Algorithm Concepts for Standard Libraries

October 4, 2001

1 Point of View

My point of view in this talk: that of writers of the
official standard for a software library, who strive to
make the library components

e easy to understand and use properly by applica-
tions programmers;

e implementable using algorithms and data struc-
tures that are correct, robust, and efficient:

e yet, implementable in different ways by different
compiler/library vendors in order to take advan-
tage of special characteristics of the platform(s)
on which they are marketing the library. (By a
“platform” | mean a particular hardware/OS /compiler
combination.).

Overall, these goals contribute to acceptance of
standard library components as reliable building blocks
for constructing application programs that can be
ported from one platform to another without change.

The ISO/ANSI C++ standard (1997) has these goals
but only partially achieves them.

2 The C++ (language and) library stan-
dard

e Developed over an eight year period, this standard
includes detailed requirements for what compo-
nents must be in any C++ library, and what kinds
of services they must provide.

e Included among the components are fundamental
data processing algorithms and data structures
(the part known as the Standard Template Li-

brary, or STL).

e Each STL component specification describes:

— interface (how to use it)
— functionality (what it does)

— performance guarantees (how efficient is it)

3 Nature of the performance standards

In writing performance standards, the library stan-
dard writer has the same goals as previously stated
for the overall library, including that the components
be implementable in different ways by different com-
piler/library vendors in order to take advantage of
special characteristics of their platform(s).

e Ordinarily such tailoring involves making trade-
offs in resource use.

e Even on the same hardware, differences in under-
lying software such as different operating systems
could be a factor.

4 How strictly should performance guar-
antees be expressed?

The problem we address here is, how can a library
standard be written so that

e library implementors have the freedom to take
some advantage of hardware platform character-
Istics, yet

e application programmers have sufficient guaran-
tees about the performance of library components
that they can easily port their programs from one
platform to another.

5 Performance guarantees in the C++ stan-
dard

e T he requirements are mostly stated in traditional
O-notation.

e In some cases exact or approximate bounds are
given for operation counts, of some principal op-
eration (like comparison operations, in sorting al-
gorithm descriptions).

6 A typical algorithm specification in the
C++ standard

heapsort (Simplified from partial sort’s descrip-
tion.)

Prototype:

template<class RandomAccessIterator>
void heapsort(RandomAccessIterator first,
RandomAccessIterator last)

Effects: Sorts the elements in the range [first, last),
in place.

Complexity: It takes approximately /V log N com-
parisons, where N = last — first.

7 A better specification of heapsort

See partial _sort's web page in the Silicon Graphics
STL documentation (http://www.sgi.com /tech /stl).

s Can we do better?

More precise requirements are needed. Here is a view
expressed in a newsgroup discussion of C++ stan-
dard library performance requirements:

I've yet to be convinced that placing require-
ments on computational complexity really ac-
complished anything useful. ... | guess in the-
ory this was done to guarantee that all pro-
grams would be efficient. In reality, it doesn't
go far enough to guarantee such a thing, and
| can’t think of a way of rewriting the specifi-
cation so it would either.

10

9 Some traditional approaches

9.1 Actual running times

Start with measurements of actual running times on
a particular platform.

e |nsights gained are of course not necessarily portable
to other platforms.

e Multi-platform experimentation is expensive, and
can result in proliferation of data that is hard to
manage.

e [t may be difficult to generalize from it, and thus
to use it as a basis for setting standards.

11

9.2 Instruction cycle and memory access
counts

A slightly more abstract approach is to measure ma-
chine instruction cycles and memory accesses for a
given machine architecture.

e Often easier to measure instruction counts than
actual times:

— Some machines provide a hardware register that
keeps count.

— Machine simulators can be used, with the in-
struction cycle count as one of the simulation
results reported.

e Still too machine dependent; the effort required
to derive closed formulas for the bounds is not
justified by the limited portability of the results.

