�

�
�

'

&

$

%

'
&

$
%

�
�

�
�

Merging 4.1

Divide
&

Conquer
Merging 4.2

Divide
&

Conquer 1.5

Inplace Merge

An inplace merge algorithm is a merging algorithm (§4.1) that takes two con-
secutive sorted sequences [first,middle) and [middle,last) and combines
them into a single sorted sequence [first,last). The execution is based on
the divide-and-conquer (§1.5) strategy.

Refinement of: Divide-and-Conquer Merging Algorithm (§4.2), therefore of

6



Divide-and-Conquer (§1.5) and Merging (§4.1).

Prototype1:

template 〈class BidirectionalIterator〉
inline void inplace_merge
(BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last);

Prototype2:

template 〈class BidirectionalIterator, class StrictWeakOrdering〉
inline void inplace_merge
(BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last,
StrictWeakOrdering comp);

Input: Iterators first, middle and last delimiting two consecutive sorted se-
quences [first,middle) and [middle,last).

Output: Iterators first and last delimiting a single sorted sequence [first,last).

Effects: The two consecutive sorted sequences [first, middle) and [middle,last)

are rearranged such that the resulting sequence [first,last) is entirely
sorted in ascending order.

Asymptotic complexity: Let N = last − first. Inplace merge is an adap-
tive algorithm: it attempts to allocate a temporary memory buffer,and its
running-time complexity depends on how much memory is available.

Best Case (if sufficient auxiliary memory is available): O(N)

Worst case (if no auxiliary memory is available): O(N lg(N))

Complexity in terms of operation counts:

• Auxiliary Memory Available:

Value comparisons: N − 1
Value assignments: 2.5N
Iterator operations: 6N + 0.053
Integer operations: N/2 + 0.017

7



• No Auxiliary Memory Available:

Value comparisons: 3.47N
Value assignments: 3.03N log2 N + 30.76N
Iterator operations: 10.50N log2 N + 167.17N
Integer operations: 51.43N

• See also Merging Algorithm Operation Counts (§4.5) for sample counts
on random data for copy merge (§4.3) and inplace merge algorithms.

Animation: See Inplace Merge Animation

Iterator trace plot:

Auxiliary Memory Available

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2000 4000 6000 8000 10000 12000 14000 16000

’vector_inplace_merge.log’

8

http://www.rpi.edu/~assisa/ca/InplaceMerge.html
http://www.cs.rpi.edu/~musser/ca/restricted/iterator-tracing-screen.pdf


Two consecutive sorted sequences, contained in the same data structure,
of one thousand elements each are being sorted by the version of inplace
merge implemented in SGI STL. From time 0 to about time 5,000 the
algorithm is copying the first 1,000 elements to auxiliary memory. Then,
for the rest of the time, it is repeatedly comparing the minimum element
of the second sequence with the minimum element in the auxiliary memory
and placing the minimum element of these two in the data structure.

No Auxiliary Memory Available

See the plot here

0 0.5 1 1.5 2 2.5 3

x 104

0

200

400

600

800

1000

1200

1400

1600

1800

2000

From time 0 to about time 15,000, the algorithm is rotating the elements
and calling InplaceMerge recursively (divide and conquer strategy). During

9

http://www.sgi.com/tech/stl/
http://www.rpi.edu/~assisa/ca/vector_inplace_merge_no_buffer.pdf


the rest of the time, the final sorted sequence is merged.

Pseudocode:

