
Tecton Description of

STL Container and Iterator Concepts

Rüdiger Loos
Wilhelm-Schickard-Institut für Informatik

Universität Tübingen
loos@informatik.uni-tuebingen.de

David Musser
Computer Science Department
Rensselaer Polytechnic Institute

musser@cs.rpi.edu

Draft, November 20, 2001

Abstract

The various concepts of containers and iterators used in the C++ Standard Template
Library (STL) are formally described in this paper using the Tecton concept description
language.

Contents

1 Introduction 1

2 Overview of Concept Definitions and Lemmas 1

3 Basic Concepts 2

4 Container and Iterator Concepts 4

5 Forward Iterator and Forward Container Concepts 6

6 Sequence Concept 9

7 Front Insertion Sequence Concept 12

8 Back Insertion Sequence Concept 12

9 Random Access Iterator Concept 13

10 Reversible Container Concept 13

11 Random Access Container Concept 14

12 Vector Concept 14

13 Deque Concept 14

14 List Concept 15

i

15 Associative Container Concepts 18
15.1 Sorted Versus Hashed Associative Containers 18
15.2 Multiple Versus Unique Associative Containers 19
15.3 Simple Versus Pair Associative Containers . 19
15.4 Combinations of Associative Container Concepts 20

A Basic concepts from algebra 22

1 Introduction

We present formal specifications of the C++ Standard Template Library (STL) [10, 8, 9]
container and iterator concepts, expressing them in the Tecton concept description language
[4, 3, 7]. We have subjected these specifications to syntactic-, type-, and limited semantic
checking as currently supported by the estald translator [?]. In fact, successive iterations
on this specification have served as some of the most stringent tests of estald to date.

Our starting point was the set of semi-formal concept descriptions given in [9], since that
is already organized as a concept hierarchy and is more complete in its statement of semantics
than the actual C++ standard [2]. There are some places noted where we have to depart
from [9]. In some cases the differences are merely notational, to meet technical requirements
of Tecton, but in others there appear to be subtle inconsistencies in the specification in [9]
(which also appear in the ANSI/ISO C++ standard). In general, we believe attempting to
write formal specifications is an effective means of detecting errors that can escape more
commonplace methods, and this exercise bears that observation out.

We present the specification in the “literate programming” style advocated by Knuth [5],
adapted here for specification rather than program development purposes. This style allows
us to present the specification in “parts” in a top-down, bottom-up, or mixed order, with
the proper order as required by Tecton being composed by the literate program extraction
tool. For the latter, we use nuweb [1].

2 Overview of Concept Definitions and Lemmas

The overall specification is written to a file, container.tec, for submission to estald. We
show here the names and order of the parts that are developed in subsequent sections.

"container.tec" 1 ≡
〈Basic concepts 3a〉

〈Object concepts 3b〉

〈Equality-comparable concept 4b〉

〈Strict weak order concept 7d〉

〈Less-than-comparable concept 7e〉

〈Basic-container concept 4c〉

〈Trivial iterator concept 4d〉

〈Input iterator concept 5a〉

〈Output iterator concept 5b〉

〈Container concept 6a〉

〈Forward iterator concept 6b〉

〈Extension of forward iterator concept 6c〉

〈Constness extensions of forward iterator concept 7a〉

〈Transitivity of validity of ranges 7b〉

1

〈Forward container concept 7c〉

〈Range equivalence concept 8b〉

〈Access equivalence concept 9a〉

〈Lexicographical order concept 7f〉

〈Forward-container-with-less-than 8a〉

〈Indexing concepts 9b〉

〈Basic sequence concept 9c〉

〈Sequence concept 11a〉

〈Default construction lemma 10c〉

〈Front insertion sequence concept 12b〉

〈Back insertion sequence concept 12c〉

〈Bidirectional iterator concept 12d〉

〈Random-access iterator concept 13a〉

〈Reversible container concept 13b〉

〈Some invariants of reversible containers 13c〉

〈Random access container concept 14a〉

〈Vector concept 14b〉

〈Deque concept 14c〉

〈Spliceable container concept 15a〉

〈List concept 15b〉

〈Associative container concept 18a〉

〈Sorted associative container concept 18b〉

〈Hashed associative container concept 19a〉

〈Multiple associative container concept 19b〉

〈Unique associative container concept 19c〉

〈Simple associative container concept 19d〉

〈Pair and associative-pair concepts 20a〉

〈Pair associative container concept 20b〉

〈Combinations of associative container concepts 20c〉

3 Basic Concepts

A long term goal is to develop an extensive library of Tecton concepts that new specification
efforts will be able to build upon rather than working from scratch. The logical and physical
organization of the library is still to be worked out, but we are currently making limited
attempts to reuse previously developed concept descriptions. Here we import, via the part
named Through Natural, some basic algebraic concepts as developed in [6]; for the reader’s
convenience this part is listed, without discussion, in an appendix of the present paper.

2

〈Basic concepts 3a〉 ≡

〈Through Natural 22〉
Definition: Function-set

refines Domain [with functions as domain];

uses Domain, Range;

introduces value(functions, domain) -> range.

Definition: Binary-function-set

refines Domain [with functions as domain];

uses Domain [with domain1 as domain], Domain [with domain2 as domain], Range;

introduces value(functions, domain1, domain2) -> range.

Abbreviation: Predicate-set

is Function-set [with predicates as functions, bool as range].

Abbreviation: Binary-predicate-set

is Binary-function-set [with binary-predicates as functions, bool as range].

Used in part 1.

〈Object concepts 3b〉 ≡

〈Object, accessible object, and writable object concepts 3c〉

〈Assignable object concept 3d〉

〈Default-constructible object concept 4a〉

Used in part 1.

〈Object, accessible object, and writable object concepts 3c〉 ≡
Abbreviation: Object is Domain [with objects as domain].

Definition: Element

refines Domain [with elements as domain];

introduces

construct-element -> elements.

Definition: Accessible refines Object;

uses Element;

introduces access(objects) -> elements.

Precedence: nonassociative{=, :=}.

Definition: Writable refines Object;

uses Element;

introduces :=(objects, elements) -> objects,

constant(objects) -> bool.

Used in part 3b.

〈Assignable object concept 3d〉 ≡
Definition: Assignable refines Accessible, Writable;

introduces

copy(objects) -> objects,

swap(objects, objects) -> (objects, objects);

requires (for x, x1, y, y1: objects; z: objects; e: elements)

access(x := e) = e,

access(copy(z)) = access(z),

// swap(x, y) = (y, x).

3

swap(x, y; x1, y1) where x1 = y, y1 = x.

Used in part 3b.

〈Default-constructible object concept 4a〉 ≡
Definition: Default-constructible refines Accessible;

introduces construct -> objects.

Used in part 3b.

〈Equality-comparable concept 4b〉 ≡
Definition: Equality-comparable

refines Object;

introduces =(objects, objects) -> bool,

!=(objects, objects) -> bool.

Used in part 1.

4 Container and Iterator Concepts

Initially we define a basic container concept very simply, but after defining the input iterator
concept we define the container concept with operations that depend on iterators.