12

9.3 Instruction cycles on an abstract ma-
chine

Still more abstract: program and study the algorithm
for a hypothetical architecture designed to resemble
many common hardware architectures:

e E.g., Don Knuth's hardware level analyses in TAOCP
in terms of programs for his MIX and MMIX ma-
chine specifications, which allow study of trade-
offs that simply cannot be seen or properly as-
sessed from more abstract levels like asymptotic
analysis.

e The performance results become somewhat less
accurate when extrapolated to a real architecture.

e But in many cases they still form a reasonable
basis for choosing between different algorithms or
algorithm variants.

13

e Because of the wider applicability of the results,
investment in deriving analytical bounds is more

justifiable and useful. [TAOCP, especially]

For characterizing performance of algorithm compo-
nents in standard libraries, however, we still haven't
reached the level of abstraction that is needed. This
is certainly the case when the library provides generic
components.

14

10 The challenge of generic software com-
ponents

e Libraries like STL (and MTL, BGL, ...) provide
generic components, which are designed with pa-
rameters representing infinite sets of abstractions
(such as sets of types, which are represented in
C++ for example by template parameters).

e For such generic components, machine instruc-
tion counts or memory accesses cannot be mea-
sured or derived analytically unless the compo-
nent’'s parameters are all instantiated with specific
types to produce a nongeneric instance.

15

e But each generic component has infinitely many
such instances.

The best we could do is try to measure or
analyze the machine level statistics and cat-
alog them for the “most common cases.”

e Yet, while genericity seems to complicate matters,
in fact it also contributes new ideas about how to
express algorithm performance.

16

11 How generic programming can contribute
to solving our problem

e |n brief outline, the approach | suggest is:

— Develop algorithm concept hierarchies similar
to previously developed hierarchies for container
and iterator concepts.

— Use these algorithm concepts to present and
organize performance requirements for a stan-
dard library’s algorithm components.

— Start with a way of expressing these require-
ments that is well matched to the level of ab-
straction of generic algorithms.

— Extend it so that it takes into account key
hardware characteristics such as cache size and
speed.

17

12 Programming with concepts

Generic programming can be viewed as “program-
ming with concepts,” as illustrated in the following
diagrams.

Programming with Concepts

18

c:/ap/concept1.ppt

13 Formally, what is a “concept”?

Definition A concept is a pair of sets (R, A),
where R is a set of requirements and A is a set of
abstractions, such that an abstraction belongs to A
if and only if it satisfies all the requirements in R.

[R. Wille].

e Concept refinement: more requirements (means
fewer abstractions in the concept but each is more
specialized).

e Refinement relation yields a concept lattice or hi-

erarchy.

e More extended notion: concept web: a concept
hierarchy that includes cross-references to other
useful information related to the concepts (exam-
ples, experiment reports, animations, etc.)

19

e The Tecton Concept Library describes a con-
cept hierarchy that formally captures many alge-
braic concepts (SemiGroup, Monoid, Group, Ring,
Field, etc.) [R. Loos, D. Musser, S. Schupp, C.

Schwarzweller].

e The Silicon Graphics STL documentation [M. Austern]
Is a concept web with extensive development of
Container, lterator, and Functor concepts.

e Yet there has been little development of classifica-
tions and documentation of algorithms in concept
hierarchies or concept webs.

20

14 A sample algorithm concept hierarchy

e The following diagram depicts an overall (sequen-
tial) algorithm concept hierarchy, with detailed
development of one subconcept,

— sequence algorithms, like those in STL [based
in part on pre-STL ideas jointly developed with
Alex Stepanov (unpublished)]

21

c:/ap/algorithm-concepts.ps

15 Another heapsort specification: as it

might appear in an algorithm concept
hierarchy

Prototype (same)

Refinement of: Sequence Sorting Algorithm (§A.11),
therefore of Comparison Based (§A.6), Permuting
(§A.10), Sequence Algorithm (§A.5).

Effects: Standard effects of a Sequence Sorting Al-

gorithm (§A.11). In brief: the elements in [first,
last) after execution are a permutation of the orig-
inal elements in the range, and they are in nonde-
creasing order according the comparison operator.

