
2.10 Heap Algorithm

Section authors: Brad King, Garrett Yaun, and Jeff Banks

�
�

�
�

�� �
�� �

�� �

�� �
�� �
�� �
�� �

Sequence
Algorithm 2.1

Comparison Based 2.2 Permuting 2.5

Heap Algorithm

Make Heap 2.10.1 Sort Heap 2.10.2 Push Heap 2.10.3 Pop Heap 2.10.4

A Heap Algorithm takes advantage of a heap property in a randomly-accessible
sequence of elements. A heap represents a particular organization of a random
access data structure (2). Given a range [first, last), we say that the range
represents a heap if two key properties are satisfied:

• The value pointed to by first is the largest value in the range.

• The value pointed to by first may be removed by a pop operation or a new
element added by a push operation in logarithmic time. Both the pop and
push operations return valid heaps.

The largest element is distinguished according to a given strict-weak-ordering.
How this ordering is defined and provided to the algorithms is an implementation
detail and is not covered here.

Refinement of: Comparison Based (§2.2) and Sequence Permuting (§2.5)

1

2.10.1 Make Heap

�
�

�
�

�� �
�� �

�� �

�� �
�� �
�� �
�� �

Sequence
Algorithm 2.1

Comparison Based 2.2 Permuting 2.5

Heap Algorithm 2.10

Make Heap Sort Heap 2.10.2 Push Heap 2.10.3 Pop Heap 2.10.4

Refinement of: Heap Algorithm (§2.10), and therefore of Comparison Based
(§2.2) and Sequence Permuting (§2.5)

Prototype: (1) From STL

template 〈class RandomAccessIterator〉
void make_heap(RandomAccessIterator first,

RandomAccessIterator last);

Input: Unordered sequence in range [first, last).

Output: Elements in range [first, last) form a heap.

Effects: Permutes the input sequence such that the result satisfies the heap
property for a particular strict-weak-ordering.

Asymptotic complexity: Let N = last − first.

• Average case (random data): O(N)

• Worst case: O(N)

2

http://www.sgi.com/tech/stl/make_heap.html

Operation Counts in the Average Case:
N Comparisons Assignments Iterator Integer
10 11.2 24.2 106.8 159.6
20 27.3 51.7 237.0 345.5
40 59.0 106.4 497.4 722.7
60 92.7 161.4 763.4 1099.3
80 125.9 217.2 1033.4 1488.3
160 255.4 435.1 2080.8 2994.5
320 520.1 877.5 4218.8 6042.2
640 1044.6 1752.4 8444.2 12084.9

Value Comparisons (§A.1.1) : 1.65N − 0.69 lg N − 3.02
Value Assignments (§A.1.2) : 2.76N − 0.46 lg N − 2.41
Iterator Operations (§A.1.3) : 13.32N − 5.03 lg N − 11.80
Integer Operations (§A.1.4) : 19.03N − 5.41 lg N − 12.51

See Appendix (§A) for a description of how the data were collected and
processed to produce the above equations.

Iterator Trace:

 0

 200

 400

 600

 800

 1000

 0 5000 10000 15000 20000 25000 30000 35000

It
er

at
or

 P
os

iti
on

Time

Make Heap Iterator Trace

’vector_make_heap.log’

An unordered sequence of 1000 elements is converted into a heap. Make-
heap is implemented by heapifying and combining small sub-heaps into a
final single heap. At any time t, the number of iterator trails intersecting
with a vertical line indicates the height of the heaps currently getting built.
At about time 9500, all heaps of height 1 have been built. At about time

3

17500, all heaps of height 2 have been built. The process continues until
the heap of height dlg 1000e have been built.

2.10.2 Sort Heap

�
�

�
�

�� �
�� �

�� �

�� �
�� �
�� �
�� �

Sequence
Algorithm 2.1

Comparison Based 2.2 Permuting 2.5

Heap Algorithm 2.10

Make Heap 2.10.1 Sort Heap Push Heap 2.10.3 Pop Heap 2.10.4

Refinement of: Heap Algorithm (§2.10), and therefore of Comparison Based
(§2.2) and Sequence Permuting (§2.5)

Prototype: (1) From STL

template 〈class RandomAccessIterator〉
void sort_heap(RandomAccessIterator first,

RandomAccessIterator last);

Input: Elements in range [first, last) form a heap.

