
Text-line Random Shuffling Program

David R. Musser

October 12, 2001

Contents

1 Introduction 1

2 The Program 2
2.1 Overview . 2
2.2 Randomization . 2
2.3 Inputting the lines . 4
2.4 Outputting the lines . 6

3 Makefile and Sample Input 6

1 Introduction

This little program reads a sequence of text lines and writes them in a scrambled
(randomized) order. Given any sequence of items formatted one item per line,
this program can be used to produce the sequence permuted in a random order.
The program takes the text-line input from the standard input stream and
produces the output lines on the standard output stream. It also takes one
input from the command line and uses it as an integer seed for a random-
number generator, so that by running the program with a different values of
this command line parameter, one can obtain different randomized orders of
the given line sequence. A “line” is considered to be any sequence of characters
other than end-of-line, followed by (and including) an end-of-line character.

The program is written in the C++ language and makes use of several C++
standard library components from the iostream, string, vector, and algorithm
sections of the standard. It may be useful to read the code as a short, simple
illustration of some of the advantages of using such standard library compo-
nents. The presentation of the code is also a simple illustration of “literate
programming” as defined by D. E. Knuth [Knuth84]. The main idea behind
literate programming is that many programs are more often read by humans
than executed, so it’s vitally important to make them readable and to ensure
that documentation remains consistent with the code. Another key idea is that
presenting programs in segments arranged in a logical order (rather than the

1

order required by the compiler) actually helps the programmer to design good
programs in the first place. So one should not first write the code and then
start reorganizing it for purposes of documentation; instead it’s much better to
code and document at the same time.

Code is presented in “parts” numbered according to the page number on
which they appear, with parts on the same page distinguished by appending a
letter to the number. The order in which the parts appear in the documentation
does not have to be the same order in which they must appear in the code source
file(s) according the programming language rules. This form of presentation and
code construction is supported by Briggs’ Nuweb tool [Briggs], which generates
both the code file and the documentation file directly from a single Nuweb source
file. Any number of auxiliary files, such as makefiles and test data files, can also
be packaged in the Nuweb source file, as is illustrated in the last section of this
document.

The presentation in this document assumes familiarity with major C++
language features and standard library components.

2 The Program

2.1 Overview

A top-down view of the program structure is as follows:

”rand.cpp” 2 ≡

〈Include standard header files 4a〉

〈Make names of standard components directly available 4b〉

〈Define a type, line, for processing text-lines 5a〉

〈Define a random number generator in form required by random shuffle 3b〉

int main(int argc, char* argv[])

{

〈Declare a vector, lines, into which to read the input sequence 5d〉

〈Seed the random number generator using command line argument 1 3c〉

〈Copy lines from standard input stream, until end-of-file, to lines vector 5e〉

〈Randomize order of lines vector elements 3a〉

〈Copy lines from lines vector to standard output stream 6a〉
return 0;

}

2.2 Randomization

The heart of the program is the randomizing step:

2

〈Randomize order of lines vector elements 3a〉 ≡
random_shuffle(lines.begin(), lines.end(), randgen1);

Used in part 2.

This uses a standard library component, random_shuffle, a generic function
(from the <algorithms> header), whose first two arguments are random access
iterators delimiting a sequence of values, and whose third parameter is a random
number generator function object. For the third parameter random_shuffle
needs a function, encapsulated as a function object, that takes an integer ar-
gument n and returns a value in the range [0, n). We program this function
object, randgen1, in terms of lrand48, a function available in the library of
some C/C++ systems. The argument and return types of the encapsulated
function need to be determined based on the type of container random_shuffle
is applied to, so we make the container type a template parameter.

〈Define a random number generator in form required by random shuffle 3b〉 ≡
template <class Container>

struct randgen {

typedef typename Container::difference_type argument_type;

typedef typename Container::difference_type result_type;

result_type operator()(argument_type n)

{

return lrand48() % n;

}

};

randgen<vector<line> > randgen1;

Used in part 2.

Whenever we use a random number generating function, we have to provide for
“seeding” it, so that by using different seeds different runs of the program will
produce different (apparently random) results. The companion seeding function
to lrand48 is srand48.

〈Seed the random number generator using command line argument 1 3c〉 ≡
if (argc == 2)

srand48(atoi(argv[1]));

else {

srand48(7);

cerr << "******Rerun with one command line argument, an integer, "

<< "to get a different scrambling of the output." << endl;

}

Used in part 2.

Instead of lrand48 and srand48 it would seem simpler and more portable to use
rand and srand, the standard C library random number function and seeding
function. But rand is a poor generator and should only be used for test pur-

3

poses, if at all. Unfortunately, no new random number generator requirement
was added to the C++ standard. When compiling programs such as this one
with a C/C++ library that doesn’t have lrand48, check for other generators
that might be available before resorting to rand. If rand and srand must be
used, they can be conveniently substituted into the program with preprocessor
commands since each of these functions has the same interface as its counterpart:
either add the lines

#define lrand48 rand
#define srand48 srand

at the beginning of the program or achieve the same effect by inserting the
definitions on the compilation command line; e.g.,

bcc32 -Dlrand48=rand -Dsrand48=srand rand.cpp

2.3 Inputting the lines

The rest of the program code is concerned mainly with input of text lines into
the vector and output from it. We first include the iostream, string, vector, and
algorithm library headers.

