
Advanced Programming Exam — Some Answers

October 26, 2001

1. Suppose that m has type map<int, string>, and we encounter a call to

copy(m.begin(), m.end(), back inserter(x)).

What can we say about the type of x? 5 pts

It must be a type that supports push back and whose value type is
pair<int, string> (thus any type b<pair<int, string> > where b is
a model of the Back Insertion Sequence concept). (It must also be
non-const.)

What if the call were copy(x.begin(), x.end(), back inserter(m)) instead?
5 pts

No matter what type x is, this would be illegal, since map doesn’t
support push back.

2. Suppose x is an object of some type S that is a model of the Sequence concept.
Suppose also the value type of S is int. Write one or two lines of C++ code that
remove all of the elements in x equal to 13, using the generic function remove

and the erase member function of S. (If you need to declare an iterator, try to
do so in a way that makes the code as generic as possible.) 10 pts

S::iterator new_end = remove(x.begin(), x.end(), 13);
x.erase(new_end, x.end());

Or, in one line,

x.erase(remove(x.begin(), x.end(), 13), x.end());

Besides being more compact, this conveniently avoids having to de-
clare an iterator. (But it is a little harder to read.)

1

3. Consider following code that implements the STL queue adaptor (same code as
appeared in the Practice Exam):

template <class T, class Sequence = deque<T> >
class queue {

friend bool operator==(const queue&, const queue&);
friend bool operator<(const queue&, const queue&);

public:
typedef typename Sequence::value_type value_type;
typedef typename Sequence::size_type size_type;
typedef Sequence container_type;
typedef typename Sequence::reference reference;
typedef typename Sequence::const_reference const_reference;

protected:
Sequence c;

public:
queue() : c() {}
explicit queue(const Sequence& c0) : c(c0) {}

bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
reference front() { return c.front(); }
const_reference front() const { return c.front(); }
reference back() { return c.back(); }
const_reference back() const { return c.back(); }
void push(const value_type& x) { c.push_back(x); }
void pop() { c.pop_front(); }

};

template <class T, class Sequence>
bool
operator==(const queue<T, Sequence>& x, const queue<T, Sequence>& y)
{

return x.c == y.c;
}

template <class T, class Sequence>
bool
operator<(const queue<T, Sequence>& x, const queue<T, Sequence>& y)
{

return x.c < y.c;
}

The == and < operators are defined outside of queue’s class definition, rather
than as member functions. However, they have been granted friendship privi-
leges by the queue class. Why are the friendship privileges necessary? 6 pts

Since the data member c of queue is protected, nonmember functions
don’t have access to it unless they are named as friends of the class.

2

4. This question is also about the queue adaptor code given in the previous ques-
tion. For each of the following instantiations, indicate whether it would be legal
(“Yes”) or not (“No”). For those instantiations for which the answer is “No,”
explain why it is not legal. 12 pts

2 pts for each correct “Yes/No” answer; 2 points for each correct
explanation. Yes, I know that adds up to 16 pts.

• queue< int, list<int> > Yes.

• queue< double, vector<double> >

No, because vector doesn’t support pop front, which is needed
by queue’s pop member.

• queue< vector<int> > Yes.

• queue< int, set<int> >

No, because vector doesn’t support back, push back, front, or
pop front.

• queue< int, deque<double> >

Yes and no. Conceptually, the second template parameter of
queue should be instantiated with a type whose value type is
the same as the type instantiating the first template parameter.
And in fact if you are compiling with a version of STL that does
concept checking (e.g., GNU C++ 3.01), it will be flagged as a
concept error. But otherwise, it is legal and the compiler lets it
go by, since T is never actually used anywhere in class. (This is a
weakness of the C++ type checking rules.) Thus, full credit for a
Yes answer (I should have asked for explanations of these too!),
and full credit for a No answer that points out that T is never
used anywhere.

5. Forward Iterators are a refinement of Input Iterators and Output Iterators: they
support the Input Iterator and Output Iterator operations and also provide
additional functionality. In particular, 8 pts

they are multi-pass, which means that they allow saving an iterator
in a variable and using that variable later to return to a previously
traversed element of the sequence.

6. Why would you want to define a data structure that doesn’t support random
access iterators (i.e., that only provides, say, forward iterators or bidirectional
iterators)? Give an example. 8 pts

Because this may allow other operations on the data structure to
be more efficient. E.g., the list container supports constant time
insertion and deletion, which could not be done if its iterators had
to be random access. Partial credit (6 pts): “Because random access
iterators would be inefficient for some structures, such as linked lists.”

3

Why is this not as good an answer? Because random access iterators
are required to be efficient (constant time) as part of their definitions.

7. Why doesn’t STL define a template class reverse forward iterator? 8 pts

In order to implement it efficiently you would need operator-- to be
a constant time operation, but that would require the base iterators
to be bidirectional, not just forward.

8. In the Str class in Chapter 12 of Accelerated C++, one of the member functions
defined is the constructor shown here:

class Str {
public:

// ...
template <class In>
Str(In b, In e) {

std::copy(b, e, std::back_inserter(data));
}

private:
Vec<char> data;

};

This constructor is an example of the C++ feature of class definitions known as 2 pts

template member functions (or any permutation of those words)

In their definition of the Vec class in Chapter 11 of Accelerated C++, the authors
did not have a constructor that was this kind of member function. Add such a
constructor to Vec. Recall that the private data members of Vec are

iterator data;
iterator avail;
iterator limit;

Answer: 5 pts

The simplest way to do this is to take advantage of the push back
operation, just as was being done in the Str constructor:

template <class In>
Vec(In b, In e) {

create(); // this does data = avail = limit = 0;
std::copy(b, e, std::back_inserter(*this));

}

This gets full credit (either with the create call or the assignments
in the comment), because it works and only requires the iterators
to be input iterators, which corresponds to the requirement for the
corresponding Str constructor. The same is true if instead of the
copy you called push back repeatedly in a for loop:

4

template <class In>
Vec(In b, In e) {
create(); // this does data = avail = limit = 0;
for (In i = b; i != e; ++i)
(*this).push_back(*i);

}

Here is another solution that is more efficient because it pre-allocates
the storage rather than letting push back do it incrementally.

template <class Ran>
Vec(Ran b, Ran e) {
create(e - b, value_type());
std::copy(b, e, data);

}

But the problem with this is that it requires the iterator type to be
random access, because of the use of subtraction (e - b). Credit: 4
pts.