〈Basic-container concept 4c〉 ≡
Definition: Basic-container

refines Assignable [with containers as objects];

uses Accessible.

Used in part 1.

We depart here from [9], both in first defining a Basic-container concept before defining
Container, and in requiring the objects in the container to be only Accessible rather than
Assignable. The first difference is due only to technical requirements of Tecton, but the
second is necessary because [9] appears to be in error in requiring Assignable for the objects.
The error becomes apparent when the Associative Container concept is introduced in [9]
as a refinement of Container but with the statement that the objects in an associative
container are not necessarily assignable. (For containers other than associative containers,
such as Forward-container, Sequence, etc., we obtain the assignable property for contained
objects as a combination of the accessible and writable properties as introduced via the
Forward-iterator concept below.)

Although it is a unary operator on C++ pointers and on their STL generalization, itera-
tors, the dereferencing operator, *, must be expressed here as a binary operator depending
on the container as well as the iterator.

〈Trivial iterator concept 4d〉 ≡
Definition: Trivial-iterator

refines Assignable [with iterators as objects],

Default-constructible [with iterators as objects],

Equality-comparable [with iterators as objects];

uses Accessible, Basic-container;

introduces *(containers, iterators) -> objects.

Used in part 1.

Note that the objects sort used as the range of * is from the Accessible concept. So trivial
iterators give a means of obtaining accessible, but not necessarily assignable, objects.

In defining input iterators the main difficulty is to avoid making overly strong assertions
about the meaning of ++, since we want to allow models in which not only the iterator but
also the container into which it points is changed by the operation. Thus we make the range
of ++ the cartesian product of containers and iterators rather than just iterators. As

4

with the dereferencing operator, ++ is a unary operator on C++ pointers and on their STL
generalization, iterators, but we must express it here as a binary operator depending on the
container as well as the iterator.

〈Input iterator concept 5a〉 ≡
Precedence: nonassociative{=} < nonassociative{++, --} < {+}.

Definition: Input-iterator refines Trivial-iterator;

uses Natural;

introduces ranges,

++(containers, iterators) -> (containers, iterators),

range(containers, iterators, iterators) -> ranges,

in(iterators, ranges) -> bool,

next(containers, iterators, naturals) -> iterators (private),

valid(ranges) -> bool,

size(ranges) -> naturals;

requires (for i, i1, j, p, q: iterators; c, c1, d: containers; n: naturals)

next(c, i, 0) = i,

next(c, i, n + 1) = next(d, p, n) where c++i = (d, p),

valid(range(c, i, j)) = ((for some k: naturals) next(c, i, k) = j),

valid(range(c, i, j)) and valid(range(c, p, q)) implies

(range(c, i, j) = range(c, p, q)) =

if i = j then p = q

else i = p

and range(c1, i1, j) = range(c1, i1, q)

where c++i = (c1, i1),

valid(range(c, i, j)) implies

(p in range(c, i, j)) = (i != j and (p = i or p in range(c1, i1, j))

where c++i = (c1, i1)),

valid(range(c, i, j)) implies

size(range(c, i, j)) = if i = j then 0

else size(range(d, p, j)) where c++i = (d, p).

Used in part 1.

The output iterator concept gives us the ability to assign to the objects to which the iterators
point, but not necessarily to access them.

〈Output iterator concept 5b〉 ≡
Definition: Output-iterator

refines Assignable [with iterators as objects],

Default-constructible [with iterators as objects];

uses Writable, Basic-container;

introduces

*(containers, iterators) -> objects,

++(containers, iterators) -> (containers, iterators).

Used in part 1.

We can now define the container concept:

5

〈Container concept 6a〉 ≡
Definition: Container

refines Basic-container;

uses Input-iterator;

introduces

nonempty-containers < containers,

begin(containers) -> iterators,

end(containers) -> iterators,

size(containers) -> naturals,

empty(containers) -> bool;

requires (for x: containers)

x: nonempty-containers = not empty(x),

size(x) = size(range(x, begin(x), end(x))),

empty(x) = (size(x) = 0),

valid(range(x, begin(x), end(x))).

Used in part 1.

5 Forward Iterator and Forward Container Concepts

In the forward iterator concept the ++ function is required to leave the container unchanged.

〈Forward iterator concept 6b〉 ≡
Definition: Forward-iterator

refines Input-iterator, Output-iterator;

introduces ++(containers, iterators) -> iterators;

requires (for i, p: iterators; c, c1: containers)

c++i = (c1, p) implies c1 = c,

c++i = p where c++i = (c, p).

Used in part 1.

The above formulation depends on being able to overload function identifiers and resolve
them where there is no difference in the argument types, only in the range type. [[If this
assumption causes too much trouble, we could avoid it by using some other identifier in
place of ++ in the input iterator and output iterator concepts.]]

Note that Input-iterator uses Accessible and Output-iterator uses Writable (in both cases
giving properties to the objects to which the iterators point), and both of these concepts
together imply Assignable. Since Forward-iterator refines both Input-iterator and Output-
iterator, we may treat Assignable as a formal parameter of Forward-iterator. This fact may
be stated explicitly in Tecton as an extension:

〈Extension of forward iterator concept 6c〉 ≡
Extension: Forward-iterator uses Assignable.

Used in part 1.

The legality of this extension depends on the above mentioned relationships.
We also extend Forward-iterator to have some predicates relating to “constness.” These

predicates are not fully defined here, but they do obey a constraint among themselves.

6

〈Constness extensions of forward iterator concept 7a〉 ≡
Extension: Forward-iterator uses Assignable.

Extension: Forward-iterator

introduces

constant(containers) -> bool,

constant-in-object-type(containers) -> bool,

points-to-constant(iterators) -> bool;

requires (for c: containers; i: iterators)

constant(c*i) = (constant-in-object-type(c) or constant(c)

or points-to-constant(i)).

Used in part 1.

These predicates can be used to model C++ declarations involving the const attribute and
const_iterators.

Another observation is that with forward iterators the validity of ranges is transitive.

〈Transitivity of validity of ranges 7b〉 ≡
Lemma: Forward-iterator

obeys (for i, j, k: iterators; c: containers)

valid(range(c, i, j)) and valid(range(c, j, k))

implies valid(range(c, i, k)).

Used in part 1.

A transitivity property could be stated for even input iterators, but it would be more
complicated (and weaker) because the container can be modified by ++.

The forward container concept is now defined in terms of the container concept by merely
substituting the forward iterator concept for that of input iterators.

〈Forward container concept 7c〉 ≡
Definition: Forward-container

refines Container [with Forward-iterator as Input-iterator].

Used in part 1.

When there is an ordering requirement on the object concept, we have an ordering on
forward containers. Originally this requirement was stated as a strict total order, but the
weaker notion of strict weak order suffices.

〈Strict weak order concept 7d〉 ≡
Definition: Strict-weak-order

refines Strict-partial-order, Transitive [with equivalent as R];

requires (for x, y: domain)

equivalent(x, y) = (not(x < y) and not(y < x)).

