
3.5.1 Depth First Search (DFS)

Section authors: Jill C. Magsam, Jeffrey P. Norris, Stephen E. Zingelewicz

�
�

�
�

�
�

�
�

�
�

�
�

Depth First Search

Structure Based 3.3

Graph Algorithm 3.1

Refinement of: Structure Based Graph Algorithm (§3.3), therefore of Graph
Algorithm (§3.1).

Prototype: template 〈class VertexListGraph, class DFSVisitor, class ColorMap〉
void depth_first_search

(const VertexListGraph& g,
DFSVisitor vis, ColorMap color)

Input: The input to the depth-first search algorithm is a graph, which may be
directed or undirected.

Output: The output of the depth-first-search algorithm is a predecessor sub-
graph. This subgraph may be a forest of several trees because the search
may be repeated from multiple sources. However, each vertex appears in
only one tree so each of the trees in the set is disjoint.

Effects: The structure of the graph is not altered by the algorithm. However,
as a result of running depth-first-search on a graph, every vertex is as-
signed a discovery time and a finishing time. These times may vary slightly
depending on how the order of vertices is chosen.

Asymptotic complexity: Let V = number of vertices. Let E = number of edges.

1



• Average case (random data): O(V + E)

• Worst case: O(V + E)

Complexity in terms of operation counts:

• Average case:

Value comparisons: 6V + 2.9E
Value assignments: 10V + 2E
Integer operations: 4V + E

Experimental Data: In order to experimentally obtain the operation counts,
several types of graphs were examined. All of these were generated using
the BGL random graph generation function. The two which gave the
clearest results are presented here. To isolate the impact of the number of
edges and vertices on the overall asymptotic order, the number of edges was
held constant while the number of vertices was varied. Then, the number
of edges was varied while the number of vertices were held constant. The
results are presented in the tables below:

This table shows the results when the number of edges was held constant
at 2 and the number of vertices was varied:

V Assign Compare Integer
2 24 16 9
4 44 28 17
8 84 52 33

16 164 100 65
32 324 196 129
64 644 388 257

128 1284 772 513
256 2564 1540 1025
512 5124 3076 2049

1024 10244 6148 4097

This table shows the counts when the number of vertices were held constant
at 128 while the number of edges were varied:

2



E Assign Compare Integer
2 1286 775 514
4 1290 779 516
8 1298 789 520

16 1314 808 528
32 1346 848 544
64 1410 926 576

128 1538 1084 640
256 1794 1410 768
512 2306 2086 1024

1024 3330 3592 1536

Experimental Plots: The following charts were created by counting oper-
ations within the depth first search code in the BGL. The aim was to
characterize the number and types of operations being performed on var-
ious graphs. The order calculation for DFS relies on two input variables,
the number of vertices, V , and the number of edges, E. For these two
experiments, the variables were adjusted independent of each other, with
the results given below.

3



Experiments with Vertex counts:

4



Experiments with Edge counts:

Pseudocode: Pseudocode of depth first search as defined in the Boost Graph
Library:

DFS(G)
> initialize vertex u
for each vertex u in V
color[u] := WHITE
p[u] = u

end for
time := 0
> start vertex s
if there is a starting vertex s
call DFS-VISIT(G, s)

for each vertex u in V
> start vertex u
if color[u] = WHITE

call DFS-VISIT(G, u)
end for

5



return (p,d_time,f_time)

> discover vertex u
DFS-VISIT(G, u)

color[u] := GRAY
d_time[u] := time := time + 1
> examine edge (u,v)
for each v in Adj[u]
> (u,v) is a tree edge
if (color[v] = WHITE)

p[v] = u
call DFS-VISIT(G, v)

> (u,v) is a back edge
else if (color[v] = GRAY)

...
> (u,v) is a cross or forward edge
else if (color[v] = BLACK)

...
end for
> finish vertex u
color[u] := BLACK
f_time[u] := time := time + 1

References: .

• An animation of an operating depth first search is given at:
http://www.cs.duke.edu/csed/jawaa/DFSanim.html

The animation shows a depth first search of a simple, directed graph.
You can start, pause or stop the animation at any point. You can
also choose to step through it. The scroll bar at the bottom of the
animation controls the speed that it runs. To slow the animation
down, scroll to the left.

As it runs, you can watch which vertices are pushed and popped onto
the stack. The animation also creates two lists. The first is called
Preorder. Vertices get added to the list as they are discovered, or
visited the first time. The other list is called Postorder. Vertices

6

http://www.cs.duke.edu/csed/jawaa/DFSanim.html


get added to this list as they are finished, in other words when their
adjacency list has been examined completely.

As the animation progresses, the vertices are colored to indicate their
state. All vertices are initially grey. When a vertex is discovered, it
is colored green and added to the preorder list. When a vertex is
finished, it is colored blue and added to the postorder list.

• The BGL reference material for depth first search can be found at:
http://www.boost.org/libs/graph/doc/depth first search.html

7

http://www.boost.org/libs/graph/doc/depth_first_search.html

	Depth First Search (DFS)