Auxiliary Memory Available: InplaceMerge(A,p,q,r)
n1 ← q-p+1
allocate one more cell at the end of A
create buffer Tmp[1..n1+1]
for i ← 1 to n1

do Tmp[i] ← A[p+i-1]
Tmp[n1 + 1]←∞
A[r+1] ←∞
i ← 1
j ← q
for k ← p to r

do if Tmp[i] ≤ A[j]
then A[k] ← Tmp[i]

i ← i+1
else A[k] ← A[j]

j ← j+1

No Auxiliary Memory Available: InplaceMerge(p,q,r,s1,s2)
if (lenght(s1=0)) or (lenght(s2=0))
then return
if (lenght(s1) + lenght(s2) = 2)
then if (a[middle] < a[first])

then swap(first,middle)
return
first-cut ← first
second-cut ← middle
x ← 0; y ← 0
if (lenght(s1)) > (lenght(s2))
then x ← (lenght(s1)/2)

first-cut ← first-cut + x
second-cut ← lower-bound(middle,last,a[first-cut])
y ← y + second-cut - middle

else y ← (lenght(s2)/2)
second-cut ← second-cut + y

10



first-cut ← upper-bound(first,middle,a[second-cut])
x ← x + first-cut - first

new-middle = rotate(first-cut, middle, second-cut)
InplaceMerge(first, first-cut, new-middle, x, y)
InplaceMerge(new-middle,second-cut,last,(lenght(s1)-x),(lenght(s2)-y))

4.5 Operation Counts for Copy Merge and Inplace Merge
Algorithms

References

[1] Cormen, T., Leiserson, C., Rivest, R., Stein, T. Introduction to Algorithms,
Second Edition, MIT Press, Cambridge, MA, 2001.

[2] Lamport, L., Latex: A Document Preparation System, Second Edition,
Addison-Wesley, New York, NY, 1994.

[3] Goosens, M., Mittelbach, F., Samarin, A. The Latex Companion, Addison
Wesley, Reading, MA, 1994.

11



Table 1: Performance of Copy Merge and Inplace Merge on Random Se-
quences (Sizes and Operations Counts in Multiples of 1,000)

Size1 Size2 Algorithm Comp- Assign- Integer Iterator
arisons ments Ops Ops

1 1 Copy (P1) 1.999 2 0 0
Copy (P2) 1.999 2 0 0
Copy (P3) 1.999 2 0 0

Inplace (P1) 1.999 5 1.017 12.053
Inplace (P2) 1 5 2.016 10.055

1 2 Copy (P1) 2 3 0 0
Copy (P2) 2 3 0 0
Copy (P3) 2 3 0 0

Inplace (P1) 2.999 7 1.017 17.053
Inplace (P2) 1 7 3.016 13.055

1 4 Copy (P1) 2 5 0 0
Copy (P2) 2 5 0 0
Copy (P3) 2 5 0 0

Inplace (P1) 4.999 11 1.017 29.053
Inplace (P2) 1 11 5.016 21.055

2 2 Copy (P1) 3.999 4 0 0
Copy (P2) 3.999 4 0 0
Copy (P3) 3.999 4 0 0

Inplace (P1) 3.999 10 2.017 24.053
Inplace (P2) 2 10 4.016 20.055

8 8 Copy (P1) 15.999 16 0 0
Copy (P2) 15.999 16 0 0
Copy (P3) 15.999 16 0 0

Inplace (P1) 15.999 40 8.017 96.053
Inplace (P2) 8 40 16.016 80.055

32 32 Copy (P1) 63.999 64 0 0
Copy (P2) 63.999 64 0 0
Copy (P3) 63.999 64 0 0

Inplace (P1) 63.999 160 32.017 384.053
Inplace (P2) 32 160 64.016 320.055

12



Table 2: Performance of Inplace Merge on Random Sequences When No
Auxiliary Memory is Available (Sizes and Operations Counts in Multiples of
1,000)

Size1 Size2 Comp- Assign- Integer Iterator
arisons ments Ops Ops

1 1 3.437 30.474 51.753 167.164
1 2 3.446 36.474 51.870 188.256
1 4 3.455 45.474 51.987 222.349
2 2 6.903 67.182 103.255 355.340
8 8 27.754 318.102 411.313 1589.27

32 32 111.334 1468.04 1640.39 7028.64

13


	Merging Algorithm Concepts
	Merging Algorithm
	Divide-and-Conquer Merging Algorithm
	Copy Merge Algorithm
	Inplace Merge Algorithm
	Operation Counts for Copy Merge and Inplace Merge Algorithms