Used in part 1.

〈Less-than-comparable concept 7e〉 ≡
Abbreviation: Less-than-comparable

is Strict-weak-order.

Used in part 1.

〈Lexicographical order concept 7f〉 ≡
Definition: Lexicographical-order

uses Forward-iterator,

Strict-weak-order [with Object as Domain, objects as domain];

introduces

less-than(containers, containers,

7

iterators, iterators, iterators, iterators) -> bool;

requires (for c, d: containers; i, j, k, l: iterators)

less-than(c, d, i, i, k, k) = false,

k != l implies less-than(c, d, i, i, k, l),

valid(range(c, i, j)) and i != j implies

less-than(c, d, i, j, k, k) = false,

valid(range(c, i, j)) and i != j and

valid(range(d, k, l)) and k != l implies

less-than(c, d, i, j, k, l) =

(c*i < d*k) or

c*i = d*k and less-than(c, d, c++i, j, d++k, l).

Used in part 1.

〈Forward-container-with-less-than 8a〉 ≡
Definition: Forward-container-with-less-than

refines Forward-container [with Strict-weak-order as Equality-comparable];

uses Lexicographical-order;

introduces <(containers, containers) -> bool;

requires (for x, y: containers)

(x < y) = less-than(x, y, begin(x), end(x), begin(y), end(y)).

Used in part 1.

If objects of a container have an equivalence relation, equivalent-to, defined on them, we
define equivalence of ranges of iterators as follows:

〈Range equivalence concept 8b〉 ≡
Precedence: nonassociative{=, equivalent-to, access-equivalent-to}

< prefix{P}.

Definition: Range-equivalence

uses Forward-iterator,

Equivalence-relation [with Object as Domain, objects as domain,

equivalent-to as R];

introduces

equivalent-range(containers, containers, iterators, iterators, iterators)

-> bool;

requires (for c, d: containers; i, j, k: iterators)

equivalent-range(c, d, i, i, k),

valid(range(c, i, j)) and i != j implies

equivalent-range(c, d, i, j, k) =

(c*i equivalent-to d*k

and equivalent-range(c, d, c++i, j, d++k)).

Definition: Forward-container-with-equivalence

refines Forward-container;

uses Range-equivalence;

introduces equivalent-to(containers, containers) -> bool;

requires (for x, y: containers)

(x equivalent-to y) =

(size(x) = size(y) and

equivalent-range(x, y, begin(x), end(x), begin(y))).

Used in part 1.

A fundamental kind of equivalence that is used with the above definition is access equiva-
lence:

8

〈Access equivalence concept 9a〉 ≡
Definition: Access-equivalence

refines Equivalence-relation [with Accessible as Domain, objects as domain,

access-equivalent-to as R];

requires (for x, y: objects)

(x access-equivalent-to y) = (access(x) = access(y)).

Used in part 1.

6 Sequence Concept

In the sequence concept we strengthen the container requirements sufficiently to guarantee
the elements are maintained in a fixed order, obtainable (repeatably) by iterating through
the container. Constructors and insertion and deletion functions are provided, and their use
determines the order in which the elements appear. In order to specify the order precisely,
we first introduce several indexing-related concepts.

〈Indexing concepts 9b〉 ≡
Abbreviation: Index-set is Domain [with indices as domain].

Definition: Indexed-container

refines Container;

uses Index-set;

introduces access(containers, indices) -> elements.

Definition: Least-in-partial-order refines Partial-order;

introduces least -> domain;

requires (for x: domain) least <= x.

Definition: Enumerative-total-order

refines Least-in-partial-order, Total-order;

uses Natural;

introduces ranges,

next(domain) -> domain,

+(domain, naturals) -> domain,

-(domain, domain) -> naturals,

range(domain, domain) -> ranges,

in(domain, ranges) -> bool;

generates domain freely using least, next;

requires (for x, y, z: domain; n: naturals)

x < next(x),

x + 0 = x,

x + next(n) = next(x + n),

y = x + n implies y - x = n,

x in range(y, y) = false,

y < z implies (x in range(y, z)) = (x = y or (x in range(next(y), z))).

Used in part 1.

The sequence concept introduces several new functions, including two versions each of inser-
tion and deletion, which have relatively complex semantics. Here we first introduce a basic
sequence concept without insertion operations, so that it can also be used in the definition
of associative containers (which have a different notion of insertion from that of sequences).

〈Basic sequence concept 9c〉 ≡
Definition: Basic-sequence

refines

Forward-container-with-equivalence

[with Access-equivalence as Equivalence-relation,

9

access-equivalent-to as equivalent-to,

sequences as containers],

Default-constructible [with sequences as objects],

Indexed-container [with Enumerative-total-order as Index-set,

indices as domain,

sequences as containers,

nonempty-sequences as nonempty-containers];

introduces

position(sequences, iterators) -> indices,

construct(sequences, iterators, iterators) -> sequences,

erase(nonempty-sequences, iterators) -> sequences,

erase(sequences, iterators, iterators) -> sequences;

requires (for c, c1: sequences; d: nonempty-sequences;

i, i1, j, k: iterators; e: elements;

p, q: indices; n: naturals)

〈Axioms for position function 10a〉 ,

〈Axioms for construct functions 10b〉 ,

〈Axioms for erase functions 10d〉 .

Used in part 1.

〈Axioms for position function 10a〉 ≡
position(c, begin(c)) = least,

position(c, i) = p and p < least + size(c)

implies position(c, c++i) = next(p),

position(c, i) < least + size(c) implies

access(c*i) = access(c, position(c, i))

Used in part 9c.

The access function on the left of the above equation is from the Accessible concept, while
the one on the right is from the Indexed-container concept. Note that this axiom is written
using d, an identifier declared to be of the nonempty-sequence sort.

〈Axioms for construct functions 10b〉 ≡
end(construct) = begin(construct)

Used in part 9c.

As a trivial consequence of the axiom about construct and the size axioms we have the
following

〈Default construction lemma 10c〉 ≡
Lemma: Basic-sequence obeys size(construct) = 0.

Used in part 1.

〈Axioms for erase functions 10d〉 ≡
i in range(d, begin(d), end(d)) and c1 = erase(d, i) implies

size(c1) = size(d) - 1 and

((for p, q: indices)

(p in range(least, position(d, i))

implies access(c1, p) = access(d, p)) and

(q in range(position(d, i), least + size(d))

implies access(c1, q) = access(d, next(q)))),

i in range(d, begin(d), end(d)) and j in range(d, begin(d), end(d))

and position(d, i) < position(d, j) and size(d) >= size(range(d, i, j))

and c1 = erase(d, i, j)

implies

10

size(c1) = size(d) - size(range(d, i, j))

and ((for p, q: indices)

(p in range(least, position(d, i))

implies access(c1, p) = access(d, p))

and (q in range(position(d, i), least + size(d))

implies access(c1, q) = access(d, q + size(range(d, i, j)))))

Used in part 9c.

The sequence concept is a refinement of the basic sequence concept with functions for
inserting elements and getting the front element.

