
A Fast Generic Sequence Matching Algorithm

David R. Musser Gor V. Nishanov

Computer Science Department
Rensselaer Polytechnic Institute, Troy, NY 12180

{musser,gorik}@cs.rpi.edu
November 16, 2001

Abstract

A string matching—and more generally, sequence matching—algorithm
is presented that has a linear worst-case computing time bound, a low
worst-case bound on the number of comparisons (2n), and sublinear
average-case behavior that is better than that of the fastest versions of
the Boyer-Moore algorithm. The algorithm retains its efficiency advan-
tages in a wide variety of sequence matching problems of practical in-
terest, including traditional string matching; large-alphabet problems
(as in Unicode strings); and small-alphabet, long-pattern problems (as
in DNA searches). Since it is expressed as a generic algorithm for
searching in sequences over an arbitrary type T , it is well suited for
use in generic software libraries such as the C++ Standard Template

i

Library. The algorithm was obtained by adding to the Knuth-Morris-
Pratt algorithm one of the pattern-shifting techniques from the Boyer-
Moore algorithm, with provision for use of hashing in this technique. In
situations in which a hash function or random access to the sequences
is not available, the algorithm falls back to an optimized version of the
Knuth-Morris-Pratt algorithm.

key words String search String matching Pattern matching Sequence
matching Generic algorithms Knuth-Morris-Pratt algorithm Boyer-
Moore algorithm DNA pattern matching C++ Standard Template Library
STL Ada Literate programming

ii

Contents

1 Introduction 1

2 Linear and Accelerated Linear Algorithms 3

3 Benchmarking with English Texts 20

4 Hashed Accelerated Linear Algorithm 22

5 Searching for DNA Patterns 27

6 Large Alphabet Case 28

7 Generic Search Algorithms 32

8 How to Obtain the Appendices and Code 46

9 Conclusion 47

A Tests of Expository Versions of the Algorithms 52
A.1 Algorithm Declarations . 52
A.2 Simple Tests . 60
A.3 Large Tests . 68
A.4 Timed Tests . 72

iii

B C++ Library Versions and Test Programs 76
B.1 Generic Library Interfaces . 77

B.1.1 Library Files . 77
B.1.2 Search Traits . 78
B.1.3 Search Functions . 80
B.1.4 Skip Table Computation 88
B.1.5 Next Table Procedure and Call 88

B.2 Experimental Version for Large Alphabet Case 89
B.3 DNA Search Functions and Traits 94
B.4 Simple Tests . 98
B.5 Large Tests . 105
B.6 Timed Tests . 111
B.7 Timed Tests (Large Alphabet) 116
B.8 Counted Tests . 120
B.9 Application to Matching Sequences of Words 128

B.9.1 Large Tests . 128
B.9.2 Timed Tests . 132

C Index of Part Names 134

iv

1 Introduction

The traditional string matching problem is to find an occurrence of a pattern
(a string) in a text (another string), or to decide that none exists. Two of the
best known algorithms for the problem of string matching are the Knuth-
Morris-Pratt [KMP77] and Boyer-Moore [BM77] algorithms (for short, we
will refer to these as KMP and BM). Although KMP has a low worst-case
bound on number of comparisons (2n, where n is the length of the text), it is
often considered impractical, since the number of comparisons it performs in
the average case is not significantly smaller than that of the straightforward
(SF) algorithm [Sm82], and the overhead for initialization is higher. On the
other hand, despite the fact that BM has a higher worst-case bound on the
number of comparisons (≈ 3n [Cole96]), it has excellent sublinear behavior
in the average case. This fact often makes BM the algorithm of choice in
practical applications.

In [BM77], Boyer and Moore described both a basic version of their al-
gorithm and an optimized version based on use of a “skip loop.” We will
refer to the latter algorithm as Accelerated Boyer-Moore, or ABM for short.
Unfortunately, this version remained unnoticed by most researchers despite
its much better performance. For example, ABM outperforms the Quick
Search [Su90] and Boyer-Moore-Horspool [Horspool88] improvements of the
basic BM algorithm. This state of affairs was highlighted by Hume and Sun-
day in 1991 in [HS91], in which they introduced two algorithms, LC (least
cost) and TBM (Tuned BM) [HS91], that perform faster than ABM in the

1

average case. These two algorithms use the skip loop of ABM combined with
variants of the straightforward algorithm that use information on character
frequency distribution in the target text. For traditional string matching
LC and TBM have excellent average case behavior, but in the worst case
they behave like SF, taking time proportional to the product of the text and
pattern lengths.

