
Algorithm Concepts

David R. Musser Brian Osman

May 16, 2003

This document contains Section 1 of Algorithm Concepts, a collection of
algorithm concept descriptions in both Web page and print form under devel-
opment at Rensselaer Polytechnic Institute by David R. Musser, with the aid
of graduate research assistants Brian Osman, Michael LaSpina, and Mayuresh
Kulkarni, and with significant participation also of students in the “Adopt an
Algorithm” project in CSCI-4020 Computer Algorithms, Spring 2002 and Spring
2003.

1 Basic Algorithm Concepts

1.1 Computational Method

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�

Computational
Method

Algorithm 1.2

Input-
Specialized 1.3

Strategy-
Specialized 1.4

1



A computational method is a method for solving a specific type of problem by
means of a finite set of steps operating on inputs, which are quantities given to
it before execution of the steps begins or during executing, and producing one
or more outputs, which have a specified relation to the inputs. The number of
steps in the method is required to be not only finite but also independent of the
inputs. (The program does not grow or shrink in response to the inputs, but it
might have different variations for different types of inputs.) The method is also
required to be resource constrained, which means there are requirements on all
operations of all steps of the method that constrain the resources (time, space)
that can used in executions of the method.

Execution of steps may repeat other steps, so that although the set of steps is
finite, executions of them may produce an infinite sequence of steps—finite termi-
nation is not a requirement (it is a requirement of the algorithm (§1.2) concept).
Some nonterminating computational methods are useful, such as computer op-
erating systems or event-driven simulation systems. Even though the execution
of such methods does not terminate, we are still generally interested in bound-
ing the number of steps taken in producing some partial output (as in proving
response-time guarantees for an operating system).

In order to bound the resources—time and space—consumed during an execution
of the method, we first need bounds on the resources consumed by individual
steps. This motivates the resource-constraint requirement on computational
methods.

Effectiveness of a computational method is the property that all operations of
all steps of the method “must be sufficiently basic that they can in principle be
done exactly and in a finite length of time.” (Knuth [1] adds “by someone using
pencil and paper,” but it is a philosophical question whether humans have any
computational capability beyond the effectiveness of machines.) As defined here,
effectiveness of computational methods follows from their resource-constraint
requirement.

Definiteness of a computational method is the property that each step of the
method “must be precisely defined; the actions to be carried out must be rigor-
ously and unambiguously specified for each case” [1]. This includes the property
that it must be unambiguous which step, if any, follows the current step in any

2



execution of the method.

Again, resource-constraint requirements place some limitations on just how “in-
definite” the steps of a method may be.

Refinements: Algorithm (§1.2)

1.2 Algorithm

�� �
�
 �	

�� � �� �
�� ��� ��� ��� ��
 �	

Computational
Method 1.1

Algorithm

Input-
Specialized 1.3

Strategy-
Specialized 1.4

Sequence
Algorithm 2.1

Graph
Algorithm 3.1

Divide &
Conquer 1.5

Dynamic
Programming 1.6

Greedy 1.7

Refinement of: Computational Method (§1.1)

Finiteness of a computational method is the property that the number of steps
in any execution of the method must be finite. The finiteness property is also
called termination, and the method is said to be terminating. Algorithm is
a synonym for finite computational method, a computational method (§1.1)
with the additional property of finiteness. Every abstraction that belongs to an
algorithm concept must have the termination property.

Note that among the abstractions belonging to a computational method concept,
some might be terminating while others are nonterminating.

3



Refinements: Algorithm Specialized by Input (§1.3), Algorithm Specialized by
Strategy (§1.4).

1.3 Algorithm Specialized by Input

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
�
�
�

�
�

Computational
Method 1.1

Algorithm 1.2

Input-
Specialized

Strategy-
Specialized 1.4

Sequence
Algorithm 2.1

Graph
Algorithm 3.1

Refinement of: Algorithm (§1.2)

This concept is a narrowing of the algorithm (§1.2) concept by restrictions on
the form of input. Subconcepts restrict their input to some particular domain,
such as sets, graphs, or linear sequences.

Refinements: Set Algorithm, Sequence Algorithm (§2.1), Polynomial Algo-
rithm, Matrix Algorithm, Graph Algorithm (§3.1)

4



1.4 Algorithm Specialized by Strategy

�
�

�
��� �

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�� ��� �

Computational
Method 1.1

Algorithm 1.2

Input-
Specialized 1.3

Strategy-
Specialized

Divide and
Conquer 1.5

Dynamic
Programming 1.6

Greedy 1.7 Iterative 1.8

Refinement of: Algorithm (§1.2)

This concept is a narrowing of the algorithm (§1.2) concept in terms of strategies
used in structuring the steps of the algorithm.

Refinements: Divide-and-Conquer Algorithm (§1.5), Dynamic Programming
Algorithm (§1.6), Greedy Algorithm (§1.7), Iterative Algorithm (§1.8).