〈Sequence concept 11a〉 ≡
Definition: Sequence

refines Basic-sequence;

introduces

construct(naturals, elements) -> nonempty-sequences,

construct(naturals) -> nonempty-sequences,

insert(sequences, iterators, elements) -> (sequences, iterators),

insert(sequences, iterators, sequences, iterators, iterators) -> sequences,

front(sequences) -> objects;

requires (for c, c1, c2: sequences; d: nonempty-sequences;

i, i1, j, k: iterators; e: elements; p, q: indices; n: naturals)

front(c) = c*begin(d),

〈Axioms for construct 11b〉 ,

〈Axiom for inserting one element 11c〉 ,

〈Axiom for inserting a range of elements 12a〉 .

Used in part 1.

〈Axioms for construct 11b〉 ≡
c1 = construct(c, j, k) implies

size(c1) = size(range(c, j, k)) and

((for p: indices) p in range(least, least + size(c1))

implies access(c1, p) = access(c, position(c, j) + (p - least))),

c1 = construct(n, e) implies

size(c1) = n and

((for p: indices) p in range(least, least + n)

implies access(c1, p) = e),

construct(n) = construct(n, construct-element)

Used in part 11a.

〈Axiom for inserting one element 11c〉 ≡
insert(c, i, e) = (d, i1) implies

size(d) = size(c) + 1 and access(d*i1) = e

and position(d, i1) = position(c, i)

and ((for p: indices)

(p in range(least, position(c, i))

implies access(d, p) = access(c, p))

and (p in range(position(c, i), least + size(c))

implies access(d, next(p)) = access(c, p)))

Used in part 11a.

11

〈Axiom for inserting a range of elements 12a〉 ≡
c2 = insert(c, i, c1, j, k) implies

size(c2) = size(c) + size(range(c1, j, k))

and ((for p: indices)

(p in range(position(c, i), position(c, i) + size(range(c1, i, j)))

implies access(c2, p) =

access(c1, position(c, j) + (p - position(c, i))))

and

(p in range(least, position(c, i))

implies access(c2, p) = access(c, p))

and

(p in range(position(c, i), least + size(c))

implies access(c1, p + size(range(c1, j, k))) = access(c, p)))

Used in part 11a.

7 Front Insertion Sequence Concept

〈Front insertion sequence concept 12b〉 ≡
Definition: Front-insertion-sequence

refines Sequence;

introduces

push-front(sequences, objects) -> nonempty-sequences,

pop-front(nonempty-sequences) -> sequences;

requires (for s, s1: sequences; x: objects)

access(front(push-front(s, x))) = access(x),

pop-front(push-front(s, x)) access-equivalent-to s.

Used in part 1.

8 Back Insertion Sequence Concept

〈Back insertion sequence concept 12c〉 ≡
Definition: Back-insertion-sequence refines Sequence;

introduces

back(nonempty-sequences) -> objects,

push-back(sequences, objects) -> nonempty-sequences,

pop-back(nonempty-sequences) -> sequences;

requires (for s: sequences; s1: nonempty-sequences; x: objects; i: iterators)

back(s1) = s1*i where s1++i = end(s1),

access(back(push-back(s, x))) = access(x),

pop-back(push-back(s, x)) access-equivalent-to s.

Used in part 1.

〈Bidirectional iterator concept 12d〉 ≡
Definition: Bidirectional-iterator refines Forward-iterator;

introduces --(containers, iterators) -> iterators;

requires (for c: containers; i, j: iterators)

c++j = i implies c -- i = j.

Used in part 1.

12

9 Random Access Iterator Concept

〈Random-access iterator concept 13a〉 ≡
Definition: Random-access-iterator

refines Bidirectional-iterator,

Less-than-comparable [with iterators as domain];

uses Container;

introduces

// +(.. and -(.. with 3 args currently not accepted

plus(containers, iterators, naturals) -> iterators,

minus(containers, iterators, naturals) -> iterators,

brackets(containers, iterators, naturals) -> objects;

requires (for c: containers; i, j: iterators; n: naturals)

i in range(c, begin(c), end(c)) and size(range(c, i, end(c))) >= n implies

plus(c, i, n) = if n = 0 then i else plus(c, c++i, n - 1),

i in range(c, begin(c), end(c)) and size(range(c, begin(c), i)) >= n implies

minus(c, i, n) = if n = 0 then i else minus(c, c -- i, n - 1),

i in range(c, begin(c), end(c)) and plus(c, i, n) < end(c) implies

brackets(c, i, n) = c*plus(c, i, n),

i in range(c, begin(c), end(c)) and j in range(c, begin(c), end(c)) implies

(i < j) = ((for some n: naturals) plus(c, i, n) = j).

Used in part 1.

[[Having to have the container as an argument makes + and - ternary operations and thus
infix notation is ruled out, which is an inconvenience.]]

10 Reversible Container Concept

〈Reversible container concept 13b〉 ≡
Definition: Reversible-container

refines Forward-container [with Bidirectional-iterator as Forward-iterator];

uses Bidirectional-iterator [with reverse-iterators as iterators];

introduces

reverse-iterator(iterators) -> reverse-iterators,

rbegin(containers) -> reverse-iterators,

rend(containers) -> reverse-iterators;

requires (for c: containers; i: iterators; r: reverse-iterators)

rbegin(c) = reverse-iterator(end(c)),

rend(c) = reverse-iterator(begin(c)),

r = reverse-iterator(i) implies c++r = reverse-iterator(c -- i)

and c -- r = reverse-iterator(c++i).

Used in part 1.

Note that c++r and c--r are legal because of the uses clause.

〈Some invariants of reversible containers 13c〉 ≡
Lemma: Reversible-container

obeys (for c: containers)

valid(range(c, rbegin(c), rend(c))),

size(range(c, rbegin(c), rend(c))) = size(c).

Used in part 1.

13

11 Random Access Container Concept

〈Random access container concept 14a〉 ≡
Definition: Random-access-container

refines Reversible-container [with Random-access-iterator as

Bidirectional-iterator];

introduces brackets(containers, naturals) -> objects;

requires (for d: nonempty-containers; n: naturals)

n < size(d) implies brackets(d, n) = d*(plus(d, begin(d), n)).

Used in part 1.

12 Vector Concept

〈Vector concept 14b〉 ≡
Definition: Vector

refines Random-access-container [with vectors as containers,

nonempty-vectors as nonempty-containers],

Back-insertion-sequence [with vectors as sequences,

nonempty-vectors as nonempty-sequences];

introduces capacity(vectors) -> naturals,

reserve(vectors, naturals) -> vectors,

usable(vectors, iterators) -> bool;

generates vectors freely using construct, push-back;

requires (for v, v1: vectors; w: nonempty-vectors; n: naturals;

i, i1, j, k: iterators; e: elements)

capacity(v) >= size(v),

capacity(reserve(v, n)) >= n,

v1 = reserve(v, n) implies

size(v1) = size(v)

and v1 access-equivalent-to v,

n <= capacity(v) implies reserve(v, n) = v,

usable(v, begin(v)),

usable(v, end(v)),

valid(range(v, i, j)) and

usable(v, i) and usable(v, j) and k in range(v, i, j) implies usable(v, k),

i in range(w, begin(w), end(w)) implies not(usable(erase(w, i), end(w))),

i in range(w, begin(w), end(w)) and j in range(w, begin(w), end(w))

and position(w, i) < position(w, j) and n = size(range(w, i, j))

and k in range(w, minus(w, end(w), n), end(w)) implies

not(usable(erase(w, i, j), k)).