Even in the average case, the skip loop as it is used in ABM and other
algorithms performs poorly with small alphabets and long patterns, as hap-
pens, for example, in the problem of DNA pattern matching. And if the
alphabet is large, as for example with Unicode strings, initialization over-
head and memory requirements for the skip loop weigh against its use.

This article describes a new linear string-matching algorithm and its
generalization to searching in sequences over an arbitrary type T . The
algorithm is based on KMP and has the same low 2n worst-case bound on
number of comparisons, but it is better than ABM (comparable with TBM)
in average case performance on English text strings. It employs a hash-
coded form of the skip loop making it suitable even for cases with large
alphabets or with small alphabets and long patterns. Since it is expressed
as a generic algorithm for searching in sequences over an arbitrary type T ,
the new algorithm is well suited for use in generic software libraries such
as the C++ Standard Template Library (STL). We present the algorithm
in the following sections by starting with the basic KMP algorithm and
transforming it with optimizations and addition of the skip loop in several
alternative forms. The optimized form of KMP without the skip loop also

2

serves well in cases in which access to the sequences is restricted to forward,
one-element-at-a-time iteration rather than random-access. We also discuss
experimental results and some of the issues in including the new algorithm
in a generic algorithm library.

2 Linear and Accelerated Linear Algorithms

Let m ≥ a ≥ 0 and n ≥ b ≥ 0 and suppose pa . . . pm−1 is a pattern of size
m − a to be searched for in the text tb . . . tn−1 of size n − b. Characters of
the pattern and the text are drawn from an alphabet Σ. The Knuth-Morris-
Pratt algorithm can be viewed as an extension of the straightforward search
algorithm. It starts comparing symbols of the pattern and the text from
left to the right. However, when a mismatch occurs, instead of shifting the
pattern by one symbol and repeating matching from the beginning of the
pattern, KMP shifts the pattern to the right in such a way that the scan
can be restarted at the point of mismatch in the text. The amount of shift
is determined by precomputed function next, defined by

next(j) = max
i<j

{i|pa . . . pi−1 = pa+j−i . . . pj−1 ∧ pi 6= pj}

(We let next(j) = a − 1 if there is no i satisfying the conditions.) Here is
the basic KMP algorithm as it appeared in [KMP77], except that we use

3

more general index ranges:1

1Although most authors use pseudocode for expository purposes, we prefer to be able
to check all code with a compiler. The expository versions of algorithms in this paper are
expressed in Ada 95, which has a syntax similar to that of most pseudocode languages
(at least if one omits the details of subprogram headers and package declarations, which
we include only in an appendix that deals with actual compilation of the code). The
generic library components developed later in the paper are written in C++. Throughout
the paper we present expository and production code in a variant of Knuth’s literate
programming style [Knuth84], in which code is presented in “parts” numbered according
to the page number on which they appear (with parts on the same page distinguished
by appending a letter to the number). This form of presentation is supported by Briggs’
Nuweb tool [Briggs] (slightly modified, as discussed in a later section), with which we also
generate all code files directly from the paper’s source file.

4

〈Basic KMP 5〉 ≡
pattern_size := m - a; j := a; k := b;
while j < m and then k < n loop
while j >= a and then text(k) /= pattern(j) loop
j := next(j);

end loop;
k := k + 1; j := j + 1;

end loop;
if j = m then
return k - pattern_size;

else
return n;

end if;

Used in part 53b.

A return value i between b and n− pattern size indicates a match found
beginning at position i, while a return value of n means there was no match.
Although elegantly short, this algorithm does redundant operations along
the expected execution path. That is, text(k) is usually not equal to
pattern(j) and next(j) is usually a−1, so the inner loop usually sets j to
a− 1, redundantly tests it against a, and terminates. k and j are then both
incremented and tested against their bounds, then j is again redundantly
compared with a. Knuth, Morris, and Pratt discussed a set of optimiza-
tions to the basic algorithm that required extending the text and pattern

5

with additional characters, which is possible only under extra assumptions
about the way the inputs are stored. We must avoid such assumptions when
the goal is a generic algorithm. Instead, we eliminate the redundant oper-
ations by rewriting the algorithm in the following form, which we will call
Algorithm L (for Linear) in this paper:

〈Algorithm L, optimized linear pattern search 6〉 ≡
pattern_size := m - a; k := b;

〈Handle pattern size = 1 as a special case 7a〉
while k <= n - pattern_size loop

〈Scan the text for a possible match 7b〉
〈Verify whether a match is possible at the position found 8〉
〈Recover from a mismatch using the next table 9〉

end loop;
return n;

Used in part 53b.