Output: Elements in range [first, last) are in sorted order.

Effects: Permutes the input heap such that the elements are sorted according
to the same strict-weak-ordering used to define the original heap. The
result may no longer be a heap.

Asymptotic complexity: Let N = last − first.

4

http://www.sgi.com/tech/stl/sort_heap.html

• Average case (random data): O(N lg N)

• Worst case: O(N lg N)

Operation Counts in the Average Case:
N Comparisons Assignments Iterator Integer
10 20.4 60.0 288.8 288.1
20 60.9 142.0 735.6 749.2
40 161.4 322.7 1775.2 1834.2
60 278.4 519.9 2942.4 3059.6
80 403.8 726.8 4187.4 4382.2
160 968.8 1613.2 9643.6 10171.0
320 2254.1 3537.9 21796.4 23183.9
640 5158.9 7724.1 48755.6 52131.1

Value Comparisons (§A.2.1) : 0.98N lg N − 1.05N − 16.35 lg N + 98.57
Value Assignments (§A.2.2) : 0.98N lg N + 2.95N − 15.32 lg N + 94.81
Iterator Operations (§A.2.3) : 7.87N lg N + 3.26N − 126.37 lg N + 782.24
Integer Operations (§A.2.4) : 8.81N lg N − 0.03N − 175.06 lg N + 1071.58

See Appendix (§A) for a description of how the data were collected and
processed to produce the above equations.

Iterator Trace:

 0

 200

 400

 600

 800

 1000

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

It
er

at
or

 P
os

iti
on

Time

Sort Heap Iterator Trace

’vector_sort_heap.log’

5

A heap of 1000 elements is being sorted. Sort-heap is implemented by
repeatedly performing a pop-heap until the heap is empty. The trace simply
shows the iterator trace for each pop-heap in turn. Since the heap is smaller
by one element after each pop-heap, the highest iterator position steadily
decreases with time.

2.10.3 Push Heap

�
�

�
�

�� �
�� �

�� �

�� �
�� �
�� �
�� �

Sequence
Algorithm 2.1

Comparison Based 2.2 Permuting 2.5

Heap Algorithm 2.10

Make Heap 2.10.1 Sort Heap 2.10.2 Push Heap Pop Heap 2.10.4

Refinement of: Heap Algorithm (§2.10), and therefore of Comparison Based
(§2.2) and Sequence Permuting (§2.5)

Prototype: (1) From STL

template 〈class RandomAccessIterator〉
void push_heap(RandomAccessIterator first,

RandomAccessIterator last);

Input: Elements in range [first, last − 1) form a heap. Element at position
last − 1 is to be inserted.

Output: Elements in range [first, last) form a heap.

Effects: Inserts a new value into the heap.

6

http://www.sgi.com/tech/stl/push_heap.html

Asymptotic complexity: Let N = last − first.

• Average case (random data): O(lg N)

• Worst case: O(lg N)

Operation Counts in the Average Case:
N Comparisons Assignments Iterator Integer
10 4.8 9.3 47.6 50.6
20 5.6 9.6 52.6 56.0
40 6.7 10.7 61.2 64.4
60 7.2 11.4 65.8 71.4
80 6.4 10.4 61.0 65.4
160 7.7 11.7 71.4 78.2
320 8.9 12.9 80.2 87.0
640 10.9 14.9 94.6 102.2

Value Comparisons (§A.3.1) : 1.02 lg N + 0.84
Value Assignments (§A.3.2) : 1.02 lg N + 4.89
Iterator Operations (§A.3.3) : 8.10 lg N + 15.43
Integer Operations (§A.3.4) : 9.07 lg N + 14.18

See Appendix (§A) for a description of how the data were collected and
processed to produce the above equations.