Used in part 1.

13 Deque Concept

The deque concept simply combines three of the previously given concepts.

〈Deque concept 14c〉 ≡
Definition: Deque

refines Random-access-container [with deques as containers,

nonempty-deques as nonempty-containers],

Front-insertion-sequence [with deques as sequences,

nonempty-deques as nonempty-sequences],

Back-insertion-sequence [with deques as sequences,

nonempty-deques as nonempty-sequences];

generates deques freely using construct, push-back.

Used in part 1.

14

14 List Concept

We first introduce a splice operation on iterator ranges:

〈Spliceable container concept 15a〉 ≡
Definition: Spliceable-container

refines Reversible-container;

introduces

+(ranges, ranges) -> ranges,

splice(containers, iterators, containers) -> containers,

splice(containers, iterators, containers, iterators) -> containers,

splice(containers, iterators, containers, iterators, iterators) -> containers;

requires (for c, d, e, u, v, w: containers; i, j, k, l, p, q: iterators)

range(e, p, q) = range(c, i, j) + range(d, k, l)

implies if i = j then e = d and p = k and q = l

else range(e, p, j) = range(c, i, j) and e++(c -- j) = k

and range(e, k, l) = range(d, k, l),

w = splice(u, p, v) implies

range(w, begin(w), end(w)) =

range(u, begin(u), p) + range(v, begin(v), end(v)) + range(u, p, end(u)),

w = splice(u, p, v, i) implies

range(w, begin(w), end(w)) =

range(u, begin(u), p) + range(v, i, v++i) + range(u, p, end(u)),

w = splice(u, p, v, i, j) implies

range(w, begin(w), end(w)) =

range(u, begin(u), p) + range(v, i, j) + range(u, p, end(u)).

Used in part 1.

[[The following definition should be broken down into smaller parts for easier understand-
ing.]]

〈List concept 15b〉 ≡
Remark: Pragma: fundes, path=Predicate-set.

Definition: List

refines Front-insertion-sequence [with lists as sequences,

nonempty-lists as nonempty-sequences],

Back-insertion-sequence [with lists as sequences,

nonempty-lists as nonempty-sequences],

Spliceable-container [with lists as containers,

nonempty-lists as nonempty-containers];

uses Predicate-set [with elements as domain],

Binary-predicate-set [with elements as domain1, elements as domain2],

Total-order [with elements as domain];

introduces

remove(lists, elements) -> lists,

remove(lists, iterators, iterators, elements) -> lists (private),

remove-if(lists, predicates) -> lists,

remove-if(lists, iterators, iterators, predicates) -> lists (private),

unique(lists) -> lists,

unique(lists, iterators, iterators) -> lists,

unique-if(lists, binary-predicates) -> lists,

unique-if(lists, iterators, iterators, binary-predicates) -> lists,

interleaving(lists, lists, lists) -> bool (private),

interleaving(lists, iterators, iterators,

lists, iterators, iterators,

lists, iterators, iterators) -> bool (private),

ordered(lists, binary-predicates) -> bool (private),

ordered(lists, iterators, iterators, binary-predicates)

-> bool (private),

15

default-comparison : -> binary-predicates,

ordered(c: lists) = ordered(c, default-comparison),

ordered(c: lists, i: iterators, j: iterators) =

ordered(c, i, j, default-comparison),

merge(lists, lists) -> lists,

merge(lists, lists, binary-predicates) -> lists,

count(lists, elements) -> naturals (private),

count(lists, iterators, iterators, elements) -> naturals (private),

sort(lists) -> lists,

permutation(lists, lists) -> bool,

sort(lists, binary-predicates) -> lists,

reverse(lists) -> lists,

reverse(lists, iterators, iterators) -> lists (private);

generates lists freely using construct, push-back;

requires (for u, v, w: nonempty-lists;

e: elements; i, j, p, q, r, s: iterators;

b: predicates; c: binary-predicates)

i in range(u, begin(u), end(u)) and w = erase(u, i) implies

range(w, begin(w), end(w)) =

range(u, begin(u), i) + range(u, u++i, end(u)),

remove(u, e) = remove(u, begin(u), end(u), e),

valid(range(u, i, j)) implies

remove(u, i, j, e) = if i = j then u

else if access(u*i) = e then

remove(erase(u, i), u++i, j, e)

else

remove(u, u++i, j, e),

remove-if(u, b) = remove-if(u, begin(u), end(u), b),

valid(range(u, i, j)) implies

remove-if(u, i, j, b) = if i = j then u

else if value(b, access(u*i)) then

remove-if(erase(u, i), u++i, j, b)

else

remove-if(u, u++i, j, b),

unique(u) = unique(u, begin(u), end(u)),

valid(range(u, i, j)) implies

unique(u, i, j) = if i = j then u else

if u++i = j then u else

if access(u*i) = access(u*(u++i))

then unique(erase(u, i), u++i, j)

else unique(u, u++i, j),

unique-if(u, c) = unique-if(u, begin(u), end(u), c),

valid(range(u, i, j)) implies

unique-if(u, i, j, c) = if i = j then u else

if u++i = j then u else

if value(c, access(u*i), access(u*(u++i)))

then unique-if(erase(u, i), u++i, j, c)

else unique-if(u, u++i, j, c),

reverse(u) = reverse(u, begin(u), end(u)),

valid(range(u, i, j)) implies

reverse(u, i, j) = if i = j then u

else splice(reverse(u, u++i, j), j, u, i),

interleaving(u, v, w) = interleaving(u, begin(u), end(u),

v, begin(v), end(v),

w, begin(w), end(w)),

valid(range(u, i, j)) and valid(range(v, p, q))

and valid(range(w, r, s)) implies

interleaving(u, i, j, v, p, q, w, r, s) =

if i = j then

16

if p = q then r = s else r != s and v*p = w*r and

interleaving(u, i, j, v, v++p, q, w, w++r, s)

else if p = q then r != s and u*i = w*r and

interleaving(u, u++i, j, v, p, q, w, w++r, s)

else r != s and (u*i = w*r and

interleaving(u, u++i, j, v, p, q, w, w++r, s)

or v*p = w*r and

interleaving(u, i, j, v, v++p, q, w, w++r, s)),

ordered(u) = ordered(u, begin(u), end(u)),

valid(range(u, i, j)) implies

ordered(u, i, j) =

(i = j or u++i = j or not(access(u*(u++i)) < access(u*i))

and ordered(u, u++i, j)),

ordered(u, c) = ordered(u, begin(u), end(u), c),

valid(range(u, i, j)) implies

ordered(u, i, j, c) =

(i = j or u++i = j or not(value(c, access(u*(u++i)), access(u*i)))

and ordered(u, u++i, j, c)),

w = merge(u, v) implies interleaving(u, v, w) and

(ordered(u) and ordered(v) implies ordered(w)),

w = merge(u, v, c) implies interleaving(u, v, w) and

(ordered(u, c) and ordered(v, c) implies ordered(w, c)),

count(u, e) = count(u, begin(u), end(u), e),

valid(range(u, i, j)) implies

count(u, i, j, e) = if i = j then 0

else if access(u*i) = e then 1 + count(u, u++i, j, e)

else count(u, u++i, j, e),

permutation(u, v) = ((for e: elements) count(u, e) = count(v, e)),

w = sort(u) implies

permutation(w, u) and ordered(w) and

((for i: iterators) i in range(w, begin(w), end(w)) implies w*i = u*i),

w = sort(u, c) implies

permutation(w, u) and ordered(w, c) and

((for i: iterators) i in range(w, begin(w), end(w)) implies w*i = u*i).