The following code allows us to eliminate a test in the main loop:

6

〈Handle pattern size = 1 as a special case 7a〉 ≡
if pattern_size = 1 then
while k /= n and then text(k) /= pattern(a) loop
k := k + 1;

end loop;
return k;

end if;

Used in parts 6, 12, 16, 25, 53b.

The three parts of the body of the main loop are defined as follows:

〈Scan the text for a possible match 7b〉 ≡
while text(k) /= pattern(a) loop
k := k + 1;
if k > n - pattern_size then
return n;

end if;
end loop;

Used in parts 6, 53b.

7

〈Verify whether a match is possible at the position found 8〉 ≡
j := a + 1; k := k + 1;
while text(k) = pattern(j) loop
k := k + 1; j := j + 1;
if j = m then
return k - pattern_size;

end if;
end loop;

Used in parts 6, 53b.

8

〈Recover from a mismatch using the next table 9〉 ≡
loop
j := next(j);
if j < a then

k := k + 1; exit;
end if;
exit when j = a;
while text(k) = pattern(j) loop
k := k + 1; j := j + 1;
if j = m then
return k - pattern_size;

end if;
if k = n then
return n;

end if;
end loop;

end loop;

Used in parts 6, 12.

This last part guarantees linear worst-case behavior. Notice that if we simply
replace the last part with the code k := k - (j - a) + 1 we obtain (an
optimized form of) the straightforward algorithm.

Algorithm L can be further improved by incorporating a skip loop similar
to the one that accounts for the excellent sublinear average time behavior

9

of ABM. The idea of this technique is demonstrated in the following pair of
examples:

Text:uuuuuuuuuua....uuuuuuuuuue....
Before Shift: bcdabcdabcd bcdabcdabcd
After Shift: bcdabcdabcd bcdabcdabcd

We inspect the text character tj that corresponds to the last character of the
pattern, and if tj 6= pm−1 we shift the pattern by the amount determined by
the skip function, which maps any character of the alphabet to the range
[0,m− a] and is defined as follows:

skip(x) =

{
m− a if ∀j : a ≤ j < m ⇒ pj 6= x
m− 1− i otherwise, where i = max{j : a ≤ j < m ∧ pj = x}

This is the same function as Boyer and Moore’s δ1 [BM77]. The following
code replaces the scan part of Algorithm L:

10

〈Scan the text using the skip loop 11a〉 ≡
loop
d := skip(text(k + pattern_size - 1));
exit when d = 0;
k := k + d;
if k > n - pattern_size then
return n;

end if;
end loop;

Used in part 12.

If the exit is taken from this loop then text(k + pattern size - 1) =
pattern(m - 1). We also change the verifying part of Algorithm L to the
following:

〈Verify the match for positions a through m - 2 11b〉 ≡
j := a;
while text(k) = pattern(j) loop
k := k + 1; j := j + 1;
if j = m - 1 then
return k - pattern_size + 1;

end if;
end loop;

Used in part 12.

11

The algorithm incorporating these changes will be called the Accelerated
Linear algorithm, or AL for short. In preliminary form, the algorithm is as
follows:

〈Accelerated Linear algorithm, preliminary version 12〉 ≡
pattern_size := m - a; k := b;

〈Handle pattern size = 1 as a special case 7a〉
〈Compute next table 59〉
〈Compute skip table and mismatch shift 13〉
while k <= n - pattern_size loop

〈Scan the text using the skip loop 11a〉
〈Verify the match for positions a through m - 2 11b〉
if mismatch_shift > j - a then
k := k + (mismatch_shift - (j - a));

else
〈Recover from a mismatch using the next table 9〉

end if;
end loop;
return n;

Used in part 56b.