Asymptoptic complexity: Let NV = last —first.

e Average case (random data): O(N log V)
e Worst case: O(N log N)

22

16 Heapsort specification, continued

Complexity in terms of operation counts:

e Average case (random data (§C)):
Value comparisons: N logo N + 0.36 N
Value assignments: 1.2N logo N + 3.2N
lterator operations: 12.4N logo N + 10N
Integer operations: 14.5N logo N + 17N
e Worst case: ...

e See also Table 1 for sample counts on random

data for heapsort and other sorting algorithms
available in the library.

e For any implementation the corresponding prin-
cipal operation counts must be bounded by the
above formulas multiplied by the Standard Tol-
erance, (1 + ¢).

23

17 In general, what is the role of principal
operation counts?

e An algorithm concept is expressed in terms of cer-
tain other concepts (like Random Access lterator,
Comparison, etc.)

— Each of those other concepts requires certain
operations, which we call principal operations,
to exist.

— Therefore, express the performance requirements
for the algorithm concept in terms of counts of
principal operations.

e Present measured and (where possible) analytically-
derived bounds.

e Performance requirements are then expressed in
terms of these bounds times a constant factor.

24

18 How are the bounds determined and
used?

e Library standard writers measure or analyze op-
eration counts for several variants of an algo-
rithm and express required bounds (i.e., choose
the “fudge factor” (1 + €)) so that the desired
variants are allowed.

e Library implementors still have some freedom to
choose a different variant of the algorithm in or-
der to take advantage of platform characteristics.
(But not, typically, to choose an entirely different
algorithm.)

e Application programmers can rely on each of the
algorithm implementations they use on platforms
X, Y, ...to operate within the stated bounds.

25

19 Why principal operation counting is not
enough

e Looking only at principal operation counts ignores
important hardware differences, in

available instruction sets, number and speed
of arithmetic units, registers, size and speed
of caches and memory, etc.

e [his abstractness can lead to suboptimal choices
of algorithms for a particular task.

26

20 Extending principal operation count-
ing

e How we might extend principal operation count-
ing to take better account of hardware differences:

— Express algorithms with additional parameters
that capture key hardware characteristics as a
concept, e.g., a cache concept.

— Then study the performance of different al-
gorithms or algorithm variants as assumptions
about these parameters are varied (i.e., are re-
fined into different subconcepts).

e In this regard it appears MMIX can serve as an
extremely useful guidepost toward the important
hardware concepts to include and vary.

27

21 Organizing details and summarizing statis-
tics

e Main drawback to introducing and varying hard-
ware parameters: the amount of detail that must
be reported to give a fully accurate picture of an
algorithm's performance.

e But organization of information using concept webs
could help in

— suppression of details at one level while reveal-
ing them fully at deeper levels;

— summarization, aggregation of statistics.

28

22 Conclusion

e Algorithm concept hierarchies offer an appealing
way to classify and present knowledge of algo-
rithms.

e The set of requirements defining an algorithm
concept can include performance requirements.

e At a suitable level of concept refinement these
performance requirements can be stated strictly
enough that they serve as a useful standard:

— software library implementors have freedom to
tailor implementations to a particular platform

— application programmers can rely on being able
to port their programs from one platform to an-
other without dramatic changes in performance

29

A Sample Algorithm Concept Descriptions

a1 Computational Method

A (generic) computational method is a method for
solving a specific type of problem by means of a finite
set of steps operating on inputs, which are quanti-
ties given to it before execution of the steps begins
or during executing, and producing one or more out-
puts, which have a specified relation to the inputs.
The number of steps in the method is required to be
not only finite but also independent of the inputs.
(The program does not grow or shrink in response
to the inputs, but it might have different variations
for different types of inputs.) The method is also re-
quired to be resource constrained, which means there
are requirements on all operations of all steps of the

30

method that constrain the resources (time, space)
that can used in executions of the method.

Execution of steps may repeat other steps, so that
although the set of steps is finite, executions of them
may produce an infinite sequence of steps—finite ter-
mination is not a requirement (it is a requirement of
the algorithm (§A.2) concept). Some nonterminat-
ing computational methods are useful, such as com-
puter operating systems or event-driven simulation
systems. Even though the execution of such methods
does not terminate, we are still generally interested
in bounding the number of steps taken in produc-
ing some partial output (as in proving response-time
guarantees for an operating system).

