
2.6.1 dotnetsort

Section authors: Alan Damon, Charlie Mathis, John Haggerty

�
�

�
�

�
�

�
�

�
�
�
�
�
�

�
�

�
�

�
�

dotNET Sort

Sorting Algorithm 2.6

Comparison
Based 2.2

Permuting 2.5

Sequence
Algorithm 2.1

Refinement of: Sequence Sorting Algorithm (§2.6), therefore of Comparison
Based (§2.2), Permuting (§2.5), Sequence Algorithm (§2.1).

Prototype: template<class RandomAccessIterator>

void sort(RandomAccessIterator first,

RandomAccessIterator last)

Input/Output: The input/output of the sort algorithm is defined in the more
abstract level of Sequence Sorting Algorithm (§2.6).

Effects: Standard effects of a Sequence Sorting Algorithm (§2.6). In brief: the
elements in [first, last) after execution are a permutation of the original
elements in the range, and they are in nondecreasing order according the
comparison operator.

Asymptotic complexity: Let N = last− first.

• Average case (random data): O(N logN)

1



• Worst case: O(N logN)

Operation Counts: (x1000)

Size Version Assign Comp Total
4.096 6.0 30 58 89

.NET 52 74 127
8.192 6.0 65 123 189

.NET 116 164 281
16.384 6.0 136 274 410

.NET 261 362 624
32.768 6.0 291 580 871

.NET 502 754 1257
49.152 6.0 445 902 1327

.NET 796 1171 1967
65.536 6.0 600 1232 1832

.NET 1135 1621 2757

.NET Sort iterator trace plot: (Vector; Size: 1000)

0

200

400

600

800

1000

0 10000 20000 30000 40000 50000 60000

’vector_sort-dotnet.log’

2



Algorithm Timing Summary: (.NET to 6.0)
Random input: 170% slower
Descending input: 215% slower
Ascending input: 30% faster

Input Times: (measured in seconds)
Size Version Random Ascen Desc
4096 .NET 0.007343 0.000781 0.000156

6.0 0.004375 0.001250 0.005625
32756 .NET 0.063218 0.005484 0.001093

6.0 0.362969 0.111094 0.050078
65536 .NET 0.132219 0.011890 0.001875

6.0 0.955938 0.018765 0.109063

Whats up with .NET: There are a few differences between Visual Studio
.NET and Visual Studio 6.0. The sort implementation was completely
re-written durring the different versions which gives it the different char-
acteristics. One of the bonus to the .NET version is that it is a lot easier
to read than the 6.0 implementation.

Summary: (.NET vs. 6.0)

• Maximum Insertion Sort is 32 (vs. 16)

1. Slight degradation to descending input

2. Improvement on ascending input

• Uses a Median of 9 (vs. Median of 3)

1. Improvement over Median of 3

• Partition Implementation is more complex

1. 54 lines of code (vs. 10 lines of code)

2. Most degradation

3


	dotnetsort

