
Advanced Programming Practice Exam —
Some Answers

CSCI-6090

October 18, 2001

1. The word frequency program discussed in this course illustrated several prop-
erties of the associative container classes map and multimap. Here is an excerpt
from that program:

typedef map<string, int>
frequency_map; // Type of table that holds words and frequencies

typedef istream_iterator<string>
string_input; // Type of iterator for traversing an input stream

frequency_map fm;
for (string_input j(cin); j != string_input(); ++j)
++fm[normalize(*j)]; // Increment frequency of normalized string

(The function normalize translates characters to lower case and eliminates
punctuation characters in its string argument.) It may appear that this code is
in error, in that the line

++fm[normalize(*j)]; // Increment frequency of normalized string

should have a test to check whether fm is already defined at a key:

if (fm.find(normalize(*j)) == fm.end()) // If normalized string is not
fm[normalize(*j)] = 1; // present, initialize its count

else
++fm[normalize(*j)]; // Increment frequency of normalized string

Explain why this check and initialization step aren’t necessary, based on a
property of the map operator[].

When fm[k] appears in an expression but fm is undefined at key k,
operator[] inserts an entry in the map for k:

pair<key type, T>(k, T())

1



In case T is a built-in type T() is defined as 0 converted to type T.

2. Consider following code that implements the STL queue adaptor:

template <class T, class Sequence = deque<T> >
class queue {
friend bool operator==(const queue&, const queue&);
friend bool operator<(const queue&, const queue&);

public:
typedef typename Sequence::value_type value_type;
typedef typename Sequence::size_type size_type;
typedef Sequence container_type;
typedef typename Sequence::reference reference;
typedef typename Sequence::const_reference const_reference;

protected:
Sequence c;

public:
queue() : c() {}
explicit queue(const Sequence& c0) : c(c0) {}

bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
reference front() { return c.front(); }
const_reference front() const { return c.front(); }
reference back() { return c.back(); }
const_reference back() const { return c.back(); }
void push(const value_type& x) { c.push_back(x); }
void pop() { c.pop_front(); }

};
template <class T, class Sequence>
bool
operator==(const queue<T, Sequence>& x, const queue<T, Sequence>& y)
{
return x.c == y.c;

}
template <class T, class Sequence>
bool
operator<(const queue<T, Sequence>& x, const queue<T, Sequence>& y)
{
return x.c < y.c;

}

Explain why there are two versions of the front member function. In particu-
lar, write declarations and a call of front for which the compiler would select
the first version, and explain why, and then do the same for the second version.

2



"stacktest.cpp" 3 ≡
#include <iostream>
#include <queue>
using namespace std;
int foo(const queue<int>& q)
{

return q.front(); // calls const front member
}
int main()
{

queue<int> q;
q.push(2);
int j = q.front(); // calls non-const front member
q.front() = 4; // calls non-const front member
int k = foo(q); // foo calls const front member
cout << j << ", " << k << endl; // outputs 2, 4

}

In the calls of front in main, the first front member is called and it
returns a non-const reference since q is not declared as a constant.
(Therefore this reference can be used on the left hand side of an
assignment statement, as in the second call.) It would be rather
pointless to declare a queue as a constant in the main program—you
couldn’t push anything on it if you did—but when an object is passed
to a function through a const reference parameter, it is considered
to be a constant inside the function. Thus in the front call in foo,
the const front member is called. (Therefore even if foo returned a
reference, it would have to be a const reference—i.e., the return type
would have to be const int&—and foo(q) could not be used on the
left hand side of an assignment.)

3. This question is also about the queue adaptor code given in the previous
question. In many textbook versions of a queue data type, the pop operation
returns the front element of the queue. However, in the STL queue, pop returns
void. Explain why this design decision makes sense (i.e., why value type or
value type& isn’t returned).

Returning value type would require a copy, which could be expensive
if value type objects are large. Returning value type& would mean
the caller would receive a “dangling reference,” that is, it would point
to deallocated storage. The front function returns a reference but it
can remain valid for a while—until the element is popped off with
pop. If the queue client needs to hold onto the value after the pop,
it can copy it, but it pays the price of the copy only in that case.

4. A “concept,” as the term has been used in this course, is a collection of abstrac-

3



tions that all obey a given set of requirements. By “abstraction” we usually
mean a(n abstract data) type or an algorithm abstraction. In discussing con-
tainer concepts and ordering and equivalence concepts we have used graphical
depictions of the concept hierarchies, with the most generic concepts (the ones
containing the most abstractions) at the top of the diagram. Edges in these
graphs represent concept refinement, and more refined concepts (those having
more requirements and containing fewer abstractions) appear lower than the
concepts they are refined from. Also represented in the diagrams are some
of the models of the concept, which are types that have all of the properties
specified by the concept; these are distinguished from concepts by putting their
names in italics. Draw such a diagram for all of the iterator concepts that are
used in STL, including for each concept at least one STL model of it (label it
with the name of a type defined by an STL component and use underlining
instead of italics). (Use a separate sheet of paper.)

5. What three special operations must a Sequence have in order to be a Back
Insertion Sequence?

push back, pop back, and back.

