
55 Binary Search

Section authors: Matthew Goodyear, Rachel Vecchitto, Matthew Zuckerman

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Sequence
Algorithm 2.1

Comparison
Based 2.2

Binary Search

Strategy
Specialized 1.4

Divide and
Conquer 1.5

Refinement of: Comparison Based (§2.2), therefore of Sequence Algorithm
(§2.1), and Divide and Conquer (§1.5), therefore of Strategy Specialized
(§1.4).

Prototype:
template〈class ForwardIterator, class LessThanComparable〉
bool binary_search(

ForwardIterator first,
ForwardIterator last,
const LessThanComparable& value);

template〈class ForwardIterator, class T, class StrictWeakOrdering〉
bool binary_search(

ForwardIterator first,
ForwardIterator last,
const T& value,
StrcitWeakOrdering comp);

Description: This implementation of binary search returns true if an element
equivalent to value is present in [first,last), and false otherwise. The first
version of binary search uses the less than operator for comparison, while
the second uses the function object comp.

1



Asymptotic complexity: Let N = last − first.

• Average case: O(log N)

• Worst case: O(log N) + 2

Complexity in terms of operation counts:

• Average case using a bidirectional iterator:

Comparisons: 1/2 log2 N + 6.244
Assignments: 1
Iterator ops: 105 ∗ (0.094 ∗ log2 N − 1.067)
Integer ops: 105 ∗ (0.22 ∗ log2 N − 2.49)

• Average case using a random access iterator:

Comparisons: 1/2 ∗ log2 N + 6.244
Assignments: 1
Iterator ops: 1.991 ∗ log2 N + 47.114
Integer ops: 7.481 ∗ log2 N + 56.89

• The following table provides operation counts for runs of binary search
using both bidirectional and random access iterators:

2



Table 1: Performance of Binary Search Using Various Input Sizes and Iterator
Types

Size Iterator Comp- Assign- Iterator Integer Total
Type arisons ments Ops Ops Ops

1000 Bidir. 11 1 3050 7134 10196
Random 11 1 67 127 206

2000 Bidir. 12 1 6053 14143 20209
Random 12 1 74 149 236

4000 Bidir. 12 1 6048 14132 20193
Random 12 1 67 139 219

8000 Bidir. 13 1 12048 28149 40211
Random 13 1 72 153 239

16000 Bidir. 13 1 12048 28149 40211
Random 13 1 72 153 239

32000 Bidir. 14 1 24056 56181 80252
Random 14 1 78 173 266

64000 Bidir. 14 1 24056 56181 80252
Random 14 1 78 173 266

128000 Bidir. 15 1 48060 112186 160262
Random 15 1 83 190 289

256000 Bidir. 15 1 48060 112186 160262
Random 15 1 83 112186 160262

512000 Bidir. 16 1 96060 224205 320282
Random 16 1 86 200 303

1024000 Bidir. 16 1 96060 224205 320282
Random 16 1 86 200 303

3



Iterator trace plot:

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20 40 60 80 100 120

’vector_binary_search.log’

An ordered vector of ten thousand elements is being searched for a single
value by binary search. Random Access Iterators are being used to find the
middle element of the vector, at which time a comparison is made. If the
value being searched for is greater than the value of the middle element,
then this process is recursively repeated on the greater half of the vector.
If the value being searched for is less than the value of the middle element,
then this process is recursively repeated on the lesser half of the vector.
The process will terminate when either an element with a value matching
that being searched for is found, or when the recursion results in the search
of a single element with a value not equal to the value being searched for.

4

http://www.cs.rpi.edu/~musser/ca/restricted/iterator-tracing-screen.pdf


0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20000 40000 60000 80000 100000 120000 140000 160000

’list_binary_search.log’

The same process is used to search an ordered list of elements for a single
value as that used on the vector. The difference is that the list container
does not provide random access to its elements. The list container does
provide Bidirectional Iterators, which are used to traverse the elements. As
in the case of the binary search on the vector, comparisons of the value of
an element versus that of the value being searched for are only performed
on the middle element of the section being recursively searched.

5



Animation:

• A demonstration of binary search.

6

http://www.rpi.edu/~zuckem/binarysearch.swf

	Binary Search