In order to bound the resources—time and space—
consumed during an execution of the method, we
first need bounds on the resources consumed by indi-

31

vidual steps. This motivates the resource-constraint
requirement on computational methods.
Effectiveness of a computational method is the
property that all operations of all steps of the method
“must be sufficiently basic that they can in princi-
ple be done exactly and in a finite length of time.”
(Knuth [TAOCP, Vol. 1] adds “by someone using
pencil and paper,” but it is a philosophical question
whether humans have any computational capability
beyond the effectiveness of machines.) As defined
here, effectiveness of computational methods follows
from their resource-constraint requirement.
Definiteness of a computational method is the prop-
erty that each step of the method “must be precisely
defined; the actions to be carried out must be rig-
orously and unambiguously specified for each case”

[Knuth, TAOCP, Vol. 1]. This includes the property

32

that it must be unambiguous which step, if any, fol-
lows the current step in any execution of the method.
Again, resource-constraint requirements place some

limitations on just how “indefinite” the steps of a
method may be.

33

A2 Algorithm

Finiteness of a computational method is the prop-
erty that the number of steps in any execution of
the method must be finite. The finiteness property is
also called termination, and the method is said to be
terminating. Algorithm is a synonym for finite com-
putational method, a computational method (§A.1)
with the additional property of finiteness. Every ab-
straction that belongs to an algorithm concept must
have the termination property.

Note that among the abstractions belonging to a
computational method concept, some might be ter-
minating while others are nonterminating.

34

A3 Algorithm Specialized by Input

This concept is a narrowing of the algorithm (§A.2)
concept by restrictions on the form of input. Sub-
concepts include set algorithms, sequence algorithms
(§A.5), tree algorithms, graph algorithms, algebraic
algorithms, etc.

35

a4 Algorithm Specialized by Strategy

This concept is a narrowing of the algorithm (§A.2)
concept in terms of strategies used in structuring the
steps of the algorithm. Subconcepts include Divide-
and-Conquer Algorithm (§A.12), Dynamic Program-
ming Algorithm, Greedy Algorithm, etc.

36

A5 Sequence Algorithm

A sequence algorithm is an algorithm (§A.2) that
takes one or more linear sequences as inputs. Thus
it is a refinement of Algorithm Specialized by Input

(5A.3).

37

a6 Comparison Based Sequence Algorithm

A comparison based sequence algorithm is an se-
quence algorithm (§A.5) whose computation depends
on comparisons between pair of values in the se-
quence.

38

A7 Index Based Sequence Algorithm

An index based sequence algorithm is a sequence
algorithm (§A.5) that operates only on the posi-

tions within the sequence, independently of the val-
ues stored.

39

as Predicate Based Sequence Algorithm

A predicate based sequence algorithm is a sequence
algorithm (§A.5) whose computation depends on the
results of applying a given predicate to values in the
sequence.

40

A9 Transform Based Sequence Algorithm

A transform based sequence algorithm is a sequence

algorithm (§A.5) that applies a given transformation
function to values in the sequence.

41

A10 Sequence Permuting Algorithm

A sequence permuting algorithm is a sequence algo-

rithm (§A.5) whose output is a permutation of the
Its Input.

42

A11 Sequence Sorting Algorithm

Input: A sequence of elements in a range [first,
last).

Output: A modified sequence of elements in the
same range.

Refinement of: Comparison Based (§A.6), Per-
muting (§A.10), Sequence Algorithm (§A.5).

Effects:

e After execution, the elements in [first, last) are
a permutation (§A.10) of the input.

e After execution, the elements in [first, last) are
in nondecreasing order according to the com-
parison operator (§A.6).