Iterator Trace:

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35 40 45 50

It
er

at
or

 P
os

iti
on

Time

Push Heap Iterator Trace

’vector_push_heap.log’

7

An element at position 999 is inserted into the existing heap of 999 ele-
ments in the range [0, 999). The iterator trace shows the progress of
walking up the heap until the proper location is found. At time 6, the
value x to be inserted is read. At time 15, x’s parent node at position 499
is read and its value is compared to x. A violation of the heap property
is detected, and fixing it accesses the positions again at times 20 and 25.
The parent of node 499 then compared against x. This process continues
until the proper position is found at node 249, and x is assigned to this
node at time 50.

2.10.4 Pop Heap

�
�

�
�

�� �
�� �

�� �

�� �
�� �
�� �
�� �

Sequence
Algorithm 2.1

Comparison Based 2.2 Permuting 2.5

Heap Algorithm 2.10

Make Heap 2.10.1 Sort Heap 2.10.2 Push Heap 2.10.3 Pop Heap

Refinement of: Heap Algorithm (§2.10), and therefore of Comparison Based
(§2.2) and Sequence Permuting (§2.5)

Prototype: (1) From STL

template 〈class RandomAccessIterator〉
void pop_heap(RandomAccessIterator first,

RandomAccessIterator last);

Input: Elements in range [first, last) form a heap.

8

http://www.sgi.com/tech/stl/pop_heap.html

Output: Elements in range [first, last − 1) form a heap. Value that was previ-
ously at first has been removed from the heap and placed at last − 1.

Effects: Removes the value from the heap that is considered largest by the
strict-weak-ordering.

Asymptotic complexity: Let N = last − first.

• Average case (random data): O(lg N)

• Worst case: O(lg N)

Operation Counts in the Average Case:
N Comparisons Assignments Iterator Integer
10 3.7 7.7 39.4 42.4
20 4.7 8.7 47.4 51.4
40 5.5 9.5 53.8 58.0
60 6.3 10.3 59.8 64.2
80 6.4 10.4 61.0 64.8
160 7.5 11.5 70.0 76.4
320 8.5 12.5 77.6 85.0
640 9.6 13.6 86.0 92.6

Value Comparisons (§A.4.1) : 0.99 lg N + 0.29
Value Assignments (§A.4.2) : 0.99 lg N + 4.29
Iterator Operations (§A.4.3) : 7.95 lg N + 12.00
Integer Operations (§A.4.4) : 8.92 lg N + 10.73

See Appendix (§A) for a description of how the data were collected and
processed to produce the above equations.

Iterator Trace:

9

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250

It
er

at
or

 P
os

iti
on

Time

Pop Heap Iterator Trace

’vector_pop_heap.log’

The root element is removed from a heap of 1000 elements and placed at
the end of the sequence. Through time 25, the algorithm is reading the
old value x from position 999 and copying the root element from position
0 to position 999. It then starts at the empty root element, and moves this
hole down the heap by repeatedly selecting the greater of the two children
and copying it to its parent node. At time 200, the bottom of the heap
is reached. The last three accesses correspond to the push-heap operation
of element x starting at the hole at the bottom of the heap.

A Run-Time Analysis

The STL (1) implementations of all four algorithms from the library of GCC
2.95.3 were used to measure operation counts. Each algorithm was run on N
randomly generated elements, where N ranged from 10 to 10000, in steps of 10.
There were 10 independent trials for each value of N . For each type of operation,
the average of the counts across all 10 trials was recorded as the count for that
operation.

The following types of operations were recorded using the operation counting
library:

10

http://www.sgi.com/tech/stl

Category: Operations Used:
Value Comparisons: <

Value Assignments: = and Copy-Construction
Iterator Operations: Total iterator counter

Integer Operations: Total difference counter

Using the average operation totals for each N , a least-squares fit was performed
to obtain the constants in the running-time equations. There were four algo-
rithms, and four operation categories in each, for a total of sixteen least-squares
fit operations. The remaining sections show the plots of each set of data with
its corresponding fit.