Following the verification part, we know that the last character of the pattern
and corresponding character of the text are equal, so we can choose whether

12

to proceed to the recovery part that uses the next table or to shift the
pattern by the amount mismatch_shift, predefined as

mismatch shift =

{
m− a if ∀j : a ≤ j < m− 1 ⇒ pj 6= pm−1

m− 1− i otherwise, where i = max{j : a ≤ j < m− 1 ∧ pj = pm−1}

This value can be most easily computed if it is done during the computation
of the skip table:

〈Compute skip table and mismatch shift 13〉 ≡
for i in Character’Range loop
skip(i) := pattern_size;

end loop;
for j in a .. m - 2 loop
skip(pattern(j)) := m - 1 - j;

end loop;
mismatch_shift := skip(pattern(m - 1));
skip(pattern(m - 1)) := 0;

Used in parts 12, 16.

The skip loop as described above performs two tests for exit during each
iteration. As suggested in [BM77], we can eliminate one of the tests by ini-
tializing skip(pattern(m - 1)) to some value large, chosen large enough
to force an exit based on the size of the index. Upon exit, we can then per-
form another test to distinguish whether a match of a text character with

13

the last pattern character was found or the pattern was shifted off the end
of the text string. We also add pattern_size - 1 to k outside the loop
and precompute adjustment = large + pattern size− 1.

〈Scan the text using a single-test skip loop 14〉 ≡
loop
k := k + skip(text(k));
exit when k >= n;

end loop;
if k < n + pattern_size then
return n;

end if;
k := k - adjustment;

Not used.

We can further optimize the skip loop by translating k by n (by writing
k := k - n before the main loop), which allows the exit test to be written
as k >= 0.

14

〈Scan the text using a single-test skip loop, with k translated 15〉 ≡
loop
k := k + skip(text(n + k));
exit when k >= 0;

end loop;
if k < pattern_size then
return n;

end if;
k := k - adjustment;

Used in part 16.

This saves an instruction over testing k >= n, and a good compiler will
compile text(n + k) with only one instruction in the loop since the com-
putation of text + n can be moved outside. (In the C++ version we make
sure of this optimization by putting it in the source code.) With this form
of the skip loop, some compilers are able to translate it into only three
instructions.

How large is large? At the top of the loop we have

k ≥ b− n + pattern size− 1.

In the case in which k is incremented by large, we must have

large + b− n + pattern size− 1 ≥ pattern size.

Hence it suffices to choose large = n− b + 1.

15

〈Accelerated Linear algorithm 16〉 ≡
pattern_size := m - a; text_size := n - b; k := b;

〈Handle pattern size = 1 as a special case 7a〉
〈Compute next table 59〉
〈Compute skip table and mismatch shift 13〉
large := text_size + 1;
skip(pattern(m - 1)) := large;
adjustment := large + pattern_size - 1;
k := k - n;
loop
k := k + pattern_size - 1;
exit when k >= 0;
〈Scan the text using a single-test skip loop, with k translated 15〉
〈Verify match or recover from mismatch 17〉

end loop;
return n;

Used in part 53b.

We can also optimize the verification of a match by handling as a special
case the frequently occurring case in which the first characters do not match.

16

〈Verify match or recover from mismatch 17〉 ≡
if text(n + k) /= pattern(a) then
k := k + mismatch_shift;

else
〈Verify the match for positions a + 1 through m - 1, with k translated 18〉
if mismatch_shift > j - a then
k := k + (mismatch_shift - (j - a));

else
〈Recover from a mismatch using the next table, with k translated 19〉

end if;
end if;

Used in parts 16, 25.

The verification loop used here doesn’t really need to check position m− 1,
but we write it that way in preparation for the hashed version to be described
later.

17

〈Verify the match for positions a + 1 through m - 1, with k translated 18〉 ≡
j := a + 1;
loop
k := k + 1;
exit when text(n + k) /= pattern(j);
j := j + 1;
if j = m then
return n + k - pattern_size + 1;

end if;
end loop;

Used in part 17.

18

〈Recover from a mismatch using the next table, with k translated 19〉 ≡
loop
j := next(j);
if j < a then

k := k + 1;
exit;

end if;
exit when j = a;
while text(n + k) = pattern(j) loop
k := k + 1; j := j + 1;
if j = m then
return n + k - pattern_size;

end if;
if k = 0 then
return n;

end if;
end loop;

end loop;

Used in part 17.