5



1.5 Divide-and-Conquer Algorithm

�� �
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�� ��� �

Algorithm 1.2

Input-
Specialized 1.3

Strategy-
Specialized 1.4

Divide and
Conquer

Dynamic
Programming 1.6

Greedy 1.7 Iterative 1.8

A divide-and-conquer algorithm is an algorithm (§1.2) whose steps are structured
according to the following strategy:

1. Construct the output directly and return it, if the input is simple enough.
Otherwise:

2. Divide the input into two or more (a finite number) of smaller inputs.

3. Recursively apply the algorithm to each of the smaller inputs produced in
the first step.

4. Combine the outputs from the recursive applications to produce the output
corresponding to the original input.

This concept is one of many known ways of narrowing the algorithm concept in
terms of a strategy (§1.4), which gives a specific structure to the steps of the
algorithm.

6



1.6 Dynamic Programming Algorithm

�� �
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�� ��� �

Algorithm 1.2

Input-
Specialized 1.3

Strategy-
Specialized 1.4

Divide and
Conquer 1.5

Dynamic
Programming

Greedy 1.7 Iterative 1.8

Refinement of: Algorithm Specialized by Strategy (§1.4)

A dynamic programming algorithm is an algorithm which solves a given problem
by combining solutions to smaller subproblems. The strategy depends on two
characteristics of the problem to be solved, optimal substructure and overlapping
subproblems.

Optimal substructure: A problem is said to have optimal substructure if the
optimal solution to the problem contains within it optimal solutions to the
contained subproblems.

Overlapping subproblems: A problem exhibits overlapping subproblems if
the total number of subproblems required to assemble and solve the com-
plete problem is “small,” generally polynomial in the input size. In other
words, a naive recursive (top down) approach to the problem would recom-
pute the solution to the subproblems many times.

Taking advantage of the above properties, a dynamic programming algorithm
functions in a bottom up fashion. The overall strategy can be descibed as:

7



1. Compute and store the solutions to all of the simplest subproblems.

2. Repeat until the full problem has been solved:

(a) Combine the solutions to the subproblems of a given size to compute
and store the solutions to the next largest subproblems.

As can be seen, the solutions to the various subproblems are stored for repeated
access in computing the solutions to larger subproblems. This storage is often
done in some table, and dynamic programming is sometimes referred to as a
tabular method.

This concept if one of many known ways of narrowing the algorithm concept in
terms of a strategy (§1.4), which gives a specific strategy to the steps of the
algorithm.

1.7 Greedy Algorithm

�� �
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�� ��� �

Algorithm 1.2

Input-
Specialized 1.3

Strategy-
Specialized 1.4

Divide and
Conquer 1.5

Dynamic
Programming 1.6

Greedy Iterative 1.8

Refinement of: Algorithm Specialized by Strategy (§1.4)

8



A greedy algorithm is an algorithm which always makes locally optimal choices
during its execution to produce a globally optimal solution to some problem. For
such a strategy to work, the problem must exhibit the greedy choice property,
and optimal substructure.

Greedy choice property: A problem exhibits the greedy choice property if
a globally optimal solution can be arrived at by making locally optimal
decisions at every decision point. In other words, the subproblems which
would result from various decisions, and their resulting solutions to the
whole problem, are irrelevant.

Optimal substructure: A problem is said to have optimal substructure if the
optimal solution to the problem contains within it optimal solutions to the
contained subproblems.

Having seen this, a greedy algorithm is simply an algorithm which makes a se-
quence of locally optimal decisions. Generally, the structure of the algorithm
follows this pattern:

1. Repeat until the problem has been reduced to an empty or trivial base case.

(a) Augment the solution in some locally optimal fashion.

(b) Apply the local choice made to reduce or contract the problem.

This concept if one of many known ways of narrowing the algorithm concept in
terms of a strategy (§1.4), which gives a specific strategy to the steps of the
algorithm.

9



1.8 Iterative Algorithm

�� �
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�� ��� �

Algorithm 1.2

Input-
Specialized 1.3

Strategy-
Specialized 1.4

Divide and
Conquer 1.5

Dynamic
Programming 1.6

Greedy 1.7 Iterative

Refinement of: Algorithm Specialized by Strategy (§1.4)

An iterative algorithm is an algorithm which, throughout the course of execution,
maintains some approximate output. As the name implies, the primary step in
the strategy is to recalculate a new approximate output based on the previous
approximation. In general, the approximate output grows closer to the final
output (or solution) with each iteration, but this condition is not necessary.

Another important note is that an iterative algorithm must include some termina-
tion criteria. There are many useful iterative procedures which are not algorithms
without a change in their formulation. Without termination, they must be con-
sidered iterative computational methods (§1.1).

This concept if one of many known ways of narrowing the algorithm concept in
terms of a strategy (§1.4), which gives a specific strategy to the steps of the
algorithm.

10



References

[1] Donald E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental
Algorithms, Third Edition, Addison-Wesley, Reading, MA, 1997.

11


	Basic Algorithm Concepts
	Computational Method
	Algorithm
	Algorithm Specialized by Input
	Algorithm Specialized by Strategy
	Divide-and-Conquer Algorithm
	Dynamic Programming Algorithm
	Greedy Algorithm
	Iterative Algorithm


