
3.17 Bellman-Ford Algorithm

Section authors: Noboru Obata, Lei Zhang, and Huai Kai Lin.

Iterative 1.8

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Bellman-Ford Algorithm

Edge Comparison
Based 3.2

Single Source
Shortest Paths 3.7

Strategy
Specialized 1.4

�
�

�
�

Refinement of: Single Source Shortest Path (§3.7), Iterative Algorithm (§1.8).

Prototype:

template <class Graph, class Size,

class P, class T, class R>

bool bellman_ford_shortest_paths

(Graph& g, Size N, const bgl_named_params<P, T, R>& params)

Input: A graph g, either directed and undirected, with N vertices, and a named
parameter params which may contain the following property maps.

• An edge weight map w map.

• A vertex distance map d map. This must be initialized such that
d map[u] = ∞ for all vertices u in the graph, except for the source
vertex s, d map[s] = 0, by which the source vertex is identified.

• A predecessor map p map (optional). This must be initialized to have
p map[u] = u for all vertices u in the graph.

Output: True if the graph contains no negative-weight cycles that are reach-
able from the source; False otherwise.

1

Effects: For every vertex u in the graph, d map[u] is the shortest path weight
from the source vertex s. (If a vertex u is not reachable from the source
vertex, d map[u] =∞.)

If a vertex u is reachable from the source vertex s, then p map[u] = v
and u 6= v, where v is the parent node of u in the minimum spanning tree
rooted at s. If either u = s or a vertex u is not reachable from s, then
p map[u] = u.

Pseudocode: The implementation in BGL has an important change from the
algorithm presented in CLRS. A flag relaxed is turned True only if an
edge is relaxed in the loop of lines 7–12. If no edges are relaxed, then the
outer loop of lines 5–16 is terminated immediately. This improvement dra-
matically decreases the number of outer loop iterations actually executed.

Bellman-Ford-BGL(G, w, s)

1: for each vertex v ∈ V [G] do
2: d[v]←∞
3: end for
4: d[s]← 0
5: for i← 1 to |V [G]| do
6: relaxed ← False
7: for each edge (u, v) ∈ E[G] do
8: if d[v] > d[u] + w(u, v) then � Relaxation call
9: d[v]← d[u] + w(u, v) � Relaxation step

10: relaxed ← True
11: end if
12: end for
13: if relaxed = False then
14: exit the loop
15: end if
16: end for
17: for each edge (u, v) ∈ E[G] do
18: if d[v] > d[u] + w(u, v) then
19: return False
20: end if
21: end for
22: return True

2

Asymptotic complexity:

• Average case (random data): O(|V ||E|)
• Worst case: O(|V ||E|)

Complexity in terms of operation counts: The complexity of the Bellman-
Ford algorithm depends on the number of edge examinations, or relaxation
calls (line 8). (Note this is different from relaxation steps which refer to
the actual changes performed in line 9.) As mentioned, the number of
relaxation calls can be smaller than |V ||E| with the BGL implementation.
In fact, it is much smaller than |V ||E| in the average case.

The first table shows the number of relaxation calls for random directed
graphs with non-negative random edge weights, allowing self-edges and
parallel edges. Vertices, edges, and operation counts are shown in thou-
sands. For example, the top-left cell indicates that operation counts are
20 with V = 10 and E = 10.

Relaxation calls:

Vertices
Edges 0.01 0.1 1 10 100
0.01 0.02 0.01 0.01 0.01 0.01
0.1 0.4 0.3 0.1 0.1 0.1
1 3.3 6.3 3.6 1.1 1.0
10 33.7 64.7 91.0 31.0 10.7
100 225.7 794.3 900.0 1238.6 371.4

† Directed graph, edge weights [0 : 1000], average of seven attempts.

It is hard to create large random graphs with negative edge weights because
the they tend to have negative-weight cycles. The second table shows the
results with random graphs with some negative weight edges.

Vertices
Edges 0.01 0.1 1 10 100
0.01 0.03 0.01 0.01 0.01 0.01
0.1 0.3 0.2 0.1 0.1 0.1
1 4.1 6.0 2.4 1.0 1.0
10 — — 92.9 28.6 11.4
100 — — — 1357.1 357.1

† Directed graph, edge weights [−10 : 1000], average of successful seven
attempts.

3

Formulas for average case:

Relaxation calls:

{
1.13|E| if |E| < |V |,
0.95|E| lg |V | if |E| > |V |.

Let L be the number of the outer loop (lines 5–16) executed. Then, the
number of relaxation calls is represented exactly by L|E|. So the analysis
is done in terms of L, which shows interesting variations as shown in the
following contour graph. In the region |E| < |V |, L is very close to 1
because the average size of each connected component is less than 1 and
so few edges are relaxed. In the region |E| > |V |, however, L grows in
proportion to lg |V |.

10

100

1000

10000

100000

10 100 1000 10000 100000

|E
|

|V|

14.0
12.0
10.0
8.0
6.0
4.0
2.0

Links to: 3d graph animation and curve fitting animation.

4

http://www.cs.rpi.edu/~obatan/bellman-ford/L-480.gif
http://www.cs.rpi.edu/~obatan/bellman-ford/Lfit-480.gif

Worst case operation counts: If the graph contains a negative-weight cycle
that is reachable from the source vertex, the algorithm shows the worst
case behavior. Again, vertices, edges, and operation counts are shown in
thousands.

Relaxation calls:

Vertices
Edges 0.01 0.1 1 10
0.01 0.1 1.0 10.0 100.0
0.1 1.0 10.0 100.0 1000.0
1 10.0 100.0 1000.0 10000.0
10 100.0 1000.0 10000.0 100000.0

† Directed graph, edge weights [−1000 : −10], maximum of seven at-
tempts.

Formulas for worst case:
Relaxation calls: 1.00|V ||E|

5

Iterator trace plot:

The plot shows the memory access pattern of the Bellman-Ford algorithm
processing a directed graph with 1000 vertices and 4000 edges in the ad-
jacency list representation (vecS, vecS). Only memory accesses to the
graph data structure are drawn, and the addresses are shown relative to
the smallest one. Red dots are distributed irregularly because edge vectors
are allocated dynamically. The Bellman-Ford algorithm makes references
to all edges at every loop of lines 7–12, which is repeated 9 times in this
graph. Since the last loop (lines 17–21) makes a similar memory access,
10 repetitions of the same access patterns may be found if the plot is ex-
amined carefully. In the worst case, the same access patterns are repeated
|V | times.

6

	Bellman-Ford Algorithm