All three operations have the same complexity guarantee—what is it?

Amortized constant time

6. The elements in a(n) Unique Sorted Associative

Container are always arranged in strictly ascending order by key, based on the
< ordering relation on the key type or on a ordering relation on keys as defined
by a function object used in constructing the container.

Two models of this concept in STL are set and map .

7. Why would you want to write an algorithm to use other than random access
iterators?

To make the algorithm usable with data structures, like lists or streams,
that don’t provide random access iterators.

8. BGL defines several new iterators (not defined in STL) for traversing different
graphs or parts of graphs Name three such iterators.

vertex iterator, edge iterator, adjacency iterator, out edge iterator,
in edge iterator.

9. Consider the binary search function below.

4



template<class Ran, class X>

bool binary_search(Ran begin, Ran end, const X& x)

{

while (begin < end) {

// find the midpoint of the range

Ran mid = begin + (end - begin) / 2;

// see which part of the range contains ‘x’;

// keep looking only in that part

if (x < *mid)

end = mid;

else if (*mid < x)

begin = mid + 1;

// if we got here, then ‘*mid == x’ so we’re done

else return true;

}

return false;

}

Why didn’t we write (begin + end)/2 instead of the more complicated begin

+ (end - begin)/2?

Addition of two iterators is not defined (for good reason: it makes no
semantic sense). (Subtraction of two iterators is defined and produces
an integral value, and addition of an iterator and an integer is defined,
so the second expression is defined.)

10. In Chapter 12 of Accelerated C++, the authors define a class named Str, a
simplified version of the standard string class.

class Str {

// ...

public:

// ...

private:

Vec<char> data;

};

Give Str an operation that will let us implicitly use a Str object as a condition.
The test should fail if the Str is empty, and should succeed otherwise. You may
use any operations of the Vec template class defined in Chapter 11 of Accelerated
C++ (or any operations of the standard vector template class, since Vec is a
simplified version of it).

Insert following line in the public members of Str:

operator bool() { return !data.empty(); }

5



11. Consider the following complete program:

// Depth First Visitor Example

#include <iostream>

#include <fstream>

#include <boost/graph/depth_first_search.hpp>

#include <boost/graph/adjacency_list.hpp>

using namespace boost;

class mystery_visitor

: public dfs_visitor<> {

public:

mystery_visitor() { }

template <typename Vertex, typename Graph>

void discover_vertex(Vertex u, const Graph&) const {

std::cout << "(" << u << " ";

}

template <typename Vertex, typename Graph>

void finish_vertex(Vertex u, const Graph&) const {

std::cout << u << ") ";

}

};

int main()

{

adjacency_list<listS, vecS, directedS> g;

add_edge(0, 3, g);

add_edge(1, 3, g);

add_edge(2, 3, g);

add_edge(3, 7, g);

add_edge(4, 5, g);

add_edge(2, 5, g);

add_edge(1, 6, g);

add_edge(6, 7, g);

mystery_visitor vis;

depth_first_search(g, visitor(vis));

std::cout << std::endl;

return 0;

}

Draw a picture of the graph g constructed by this program.

6



0

3

1

6

2

5

7

4

What would this program output on std::cout?

(0 (3 (7 7) 3) 0) (1 (6 6) 1) (2 (5 5) 2) (4 4)

12. Describe the difference between an algorithm and an acceptance testing function
for that algorithm, in terms of their inputs and outputs.

If the algorithm A has input x and output y, the corresponding ac-
ceptance testing function F has inputs x and y and outputs a boolean
value: true if y is an acceptable output when A is applied to x, false
otherwise.

13. Consider the following code:

template <typename VertexListGraph, typename OutputIterator>

void toposort(VertexListGraph& g, OutputIterator result)

{

typedef typename graph_traits<VertexListGraph>::vertex_descriptor

vertex_t;

typedef typename graph_traits<VertexListGraph>::degree_size_type

degree_size_t;

vector<degree_size_t> indegree;

// ...

}

The problem with this code is that it is not as generic as it could be; the way it
is written limits its use to an unnecessarily small subset of the possible graph
representations.

7



First, write a declaration of a graph G1 with an adjacency list representation
such that toposort could be called with G1 as its first argument.

adjacency list<listS, vecS, directedS> G1

The essential part of this declaration is vecS specifying the vertex list
type as having a vector representation. This results in the vertex descriptor

type being an integral type, and therefore usable as the domain of a
vector.

Next, write a declaration of a graph G2 with an adjacency list representation
such that toposort could not be called with G2 as its first argument (because
it wouldn’t compile).

adjacency list<listS, listS, directedS> G1

In this case listS specifies the vertex list type has a list representation
(as would setS or hash setS). This results in the vertex descriptor

type being an nonintegral type (void* to be precise), and therefore it
is not usable as the domain of a vector.

Finally, write a new declaration of indegree in toposort that would allow
toposort to be applied to graphs with any representation belonging to the
VertexListGraph concept.

map<vertex_t, degree_size_t> indegree;

Also acceptable:

hash_map<vertex_t, degree_size_t> indegree;

although this doesn’t work without some tweaking (see the posted
solution to Homework 2).

8