A.1 Make Heap Fits

A.1.1 Make Heap Value Comparisions

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2000

4000

6000

8000

10000

12000

14000

16000

18000
Make Heap

n

V
al

ue
 C

om
pa

ris
on

s

Fit: 1.65 n + −0.69 lg(n) + −3.02
Data
Fit

Student Version of MATLAB

11

A.1.2 Make Heap Value Assignments

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

3
x 10

4 Make Heap

n

V
al

ue
 A

ss
ig

nm
en

ts

Fit: 2.76 n + −0.46 lg(n) + −2.41
Data
Fit

Student Version of MATLAB

12

A.1.3 Make Heap Iterator Operations

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14
x 10

4 Make Heap

n

Ite
ra

to
r

O
pe

ra
tio

ns

Fit: 13.32 n + −5.03 lg(n) + −11.80
Data
Fit

Student Version of MATLAB

13

A.1.4 Make Heap Integer Operations

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5 Make Heap

n

In
te

ge
r

O
pe

ra
tio

ns

Fit: 19.03 n + −5.41 lg(n) + −12.51
Data
Fit

Student Version of MATLAB

14

A.2 Sort Heap Fits

A.2.1 Sort Heap Value Comparisions

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14
x 10

4 Sort Heap

n

V
al

ue
 C

om
pa

ris
on

s

Fit: 0.98 n lg n + −1.05 n + −16.35 lg(n) + 98.57 Data
Fit

Student Version of MATLAB

15

A.2.2 Sort Heap Value Assignments

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14

16

18
x 10

4 Sort Heap

n

V
al

ue
 A

ss
ig

nm
en

ts

Fit: 0.98 n lg n + 2.95 n + −15.32 lg(n) + 94.81 Data
Fit

Student Version of MATLAB

16

A.2.3 Sort Heap Iterator Operations

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12
x 10

5 Sort Heap

n

Ite
ra

to
r

O
pe

ra
tio

ns

Fit: 7.87 n lg n + 3.26 n + −126.37 lg(n) + 782.24 Data
Fit

Student Version of MATLAB

17

A.2.4 Sort Heap Integer Operations

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12
x 10

5 Sort Heap

n

In
te

ge
r

O
pe

ra
tio

ns

Fit: 8.81 n lg n + −0.03 n + −175.06 lg(n) + 1071.58 Data
Fit

Student Version of MATLAB

18

A.3 Push Heap Fits

A.3.1 Push Heap Value Comparisions

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
4

6

8

10

12

14

16

18
Push Heap

n

V
al

ue
 C

om
pa

ris
on

s

Fit: 1.02 lg(n) + 0.84

Data
Fit

Student Version of MATLAB

19

A.3.2 Push Heap Value Assignments

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
8

10

12

14

16

18

20

22
Push Heap

n

V
al

ue
 A

ss
ig

nm
en

ts

Fit: 1.02 lg(n) + 4.89

Data
Fit

Student Version of MATLAB

20

A.3.3 Push Heap Iterator Operations

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
40

50

60

70

80

90

100

110

120

130

140
Push Heap

n

Ite
ra

to
r

O
pe

ra
tio

ns

Fit: 8.10 lg(n) + 15.43

Data
Fit

Student Version of MATLAB

21

A.3.4 Push Heap Integer Operations

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
40

60

80

100

120

140

160
Push Heap

n

In
te

ge
r

O
pe

ra
tio

ns

Fit: 9.07 lg(n) + 14.18

Data
Fit

Student Version of MATLAB

22

A.4 Pop Heap Fits

A.4.1 Pop Heap Value Comparisions

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
2

4

6

8

10

12

14

16
Pop Heap

n

V
al

ue
 C

om
pa

ris
on

s

Fit: 0.99 lg(n) + 0.29

Data
Fit

Student Version of MATLAB

23

A.4.2 Pop Heap Value Assignments

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
6

8

10

12

14

16

18

20
Pop Heap

n

V
al

ue
 A

ss
ig

nm
en

ts

Fit: 0.99 lg(n) + 4.29

Data
Fit

Student Version of MATLAB

24

A.4.3 Pop Heap Iterator Operations

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
30

40

50

60

70

80

90

100

110

120

130
Pop Heap

n

Ite
ra

to
r

O
pe

ra
tio

ns Fit: 7.95 lg(n) + 12.00

Data
Fit

Student Version of MATLAB

25

A.4.4 Pop Heap Integer Operations

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
40

50

60

70

80

90

100

110

120

130

140
Pop Heap

n

In
te

ge
r

O
pe

ra
tio

ns

Fit: 8.92 lg(n) + 10.73

Data
Fit

Student Version of MATLAB

B Analysis with Larger N

All the tests, data collection, and analyses that were performed as described in
Appendix (§A) used a range of sequence sizes from 10 to 10000, in steps of 10.
The entire process was repeated for sequence sizes ranging from 100 to 100000,
in steps of 100. The results of this analysis are shown in this section.

We decided to favor the results from the analysis of the smaller data sets because
we believe that the large constants that appear in this section are the result of
over-fitting by using too many terms. This is espeically noticeable for the sort-
heap fits. Further analysis with correlation coefficients could be used to reveal
the terms that are actually important for each fit, but such analysis is beyond

26

the scope of this course.