Used in part 1.

17

15 Associative Container Concepts

〈Associative container concept 18a〉 ≡
Precedence: nonassociative{=, has-key} < {*}.

Definition: Associative-container

refines Basic-sequence [with Bidirectional-iterator as Forward-iterator];

introduces count(sequences, elements) -> naturals,

count(sequences, iterators, iterators, elements) -> naturals (private),

find(sequences, elements) -> iterators,

erase(sequences, elements) -> sequences,

equal-range(sequences, elements) -> (iterators, iterators),

has-key(objects, elements) -> bool,

equiv(elements, elements) -> bool;

requires (for i, j: iterators; c: sequences; k: elements)

count(c, k) = count(c, begin(c), end(c), k),

valid(range(c, i, j)) implies

count(c, i, j, k) = if i = j then 0 else

if c*i has-key k then 1 + count(c, c++i, j, k) else

count(c, c++i, j, k),

equal-range(c, k) = (i, j) implies valid(range(c, i, j)) and

if count(c, k) = 0 then

i = end(c) and j = end(c)

else

((for q: iterators) q in range(c, begin(c), end(c)) implies

(c*q has-key k) = (q in range(c, i, j))),

equal-range(c, k) = (i, j) and constant(c) implies

points-to-constant(i) and points-to-constant(j),

i = find(c, k) implies

if count(c, k) = 0 then i = end(c)

else i in range(c, begin(c), end(c)) and c*i has-key k

and count(c, begin(c), i, k) = 0,

constant(c) implies points-to-constant(find(c, k)),

erase(c, k) = erase(c, i, j) where equal-range(c, k) = (i, j).

Used in part 1.

15.1 Sorted Versus Hashed Associative Containers

〈Sorted associative container concept 18b〉 ≡
Precedence: nonassociative{value-compare}.

Definition: Sorted-associative-container

refines Associative-container;

uses Strict-weak-order [with key-comp as <, elements as domain];

introduces

value-compare(objects, objects) -> bool,

lower-bound(sequences, elements) -> iterators,

upper-bound(sequences, elements) -> iterators;

requires (for c: sequences; x, x1: objects; k, k1: elements; i, j: iterators)

// what’s wrong with the following line?

// (x value-compare x1) = (k key-comp k1) where x has-key k and x1 has-key k1,

(x value-compare x1) = key-comp(k, k1) where x has-key k and x1 has-key k1,

((for p, q: indices) p in range(least, least + size(c))

and q in range(least, least + size(c)) and p < q

implies not(key-comp(access(c, q), access(c, p)))),

(k equiv k1) = (not(key-comp(k, k1)) and not(key-comp(k1, k))),

lower-bound(c, k) = i where equal-range(c, i, j) = (i, j),

18

upper-bound(c, k) = j where equal-range(c, i, j) = (i, j).

Used in part 1.

〈Hashed associative container concept 19a〉 ≡
Definition: Hashed-associative-container

refines Associative-container;

introduces hash(elements) -> naturals;

requires (for c: sequences; k, k1: elements)

(k equiv k1) = (k = k1).

Used in part 1.

15.2 Multiple Versus Unique Associative Containers

〈Multiple associative container concept 19b〉 ≡
Definition: Multiple-associative-container

refines Associative-container;

introduces

insert(sequences, elements) -> (sequences, iterators);

requires (for c: sequences; c1: nonempty-sequences;

e: elements; i1: iterators)

insert(c, e) = (c1, i1) implies

size(c1) = size(c) + 1 and access(c1*i1) = e

and ((for p: indices)

(p in range(least, position(c1, i1))

implies access(c1, p) = access(c, p))

and (p in range(position(c1, i1), least + size(c))

implies access(c1, next(p)) = access(c, p))).

Used in part 1.

〈Unique associative container concept 19c〉 ≡
Definition: Unique-associative-container

refines Associative-container;

introduces

insert(sequences, elements) -> (sequences, iterators, bool);

requires (for c: sequences; c1: nonempty-sequences; b: bool;

e: elements; i, i1: iterators)

count(c, e) = 0 or count(c, e) = 1,

insert(c, e) = (c1, i1, b) implies

b = (find(c, e) = end(c)) and

if b then

size(c1) = size(c) + 1 and access(c1*i1) = e

and ((for p, q: indices)

(p in range(least, position(c1, i1))

implies access(c1, p) = access(c, p))

and (q in range(position(c1, i1), least + size(c))

implies access(c1, next(q)) = access(c, q)))

else

c1 = c.

Used in part 1.

15.3 Simple Versus Pair Associative Containers

〈Simple associative container concept 19d〉 ≡
Definition: Simple-associative-container

refines Associative-container;

requires (for i: iterators; x: objects; k: elements)

points-to-constant(i),

(x has-key k) = (access(x) equiv k).

19

Used in part 1.

〈Pair and associative-pair concepts 20a〉 ≡
Abbreviation: First is Assignable

[with first-objects as objects, first-elements as elements].

Abbreviation: Second is Assignable

[with second-objects as objects, second-elements as elements].

Definition: Pair

refines Assignable [with pairs as objects];

uses First, Second;

introduces construct(first-elements, second-elements) -> pairs,

first(pairs) -> first-objects,

second(pairs) -> second-objects;

requires (for f: first-elements; s: second-elements)

access(first(construct(f, s))) = f,

access(second(construct(f, s))) = s.

Abbreviation: Key is Assignable

[with first-objects as objects, keys as elements].

Remark: Pragma: path=Assignable.

Definition: Associative-pair

refines Pair [with Key as First, keys as first-elements];

requires (for p: pairs)

constant(first(p)).

Pragma: path=().

Used in part 1.

〈Pair associative container concept 20b〉 ≡
Definition: Pair-associative-container

refines Associative-container [with Associative-pair as Accessible,

pairs as objects, keys as elements];

requires (for x: pairs; k: keys)

(x has-key k) = (access(first(x)) equiv k).

Used in part 1.