43

a12 Divide-and-Conquer Algorithm

A divide-and-conquer algorithm is an algorithm
(§A.2) whose steps are structured according to
the following strategy:

1. Construct the output directly and return it, if
the input is simple enough. Otherwise:

2. Divide the input into two or more (a finite num-
ber) of smaller inputs.

3. Recursively apply the algorithm to each of the
smaller inputs produced in the first step.

4. Combine the outputs from the recursive appli-
cations to produce the output corresponding to
the original input.

This concept is one of many known ways of nar-
rowing the algorithm concept in terms of a strat-

44

egy (§A.4), which gives a specific structure to the
steps of the algorithm.

45

a13 Divide-and-Conquer Sequence Al-
gorithm

A divide-and-conquer sequence algorithm is a divide-
and-conquer algorithm (§A.12) that is also a se-
quence algorithm (§A.5).

Subconcepts are commonly based on different ways
of dividing a sequence up into smaller ones.

46

a14 Divide-and-Conquer Sorting Algo-
rithm

A divide-and-conquer sorting algorithm is a sort-
ing algorithm (§A.11) that is also a divide-and-
conquer sequence algorithm (§A.13).

47

B Sample Operation Count Table

Table 1: Performance of Introsort, Mergesort, and Heapsort on Random Sequences (Sizes and

Operations Counts in Multiples of 1,000)

Size | Algorithm | Comparisons | Assignments | Iterator Ops | Integer Ops | Total Ops
1| Introsort 12.1 9.3 52.7 1.1 75.3
Mergesort 9.7 14.3 59.1 4.1 87.3
Heapsort 10.3 15.4 137.1 164.5 327.4

4 | Introsort 57.3 43.2 247.5 4.5 352.5
Mergesort 47.0 65.3 268.2 15.8 396.3
Heapsort 49.3 69.7 644.4 773.5 1536.9

16 | Introsort 261.5 195.3 1122.6 18.5 1597.9
Mergesort 220.4 293.5 1201.1 62.6 1777.6
Heapsort 229.2 310.9 2961.2 3557.6 7058.9

64 | Introsort 1227.2 870.8 5132.0 73.8 7303.7
Mergesort 1009.7 1302.2 5317.2 249.9 7879.0
Heapsort 1044.7 1371.5 13380.1 16087.1 31883.4

256 | Introsort 5643.0 3841.5 22088.3 293.7 32766.6
Mergesort 4551.2 5721.1 23313.4 997.2 34583.0
Heapsort 4691.2 5998.6 59668.5 T1778.8 | 142137.1

1024 | Introsort 247777 16827.7 100747.5 1176.1 | 143529.0
Mergesort 20250.5 24927.3 101439.7 3992.4 | 150610.0
Heapsort 20812.7 26042.3 263250.6 316801.4 | 626907.1

48

C

Random Data

49

	Point of View
	The C++ (language and) library standard
	Nature of the performance standards
	How strictly should performance guarantees be expressed?
	Performance guarantees in the C++ standard
	A typical algorithm specification in the C++ standard
	A better specification of heapsort
	Can we do better?
	Some traditional approaches
	Actual running times
	Instruction cycle and memory access counts
	Instruction cycles on an abstract machine

	The challenge of generic software components
	How generic programming can contribute to solving our problem
	Programming with concepts
	Formally, what is a ``concept''?
	A sample algorithm concept hierarchy
	Another heapsort specification: as it might appear in an algorithm concept hierarchy
	Heapsort specification, continued
	In general, what is the role of principal operation counts?
	How are the bounds determined and used?
	Why principal operation counting is not enough
	Extending principal operation counting
	Organizing details and summarizing statistics
	Conclusion
	Sample Algorithm Concept Descriptions
	Computational Method
	Algorithm
	Algorithm Specialized by Input
	Algorithm Specialized by Strategy
	Sequence Algorithm
	Comparison Based Sequence Algorithm
	Index Based Sequence Algorithm
	Predicate Based Sequence Algorithm
	Transform Based Sequence Algorithm
	Sequence Permuting Algorithm
	Sequence Sorting Algorithm
	Divide-and-Conquer Algorithm
	Divide-and-Conquer Sequence Algorithm
	Divide-and-Conquer Sorting Algorithm

	Sample Operation Count Table
	

