3 Graph Algorithm Concepts

Section authors: David R. Musser and Brian Osman.
3.1 Graph Algorithm
Input- Strategy-
Specialized 1.3 Specialized 1.4
L2 AN
Sequence Graph
Algorithm 2.1 Algorithm
NN
Edge Comparison
Based 3.2 CStructure Based 3.3)

A graph algorithm is an algorithm (§1.2) that takes one or more graphs as inputs.

Performance constraints on graph algorithms are generally expressed in terms of
the number of vertices (|V]) and the number of edges (| E|) in the input graph.

Refinement of: Algorithm Specialized by Input (§1.3).

3.2 Edge Comparison Based Graph Algorithm

Input-
Specialized 1.3

Graph
Algorithm 3.1

Edge gomparison Structure Based 3.3
ased

All Pairs X Maximum Minimum Single Source
Shortest Flow 3.5 Spanning Shortest
Path 3.4 ow o Tree 3.6 Path 3.7

An edge comparison based graph algorithm is a graph algorithm (§3.1) whose
computation depends on comparisons between pairs of values associated with the
edges of the graph. In other words, in addition to an input graph, the algorithm
requires at least one edge property map which affects the output of the algorithm.

Many of the well-known graph algorithms are models of this concept. The def-
inition above does not place any restriction on the vertex properties, but often
a property map which serves to label the vertices is needed if the output of the
algorithm is to be meaningful.

Refinement of: Graph Algorithm (§3.1)

3.3 Structure Based Graph Algorithm

Input-

Specialized 1.3
V

Graph

Algorithm 3.1
P

Edge Comparison

Based 3.2 CStructure Based)
Topological Breadth First
Sort 3.19

Search 3.19
A structure based graph algorithm is a graph algorithm (§3.1) which operates
strictly on the structural components of the graph. No edge or vertex property
maps are required, just the sets of vertices and edges themselves.

Depth First
Search 3.5.1

There is one important point to be made. The restriction that no property maps
are needed only applies to the input. Algorithms for computing a topological
sorting (§3.19) do not need any semantic information about a graph, but do
need to create a vertex property map to specify their output.

Refinement of: Graph Algorithm (§3.1)

3.4 All Pairs Shortest Path Algorithm

Graph
Algorithm 3.1

Edge Comparison
Based 3.2

P
Maximum
Flow 3.5

#
Gloyd-\’\/arshall 349 Gohnson 3.4.9

All Pairs
Shortest
Path

Minimum
Spanning
Tree 3.6

Single Source
Shortest
Path 3.7

An all pairs shortest path algorithm is any algorithm which calculates the shortest
path between all pairs of vertices in a given graph. A shortest path is defined in
terms of some edge property map, whose range has a well defined ordering and
summation operation. For example, if the edges are given weights with an edge
property map whose range is the integers, then a shortest path is simply the path
between two vertices where the sum of weights for the edges used is smallest.

Calculating all such paths and their weights requires both an input graph, and
an edge property map. Therefore, such algorithms are a refinement of edge
comparison based algorithms (§3.2).

The problem of finding the shortest path from one vertex to all other vertices
is similar, but usually solved differently, and is referred to here as single source
shortest path (§3.7).

Refinement of: Edge Comparison Based (§3.2)

3.5 Maximum Flow Algorithm

Graph
Algorithm 3.1

Edge Comparison
Based 3.2

All Pairs
Shortest
Path 3.4

Single Source
Shortest
Path 3.7

Iterative
Algorithm 1.8
Edmonds Karp 3.5.1

A maximum flow algorithm is any algorithm which calculates the greatest quan-
tity of flow a graph will allow from some source vertex to another sink vertex.
This is one aspect of a larger field which studies flow networks. A flow network
is a directed graph (G) and an associated edge property map, which denotes the
capacity of each edge.

A full, formal explanation of maximum flow is beyond the scope of this document.
However, a maximum flow can be viewed as another edge property map (f) which
defines how “much” each edge is used. No edge can be used beyond its capacity.
The total in-flow (sum of f for each in-edge) at each vertex must be equal to
the total out-flow (sum of f for each out-edge) at that vertex.

The sink and source vertices are two distinct nodes in the graph which “produce”
and “consume”, respectively, the “flow” represented by the f property map.
Thus, the out-flow of the souce is equal to the in-flow of the sink. The goal for
maximum flow algorithms is to maximize this value.

Calculating such a value requires both a graph and an edge property map. Algo-
rithms to solve the problem are therefore refinements of edge comparison based
algorithms (§3.2).

Refinement of: Edge Comparison Based (§3.2)

3.6 Minimum Spanning Tree Algorithm

Graph
Algorithm 3.1

/

Edge Comparison \

Based 3.2

All Pairs
Shortest
Path 3.4

Minimum
Spanning
Tree

Single Source
Shortest
Path 3.7

Kruskals
Algorithm 3.6.2

A minimum spanning tree algorithm is any algorithm which calculates the least
weight spanning tree of some graph. A spanning tree is an acyclic, connected
subgraph of a given graph which includes all of its vertices. While any graph has
many spanning trees, the problem is to find the one with the minimum weight,
where the weight is defined by some edge property map whose range has both a
well defined ordering and summation operation. For example, if the edges have
integer weights, then the minimum spanning tree is the tree which connects all
of the vertices, and where the sum of the edge weights is smallest.

Maximum
Flow 3.5

Prims

Algorithm 3.6.1

Calculating the minimum spanning tree requires both a graph, and an edge
property map. Such algorithms are therefore a refinement of edge comparison
based algorithms (§3.2).

Refinement of: Edge Comparison Based (§3.2)

3.7 Single Source Shortest Path Algorithm

Graph
Algorithm 3.1
i
i
V

Edge Comparison
Based 3.2
[
Maximum
Flow 3.5

Single Source
Shortest

All Pairs
Shortest
Path 3.4

Minimum
Spanning
Tree 3.6 Path

a N
Dijkstras Bellman-Ford
Algorithm 2.6.1 Algorithm 3.17

A single source shortest path algorithm is any algorithm which calculates the
shortest path from a source vertex to all other vertices in a given graph. A
shortest path is defined in terms of some edge property map, whose range has
a well defined ordering and summation operation. For example, if the edges are
given weights with an edge property map whose range is the integers, then a
shortest path is simply the path between two vertices where the sum of weights
for the edges used is smallest.

Calculating all such paths and their weights requires both an input graph, and
an edge property map, so such algorithms are a refinement of edge comparison
based algorithms (§3.2).

The problem of finding the shortest path between two specific vertices is a com-
monly examined subproblem of this one, but which requires the same amount
of time (asymptotically). Finding the shortest paths from every vertex to every
other vertex is another similar problem which can be solved using single source
shortest path algorithms, but for which better algorithms do exist. These are
categorized as all pairs shortest path algorithms (§3.4).

Refinement of: Edge Comparison Based (§3.2).

	Graph Algorithm Concepts
	Graph Algorithm
	Edge Comparison Based Graph Algorithm
	Structure Based Graph Algorithm
	All Pairs Shortest Path Algorithm
	Maximum Flow Algorithm
	Minimum Spanning Tree Algorithm
	Single Source Shortest Path Algorithm