15.4 Combinations of Associative Container Concepts

〈Combinations of associative container concepts 20c〉 ≡
Definition: Set-associative-container

refines Simple-associative-container, Unique-associative-container,

Sorted-associative-container.

Definition: Multiset-associative-container

refines Simple-associative-container, Multiple-associative-container,

Sorted-associative-container.

Definition: Map-associative-container

refines Pair-associative-container, Unique-associative-container,

Sorted-associative-container;

introduces brackets(sequences, keys) -> second-objects;

requires (for m, m1: sequences; i: iterators; k: keys; b: bool)

brackets(m, k) = second(m1*i)

where insert(m, construct(k, construct-element)) = (m1, i, b).

Definition: Multimap-associative-container

20

refines Pair-associative-container, Multiple-associative-container,

Sorted-associative-container.

Definition: Hashed-set-associative-container

refines Simple-associative-container, Unique-associative-container,

Hashed-associative-container.

Definition: Hashed-multiset-associative-container

refines Simple-associative-container, Multiple-associative-container,

Hashed-associative-container.

Definition: Hashed-map-associative-container

refines Pair-associative-container, Unique-associative-container,

Hashed-associative-container.

Definition: Hashed-multimap-associative-container

refines Pair-associative-container, Multiple-associative-container,

Hashed-associative-container.

Used in part 1.

[[Need to add to the above concepts the definition of iterator validity, and to expand the
discussion.]]

References

[1] Preston Briggs. Nuweb, a simple literate programming tool. 1989. 1

[2] International Organization for Standardization (ISO). ISO/IEC Final Draft Interna-
tional Standard 14882: Programming Language C++, 1998. 1

[3] Deepak Kapur and David Musser. Tecton: A framework for specifying and verify-
ing generic system components. Technical report, RPI Computer Science Department
Technical Report 92-20, July 1992. 1

[4] Deepak Kapur, David Musser, and Alexander Stepanov. Operators and algebraic struc-
tures. In Proc. of Conference on Functional Programming Languages and Computer
Architecture, Portsmuth, New Hampshire, October 1981. 1

[5] Donald E. Knuth. Literate programming. Computer Journal, 27:97–111, 1984. 1

[6] Rüdiger Loos, David R. Musser, Sibylle Schupp, and Christoph Schwarzweller. Tecton
Concept Library. Technical Report WSI-99-2, Fakultät für Informatik, Universität
Tübingen, January, updated July 1999. 3, A

[7] David Musser. The Tecton Concept Description Language, July 1998. 1

[8] David Musser and Atul Saini. STL Tutorial and Reference Guide. C++ Programming
with the Standard Template Library. Addison-Wesley, 1996. 1

[9] SGI. SGI standard template library programming guide. http://www.sgi.com/tech/
stl/, 1998. 1, 4

[10] Alexander Stepanov and M. Lee. The Standard Template Library. Technical report,
HPL-94-34, April 1994. revised July 7, 1995. 1

21

http://www.sgi.com/tech/stl/
http://www.sgi.com/tech/stl/

A Basic concepts from algebra

The following is a listing of the basic concepts from algebra that are used in the present
specification. A documented version of these and other algebra concepts is available in [6].

〈Through Natural 22〉 ≡
Precedence: confix{ ,

,
}.

Definition: Boolean

introduces bool,

true -> bool,

false -> bool;

generates bool freely using true, false.

Precedence: nonassociative{=, !=}.

Precedence: {implies} < {or, xor} < {and}

< prefix{not} < nonassociative{=} < {:}.

Precedence: confix{(, ,,)}.

Extension: Boolean

introduces

not : bool -> bool,

and : bool x bool -> bool,

or : bool x bool -> bool,

xor : bool x bool -> bool,

implies : bool x bool -> bool;

requires (for x, y: bool)

(not true) = false,

(not false) = true,

(true and x) = x,

(false and x) = false,

(x or y) = (not (not x and not y)),

(x xor y) = (not x = y),

(x implies y) = (not x or y).

Definition: Domain

uses Boolean;

introduces domain.

Precedence: nonassociative{=, R} < prefix{P}.

Definition: Unary-relation

refines Domain;

introduces P : domain -> bool.

Precedence: nonassociative{=} < nonassociative{in}.

Definition: Set

uses Domain;

introduces sets,

empty-set: -> sets,

in: domain x sets -> bool;

requires

(for a: domain) a in empty-set = false.

Precedence: nonassociative{in, into}.

Precedence: nonassociative{=} = {union} < {intersection} < {subset}.

Extension: Set

22

introduces

nonempty-sets < sets,

subset : sets x sets -> bool,

is-empty : sets -> bool,

complement : sets -> sets,

singleton : domain -> sets,

into : domain x sets -> sets,

union : sets x sets -> sets,

intersection : sets x sets -> sets;

requires (for d, e: domain; s, s1, s2: sets)

(s1 subset s2) = (d in s1 implies d in s2),

is-empty(s) = (s = empty-set),

(d in (e into s1)) = ((d = e) or d in s1),

(d in complement(s)) = (not d in s),

singleton(d) = (d into empty-set),

(s1 union empty-set) = s1,

(s1 union (d into s2)) =

if d in s1 then s1 union s2

else d into (s1 union s2),

(s1 intersection empty-set) = empty-set,

(s1 intersection (d into s2)) =

if d in s1 then d into (s1 intersection s2)

else s1 intersection s2,

s : nonempty-sets = (s != empty-set).

Remark: Lemma: Set

obeys (for d, e: domain; s, s1, s2: sets)

is-empty(empty-set),

(s subset empty-set) implies (s = empty-set),

(d in singleton(e)) = (d = e),

(d in (s1 union s2)) = ((d in s1) or (d in s2)),

(d in (s1 intersection s2)) = ((d in s1) and (d in s2)).

Definition: Range

uses Domain [with range as domain].

Precedence: nonassociative{=} < {*}.

Definition: Binary-op

uses Domain;

introduces * : domain x domain -> domain.

Precedence: nonassociative{R, <=}.

Definition: General-binary-relation

uses Domain, Range;

introduces R : domain x range -> bool.

Precedence: nonassociative{=} < {|}.

Definition: Right-regular

refines Binary-op;

introduces | : domain x domain -> bool;

requires (for x, y: domain)

x | y = (for some d: domain) x * d = y.

Definition: Right-identity

23

refines Binary-op;

introduces 1 -> domain;

requires (for x: domain)

x * 1 = x.

Precedence: nonassociative{=} < {+, -} < prefix{-, +} < {*}.

Definition: Right-distributive

refines Binary-op, Binary-op [with + as *];

requires (for x, y, z: domain)

(x + y) * z = x * z + y * z.

Precedence: nonassociative{=} < {|}.

Definition: Left-regular

refines Binary-op;

introduces | : domain x domain -> bool;

requires (for x, y: domain)

x | y = (for some d: domain) d * x = y.

Definition: Left-identity

refines Binary-op;

introduces 1 -> domain;

requires (for x: domain)

1 * x = x.

Definition: Left-distributive

refines Binary-op, Binary-op [with + as *];

requires (for x, y, z: domain)

x * (y + z) = x * y + x * z.