B.1 Make Heap Fits

B.1.1 Make Heap Value Comparisions

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

2

4

6

8

10

12

14

16

18
x 10

4 Make Heap

n

V
al

ue
 C

om
pa

ris
on

s

Fit: 1.65 n + −1.13 lg(n) + 0.71
Data
Fit

Student Version of MATLAB

27

B.1.2 Make Heap Value Assignments

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

5 Make Heap

n

V
al

ue
 A

ss
ig

nm
en

ts

Fit: 2.76 n + −1.66 lg(n) + 9.71
Data
Fit

Student Version of MATLAB

28

B.1.3 Make Heap Iterator Operations

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

2

4

6

8

10

12

14
x 10

5 Make Heap

n

Ite
ra

to
r

O
pe

ra
tio

ns

Fit: 13.32 n + −10.73 lg(n) + 44.54
Data
Fit

Student Version of MATLAB

29

B.1.4 Make Heap Integer Operations

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6 Make Heap

n

In
te

ge
r

O
pe

ra
tio

ns

Fit: 19.04 n + −10.18 lg(n) + 30.46
Data
Fit

Student Version of MATLAB

30

B.2 Sort Heap Fits

B.2.1 Sort Heap Value Comparisions

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−2

0

2

4

6

8

10

12

14

16
x 10

5 Sort Heap

n

V
al

ue
 C

om
pa

ris
on

s

Fit: 1.03 n lg n + −1.81 n + 381.67 lg(n) + −3687.61

Data
Fit

Student Version of MATLAB

31

B.2.2 Sort Heap Value Assignments

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6 Sort Heap

n

V
al

ue
 A

ss
ig

nm
en

ts

Fit: 1.03 n lg n + 2.19 n + 382.68 lg(n) + −3691.70 Data
Fit

Student Version of MATLAB

32

B.2.3 Sort Heap Iterator Operations

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−2

0

2

4

6

8

10

12

14
x 10

6 Sort Heap

n

Ite
ra

to
r

O
pe

ra
tio

ns

Fit: 8.25 n lg n + −2.81 n + 3061.81 lg(n) + −29548.53

Data
Fit

Student Version of MATLAB

33

B.2.4 Sort Heap Integer Operations

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−2

0

2

4

6

8

10

12

14

16
x 10

6 Sort Heap

n

In
te

ge
r

O
pe

ra
tio

ns

Fit: 9.39 n lg n + −9.38 n + 4804.51 lg(n) + −46324.46

Data
Fit

Student Version of MATLAB

34

B.3 Push Heap Fits

B.3.1 Push Heap Value Comparisions

0 1 2 3 4 5 6 7 8 9 10

x 10
4

6

8

10

12

14

16

18

20
Push Heap

n

V
al

ue
 C

om
pa

ris
on

s

Fit: 1.01 lg(n) + 0.98

Data
Fit

Student Version of MATLAB

35

B.3.2 Push Heap Value Assignments

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10

12

14

16

18

20

22

24
Push Heap

n

V
al

ue
 A

ss
ig

nm
en

ts

Fit: 1.01 lg(n) + 5.00

Data
Fit

Student Version of MATLAB

36

B.3.3 Push Heap Iterator Operations

0 1 2 3 4 5 6 7 8 9 10

x 10
4

60

70

80

90

100

110

120

130

140

150

160