〈Include standard header files 4a〉 ≡
#include <iostream>

#include <string>

#include <vector>

#include <algorithm>

Used in part 2.

Identifiers used in standard headers are introduced within a namespace called
std. To make them more conveniently available, the using namespace con-
struct is useful.

〈Make names of standard components directly available 4b〉 ≡
using namespace std;

Used in part 2.

For its operations on text lines, the standard string class provides most of what
the program needs. However, the input facility of the string class provided
by its overloading of operator>> is not exactly what is needed, since it stops
absorbing characters into the string it is reading from an input stream when
it reads any whitespace character or certain special characters. What we need
here is to include all characters from the present input stream position up to and
including the next end-of-line character (denoted by \n in C++ source code).
We can get the combination we need—input of whole text lines with operator>>
and standard string behavior for all other operations—by first deriving a new
class, line, from string, and then changing the meaning of operator>>:

4

〈Define a type, line, for processing text-lines 5a〉 ≡
class line : public string { };

〈Define input operator to gather all characters through the next end-of-line 5b〉

Used in part 2.

We overload operator>> on line type objects to have the behavior we need for
this program:

〈Define input operator to gather all characters through the next end-of-line 5b〉 ≡
istream& operator>>(istream& i, line& s) {

s.clear();

〈Get characters from i and push them on the back of s 5c〉
return i;

}

Used in part 5a.

The standard library function getline could be used here, but it requires an
array of some predetermined size for storing the characters. We can avoid
having any arbitrary limit on the length of lines by programming the scanning
and storing of the characters directly using get and push_back.

〈Get characters from i and push them on the back of s 5c〉 ≡
while (true) {

char c;

i.get(c);

if (i.eof())

break;

s.push_back(c);

if (c == ’\n’)

break;

}

Used in part 5b.

Having defined type line, we can now prepare a vector to hold items of the
type so that they can be shuffled.

〈Declare a vector, lines, into which to read the input sequence 5d〉 ≡
vector<line> lines;

Used in part 2.

We can easily read the lines into the lines vector using the generic copy algo-
rithm in combination with istream iterators.

〈Copy lines from standard input stream, until end-of-file, to lines vector 5e〉 ≡
typedef istream_iterator<line> line_input;

copy(line_input(cin), line_input(), back_inserter(lines));

Used in part 2.

5

It is here that operator>> is actually used, since istream_iterator<line> uses
that operator to supply line values to the copy algorithm. This call of copy
places the result into lines with the aid of back_inserter, an iterator adaptor
that converts assignment operations into uses of the push_back operation of its
container argument.

With the lines now in the lines vector, we can shuffle them with the generic
random_shuffle algorithm, as already shown.

2.4 Outputting the lines

Finally, to write the lines to the output stream, we can again use the generic
copy algorithm, this time in combination with an ostream iterator.

〈Copy lines from lines vector to standard output stream 6a〉 ≡
typedef ostream_iterator<line> line_output;

copy(lines.begin(), lines.end(), line_output(cout, ""));

Used in part 2.

Symmetrically to the input case, operator<< is used here: the copy algorithm
and ostream_iterator<line> working together use that operator to place line
values on the output stream, cout. The ostream_iterator<line> constructor
takes two arguments, an ostream to write the output to (cout in this case), and
a string to use to separate consecutive values (the empty string "" in this case).

3 Makefile and Sample Input

The following Unix makefile provides for compiling the program, executing it
with sample data, and producing its formatted documentation file in either
Postscript or PDF.

”Makefile” 6b ≡
rand-w: rand.w

pdfnuweb rand

rand-comp: rand-w

bcc32 -Dlrand48=rand -Dsrand48=srand rand.cpp

rand-run: rand-comp

./rand <sample.txt >scrambled1.txt 37

./rand <sample.txt >scrambled2.txt 9

rand-pdf: rand-w

pdflatex rand

pdfnuweb rand

pdflatex rand

rand-ps: rand.w

6

nuweb rand

latex rand

nuweb rand

latex rand

dvips -o rand.ps rand

”sample.txt” 7 ≡
A.J. Perlis

Maurice V. Wilkes

Richard Hamming

Marvin Minsky

J.H. Wilkinson

John McCarthy

E.W. Dijkstra

Charles W. Bachman

Donald E. Knuth

Allen Newell

Herbert A. Simon

Michael O. Rabin

Dana S. Scott

John Backus

Robert W. Floyd

Kenneth E. Iverson

C. Antony R. Hoare

Edgar F. Codd

Stephen A. Cook

Ken Thompson

Dennis M. Ritchie

Niklaus Wirth

Richard M. Karp

John Hopcroft

Robert Tarjan

John Cocke

Ivan Sutherland

William (Velvel) Kahan

Fernando J. Corbato’

Robin Milner

Butler W. Lampson

Juris Hartmanis

Richard E. Stearns

Edward Feigenbaum

Raj Reddy

Manuel Blum

Amir Pnueli

Douglas Engelbart

James Gray

Frederick P. Brooks, Jr.

7

References

[Briggs] P. Briggs, Nuweb, a simple literate programming tool, Version 0.87,
1989. 1

[Knuth84] D.E. Knuth, Literate programming. Computer Journal 27 (1984),
97–111. 1

8

	Introduction
	The Program
	Overview
	Randomization
	Inputting the lines
	Outputting the lines

	Makefile and Sample Input