Definition: Commutative

refines Binary-op;

requires (for x, y: domain)

x * y = y * x.

Definition: Associative

refines Binary-op;

requires (for x, y, z: domain)

x * (y * z) = (x * y) * z.

Definition: Function

refines General-binary-relation;

introduces f: domain -> range;

requires (for x: domain; y, y’: range)

(f(x) = y) = (x R y),

f(x) = y and f(x) = y’ implies y = y’.

Definition: Binary-relation

refines Domain;

introduces R : domain x domain -> bool.

Remark: Lemma: Binary-relation is General-binary-relation.

Precedence: prefix{-} < {*} < postfix{^(-1)}.

Definition: Right-inverses

refines Right-identity, Right-regular;

introduces ^(-1) : domain -> domain;

24

requires (for x: domain)

x * x^(-1) = 1.

Remark: Lemma: Right-inverses implies Right-regular.

Definition: Regular

refines Left-regular, Right-regular.

Precedence: prefix{-} < {*} < postfix{^(-1)}.

Definition: Left-inverses

refines Left-identity, Left-regular;

introduces ^(-1) : domain -> domain;

requires (for x: domain)

x^(-1) * x = 1.

Remark: Lemma: Left-inverses implies Left-regular.

Definition: Identity

refines Left-identity, Right-identity.

Definition: Distributive

refines Left-distributive, Right-distributive.

Abbreviation: Semigroup is Associative.

Definition: Surjection

refines Function;

requires (for y: range) (for at least 1 x: domain)

f(x) = y.

Definition: Injection

refines Function;

requires (for y: range) (for at most 1 x: domain)

f(x) = y.

Definition: Transitive

refines Binary-relation;

requires

(for x, y, z: domain) x R y and y R z implies x R z.

Definition: Symmetric

refines Binary-relation;

requires

(for x, y: domain) x R y implies y R x.

Definition: Reflexive

refines Binary-relation;

requires

(for x: domain) x R x.

Definition: Irreflexive

refines Binary-relation;

requires

(for x: domain) not x R x.

Definition: Antisymmetric

refines Binary-relation;

requires

25

(for x, y: domain) x R y and y R x implies x = y.

Definition: Inverses

refines Left-inverses, Right-inverses.

Remark: Lemma: Inverses implies Regular.

Precedence: {/, *}.

Extension: Inverses

introduces / : domain x domain -> domain;

requires (for x, y:domain)

x/y = x * y^(-1).

Definition: Semigroup-homomorphism

refines Semigroup, Semigroup [with image as domain];

introduces

h : domain -> image;

requires (for x, y: domain)

h(x*y) = h(x)*h(y).

Definition: Regular-semigroup

refines Regular, Semigroup.

Definition: Monoid

refines Semigroup, Identity.

Definition: Bijection

refines Surjection, Injection.

Definition: Equivalence-relation

refines Reflexive, Symmetric, Transitive.

Precedence: nonassociative{R, <}.

Definition: Strict-partial-order

refines Irreflexive [with < as R],

Transitive [with < as R].

Definition: Semigroup-monomorphism

refines

Semigroup-homomorphism,

Injection [with h as f, image as range].

Definition: Semigroup-epimorphism

refines

Semigroup-homomorphism,

Surjection [with h as f, image as range].

Precedence: nonassociative{=} < {+, -}.

Definition: Commutative-semigroup

refines Regular-semigroup [with + as *],

Commutative [with + as *].

Definition: Group

refines Monoid, Inverses.

Definition: Abelian-monoid

26

refines Monoid, Commutative.

Precedence: nonassociative{in, into}.

Precedence: nonassociative{=, equiv}.

Definition: Equivalence-class

uses Set, Equivalence-relation [with equiv as R];

introduces equivalence-classes,

in : domain x equivalence-classes -> bool,

equivalence-class : domain -> equivalence-classes;

requires (for x, y: domain; e: equivalence-classes)

(equivalence-class(x) = equivalence-class(y)) = (x equiv y),

x in e = (equivalence-class(x) = e).

Precedence: nonassociative{R, <=, =}.

Definition: Partial-order

refines Reflexive [with <= as R],

Antisymmetric [with <= as R],

Transitive [with <= as R].

Precedence: nonassociative{<, <=, >=, >, =}.

Extension: Partial-order

introduces

< : domain x domain -> bool,

> : domain x domain -> bool,

>= : domain x domain -> bool;

requires (for x, y: domain)

(x < y) = (x <= y and x != y),

(x > y) = (not x <= y),

(x >= y) = (x > y or x = y).

Remark: Lemma: Partial-order implies Strict-partial-order.

Definition: Semiring

refines Commutative-semigroup, Semigroup, Distributive.

Definition: Trivial-group

refines Group;

requires (for x: domain) x = 1.

Definition: Group-of-order-2

refines Group;

requires (for x: domain) x * x = 1.

Remark: Lemma: Group-of-order-2 is Commutative.

Definition: Commutative-group

refines Commutative, Group.

Definition: Set-of-representatives

uses Equivalence-class;

introduces

set-of-representatives < domain,

representative : equivalence-classes -> domain,

representative : domain -> domain;

requires (for x: domain; e: equivalence-classes)

x: set-of-representatives = (representative(x) = x),

equivalence-class(representative(e)) = e,

27

representative(x) = representative(equivalence-class(x)).

Definition: Total-order

refines Partial-order;

requires (for x, y: domain)

x <= y or y <= x.

Definition: Trichotomy

refines Strict-partial-order;

requires (for x, y : domain)

x < y or x = y or y < x.

Remark: Lemma: Trichotomy is Total-order .

Definition: Nondense-order

refines Total-order;

requires

not ((for x, y: domain)

x < y implies (for some z: domain) x < z and z < y).

Definition: Natural

refines

Semiring [with naturals as domain],

Identity [with naturals as domain],

Identity [with naturals as domain, + as *, 0 as 1],

Commutative [with naturals as domain],

Nondense-order [with naturals as domain];

introduces

next : naturals -> naturals,

- : naturals x naturals -> naturals;

generates naturals freely using 0, next;

requires (for n, m: naturals)

n + next(m) = next(n + m),

n - 0 = n, 0 - n = 0,

next(n) - next(m) = n - m, 1 = next(0),

n * 0 = 0, m * next(n) = m * n + 1,

0 <= n, next(n) > 0,

(next(m) <= next(n)) = (m <= n).

Used in part 3a.

28

	Introduction
	Overview of Concept Definitions and Lemmas
	Basic Concepts
	Container and Iterator Concepts
	Forward Iterator and Forward Container Concepts
	Sequence Concept
	Front Insertion Sequence Concept
	Back Insertion Sequence Concept
	Random Access Iterator Concept
	Reversible Container Concept
	Random Access Container Concept
	Vector Concept
	Deque Concept
	List Concept
	Associative Container Concepts
	Sorted Versus Hashed Associative Containers
	Multiple Versus Unique Associative Containers
	Simple Versus Pair Associative Containers
	Combinations of Associative Container Concepts

	Basic concepts from algebra