Push Heap

n

Ite
ra

to
r

O
pe

ra
tio

ns Fit: 8.04 lg(n) + 15.99

Data
Fit

Student Version of MATLAB

37

B.3.4 Push Heap Integer Operations

0 1 2 3 4 5 6 7 8 9 10

x 10
4

60

80

100

120

140

160

180
Push Heap

n

In
te

ge
r

O
pe

ra
tio

ns Fit: 9.07 lg(n) + 13.93

Data
Fit

Student Version of MATLAB

38

B.4 Pop Heap Fits

B.4.1 Pop Heap Value Comparisions

0 1 2 3 4 5 6 7 8 9 10

x 10
4

6

8

10

12

14

16

18
Pop Heap

n

V
al

ue
 C

om
pa

ris
on

s

Fit: 1.00 lg(n) + 0.20

Data
Fit

Student Version of MATLAB

39

B.4.2 Pop Heap Value Assignments

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10

12

14

16

18

20

22
Pop Heap

n

V
al

ue
 A

ss
ig

nm
en

ts

Fit: 1.00 lg(n) + 4.20

Data
Fit

Student Version of MATLAB

40

B.4.3 Pop Heap Iterator Operations

0 1 2 3 4 5 6 7 8 9 10

x 10
4

60

70

80

90

100

110

120

130

140

150
Pop Heap

n

Ite
ra

to
r

O
pe

ra
tio

ns Fit: 8.01 lg(n) + 11.21

Data
Fit

Student Version of MATLAB

41

B.4.4 Pop Heap Integer Operations

0 1 2 3 4 5 6 7 8 9 10

x 10
4

60

80

100

120

140

160

180
Pop Heap

n

In
te

ge
r

O
pe

ra
tio

ns

Fit: 9.03 lg(n) + 9.38

Data
Fit

Student Version of MATLAB

References

[1] SGI Standard Template Library Reference
http://www.sgi.com/tech/stl

[2] David Musser, STL Tutorial and Reference Guide, Addison-Wesley, Read-
ing, MA, 1997.

42

http://www.sgi.com/tech/stl

	Heap Algorithm
	Make Heap
	Sort Heap
	Push Heap
	Pop Heap

	Run-Time Analysis
	Make Heap Fits
	Make Heap Value Comparisions
	Make Heap Value Assignments
	Make Heap Iterator Operations
	Make Heap Integer Operations

	Sort Heap Fits
	Sort Heap Value Comparisions
	Sort Heap Value Assignments
	Sort Heap Iterator Operations
	Sort Heap Integer Operations

	Push Heap Fits
	Push Heap Value Comparisions
	Push Heap Value Assignments
	Push Heap Iterator Operations
	Push Heap Integer Operations

	Pop Heap Fits
	Pop Heap Value Comparisions
	Pop Heap Value Assignments
	Pop Heap Iterator Operations
	Pop Heap Integer Operations

	Analysis with Larger N
	Make Heap Fits
	Make Heap Value Comparisions
	Make Heap Value Assignments
	Make Heap Iterator Operations
	Make Heap Integer Operations

	Sort Heap Fits
	Sort Heap Value Comparisions
	Sort Heap Value Assignments
	Sort Heap Iterator Operations
	Sort Heap Integer Operations

	Push Heap Fits
	Push Heap Value Comparisions
	Push Heap Value Assignments
	Push Heap Iterator Operations
	Push Heap Integer Operations

	Pop Heap Fits
	Pop Heap Value Comparisions
	Pop Heap Value Assignments
	Pop Heap Iterator Operations
	Pop Heap Integer Operations