The AL algorithm thus obtained retains the same 2n upper case bound on
the number of comparisons as the original KMP algorithm and acquires
sublinear average time behavior equal or superior to ABM.

19

3 Benchmarking with English Texts

Before generalizing AL by introducing a hash function, let us consider its
use as-is for traditional string matching. We benchmarked five algorithms
with English text searches: a C++ version of SF used in the Hewlett-Packard
STL implementation; L and AL in their C++ versions as given later in the
paper and appendices; and the C versions of ABM [BM77] and TBM as
given by Hume and Sunday [HS91]. (The version of AL actually used is the
hashed version, HAL, discussed in the next section, but using the identity
function as the hash function.)

We searched for patterns of size ranging from 2 to 18 in Lewis Carroll’s
Through the Looking Glass. The text is composed of 171,556 characters, and
the test set included up to 800 different patterns for each pattern size—400
text strings chosen at evenly spaced positions in the target text and up to
400 words chosen from the Unix spell-check dictionary (for longer pattern
sizes there were fewer than 400 words). Table 1 shows search speeds of the
five algorithms with code compiled and executed on three different systems:

1. g++ compiler, version 2.7.2.2, 60-Mh Pentium processor;

2. SGI CC compiler, version 7.10, SGI O2 with MIPS R5000 2.1 proces-
sor;

3. Apogee apCC compiler, version 3.0, 200 MHz UltraSPARC processor.

20

Pattern Algorithm System 1 System 2 System 3
Size

2 ABM 8.89665 24.6946 32.9261
HAL 8.26117 24.6946 32.9261

L 6.08718 24.6946 32.9261
SF 4.28357 9.87784 24.6946

TBM 10.5142 32.9261 32.9261
4 ABM 20.4425 46.7838 68.9446

HAL 23.3995 51.0369 83.6137
L 6.52724 27.8712 38.9093

SF 4.29622 9.84923 23.3919
TBM 21.2602 49.123 71.4517

6 ABM 28.1637 60.2832 89.4829
HAL 31.2569 63.6323 108.055

L 6.45279 27.4015 37.9265
SF 4.28142 9.84005 22.1973

TBM 29.2294 62.249 93.8837
8 ABM 33.7463 69.2828 106.674

HAL 37.0999 73.0482 126.801
L 6.34086 26.6684 36.5241

SF 4.23323 9.78229 22.0342
TBM 35.3437 72.2627 112.007

10 ABM 39.6329 76.2308 117.47
HAL 42.5986 80.5134 135.202

L 6.32525 26.6383 36.1904
SF 4.22537 9.74924 21.9134

TBM 41.1973 78.7439 125.714
14 ABM 47.7986 89.1214 129.631

HAL 49.8997 92.9962 147.511
L 6.22037 25.9262 33.6837

SF 4.189 9.72233 21.1774
TBM 49.3573 92.9962 142.594

18 ABM 50.1514 97.859 141.352
HAL 50.1514 101.773 159.021

L 5.86185 24.7023 31.4115
SF 4.05173 9.63763 21.0275

TBM 51.2912 97.859 149.667

Table 1: Algorithm Speed (Characters Per Microsecond) in English Text
Searches on Three Systems

21

These results show that HAL, ABM, and TBM are quite close in perfor-
mance and are substantially better than the SF or L algorithms. On Sys-
tem 1, TBM is a slightly faster than HAL on the longer strings, but not
enough to outweigh two significant drawbacks: first, like SF, it takes Ω(mn)
time in the worst case; and, second, it achieves its slightly better average
case performance though the use of character frequency distribution infor-
mation that might need to be changed in applications of the algorithm other
than English text searches. For both of these reasons, TBM is not a good
candidate for inclusion in a library of generic algorithms.

For more machine independent performance measures, we show in a later
section the number of operations per character searched, for various kinds
of operations.

4 Hashed Accelerated Linear Algorithm

The skip loop produces a dramatic effect on the algorithm, when we search
for a word or a phrase in an ordinary English text or in the text in some
other natural or programming language with a mid-sized alphabet (26-256
characters, say). However, algorithms that use this technique are dependent
on the alphabet size. In case of a large alphabet, the result is increased
storage requirements and overhead for initialization of the occurrence table.
Secondary effects are also possible due to architectural reasons such as cache
performance. Performance of the skip loop is also diminished in cases in

22

which the pattern size is much greater than the size of the alphabet. A
good example of this case is searching for DNA patterns, which could be
relatively long, say 250 characters, whereas the alphabet contains only four
characters. In this section we show how to generalize the skip loop to handle
such adverse cases.