Similarly, solutions that do the storage allocation directly with new
(ignoring the issues of allocation of uninitialized storage discussed in
the textbook), e.g.,

template <class Ran>
Vec(Ran b, Ran e) {
data = new value_type[e - b];
limit = avail = data + (e - b);
std::copy(b, e, data);

}

also need to compute the size of the array and therefore need random
access iterators. Credit: 4 pts. 1

Now rewrite the Str constructor given at the beginning of this question to use
the new Vec constructor instead of calling copy. 5 pts

Answer:

template <class In>
Str(In b, In e) : data(b, e) { }

Either of the following gets partial credit (3 pts) although neither
really works:

1The corresponding constructor for the actual vector class is implemented with compile-time
dispatching on the iterator category, so that the more efficient preallocation of storage can be used
if the instantiated iterator type is random access (the size is computed as e - b) or bidirectional or
forward (the distance from b to e is computed by distance(b, e), which does it by stepping with
++); otherwise, for input iterators the push back solution is used.

5

template <class In>
Str(In b, In e) { data(b, e); }

template <class In>
Str(In b, In e) { Vec<char> data(b, e); }

If the constructor call is done in the function body rather than in the
initialization list, it must be done as follows:

template <class In>
Str(In b, In e) { data = Vec<char>(b, e); }

This gets full credit (or 4 pts if the <char> is missing).

9. A common way a class definition can define associated types is by means of
typedefs nested inside the class definition, e.g.,

class my_array {
public:
typedef double value_type; // the type for elements in the array
double& operator[](int i) { return m_data[i]; }
private:
double* m_data;
};

If a function receives an object of type my array through a parameter of that
type, it can obviously access the object’s value type with an expression such as
my array::value type. However, if it receives an array type object through
a template parameter Array, one that might be an object of either my array

type or of some other class-defined array type or of a builtin array type like
double* or int*, it would not necessarily be legal to access the value type
by writing Array::value type. The solution to this problem is a traits class,
which is a class template whose sole purpose is to provide a mapping from a
type to other types, functions, or constants. The mapping is accomplished by
creating different versions of the traits class to handle specific type parameters.
The default (fully templated) case will assume the array is a class with a nested
typedef such as my array:

template <typename Array>
struct array_traits {
typedef typename Array::value_type value_type;
};

We can then create a specialization of the array traits template to handle the
case when the Array template argument is a built-in type like double*. First,
create a full specialization that handles just the case double*. 5 pts

Answer:

6

template <>
struct array_traits<double*> {
typedef double value_type;

}

Next, create a partial specialization that handles the general case T* where
T is any type. (With such a partial specialization defined, the preceding full
specialization would be unnecessary.) 5 pts

Answer:

template <typename T>
struct array_traits<T*> {
typedef T value_type;

}

10. For Homework 2, Joe McGraph proposed to implement a topological sort ac-
ceptance testing function using the following method:

To test whether a linear sequence S is a topological ordering
of graph G:

reverse the sequence S
while S is not empty {

remove a vertex x from the front of S
if there are any edges in G with x as source
return false

else {
clear all edges in G that have x as target
remove vertex x from G

}
}
return true

It appears it would fairly easy to implement this method using BGL, since
BGL provides a clear vertex function that removes all edges (in-edges or out-
edges) from a given vertex, and a remove vertex function that removes an
already cleared vertex from the graph. However, the resulting function would
not meet all of the requirements stated in Homework 2 for the acceptance testing
function. What is the problem with it? (Hint: keep in mind that in-edges are
not represented in BGL’s representation of a directed graph.) 8 pts

Since in edges are not represented, clear vertex cannot be imple-
mented in constant time: the only way to find edges that have the
given vertex as target is to iterate over all edges (thus O(|E|)) or it-
erate over all vertices and their out edges (thus O(|V | + |E|)). Hence
the time for the above algorithm would be either O(|V ||E|) or O(|V |2 +
|V ||E|), instead of O(|V | + |E|) as required. Also the function never
checks to see if the set of vertices in G is the same as the set of
vertices in S. (Mention of the latter is scored as a bonus of 4 points.)

7

11. Consider the following complete program:

// Another Depth First Visitor Example
... see the exam

This code shows how BGL’s depth first search algorithm can be parameter-
ized with a visitor that detects cycles, simply by recording that a back edge has
been traversed. However, the program gives no indication at all about where
in the graph the cycle occurs. Add code to the visitor so that it writes, on
std::cout, the back edge(s) detected: write the new code below and draw an
arrow on the preceding page to show where it should be inserted in the visitor
class. (Note: Your code does not have to write out all of the edges in a detected
cycle.) 8 pts

Answer:

template <typename Edge, typename Graph>
void back_edge(Edge e, const Graph& G) const {

std::cout << "Cycle detected: Edge (" << source(e, G) << ", "
<< target(e, G) << ") is a back-edge." << std::endl;

has_cycle = true;
}

8