The key idea of the generalization is to apply a hash function to the
current position in the text to obtain an argument for the skip function.

〈Scan the text using a single-test skip loop with hashing 23〉 ≡
loop
k := k + skip(hash(text, n + k));
exit when k >= 0;

end loop;
if k < pattern_size then
return n;

end if;
k := k - adjustment;

Used in part 25.

We have seen that the skip loop works well when the cardinality of domain
of the skip function is of moderate size, say σ = 256, as it is in most
conventional string searches. When used with sequences over a type T with
large (even infinite) cardinality, hash can be chosen so that it maps T values
to the range [0, σ). Conversely, if the cardinality of T is smaller than σ, we

23

can use more than one element of the text sequence to compute the hash
value in order to obtain σ distinct values. In the context in which the skip
loop appears, we always have available at least pattern_size elements;
whenever pattern_size is too small to yield σ different hash values, we can
either make do with fewer values or resort to an algorithm that does not
use a skip loop, such as Algorithm L. (The skip loop is not very effective for
small pattern lengths anyway.)

Of course, the skip table itself and the mismatch shift value must be com-
puted using the hash function. Let suffix_size be the number of sequence
elements used in computing the hash function, where 1 ≤ suffix size ≤
pattern size.

〈Compute skip table and mismatch shift using the hash function 24〉 ≡

for i in hash_range loop
skip(i) := pattern_size - suffix_size + 1;

end loop;
for j in a + suffix_size - 1 .. m - 2 loop
skip(hash(pattern, j)) := m - 1 - j;

end loop;
mismatch_shift := skip(hash(pattern, m - 1));
skip(hash(pattern, m - 1)) := 0;

Used in part 25.

24

The remainder of the computation can remain the same, so we have the
following algorithm in which it is assumed that the hash function uses up
to suffix_size elements, where 1 ≤ suffix size ≤ pattern size.

〈Hashed Accelerated Linear algorithm 25〉 ≡
pattern_size := m - a; text_size := n - b; k := b;

〈Handle pattern size = 1 as a special case 7a〉
〈Compute next table 59〉
〈Compute skip table and mismatch shift using the hash function 24〉
large := text_size + 1;
skip(hash(pattern, m - 1)) := large;
adjustment := large + pattern_size - 1;
k := k - n;
loop
k := k + pattern_size - 1;
exit when k >= 0;
〈Scan the text using a single-test skip loop with hashing 23〉
〈Verify match or recover from mismatch 17〉

end loop;
return n;

Used in part 56a.

This algorithm will be called HAL. Note that AL is itself a special case of

25

HAL, obtained using

hash(text, k) = text(k) and (hence) suffix size = 1,

By inlining hash, we can use HAL instead of AL with minimal performance
penalty (none with a good compiler).

It is also noteworthy that in this application of hashing, a “bad” hash
function causes no great harm, unlike the situation with associative table
searching in which hashing methods usually have excellent average case per-
formance (constant time) but with a bad hash function can degrade terribly
to linear time. (Thus, in a table with thousands of elements, searching
might take thousands of times longer than expected.) Here the worst that
can happen—with, say, a hash function that maps every element to the same
value—is that a sublinear algorithm degrades to linearity. As a consequence,
in choosing hash functions we can lean toward ease of computation rather
than uniform distribution of the hash values.

There is, however, an essential requirement on the hash function that
must be observed when performing sequence matching in terms of an equiv-
alence relation ≡ on sequence elements that is not an equality relation. In
this case, we must require that equivalent values hash to the same value:

x ≡ y ⊃ hash(x) = hash(y)

for all x, y ∈ T . We discuss this requirement further in a later section on
generic library versions of the algorithms.

26

5 Searching for DNA Patterns

As an important example of the use of the HAL algorithm, consider DNA
searches, in which the alphabet has only four characters and patterns may
be very long, say 250 characters. For this application we experimented with
hash functions hck that map a string of c characters into the integer range
[0, k). We chose four such functions, h2,64, h3,512, h4,256, and h5,256, all of
which add up the results of various shifts of the characters they inspect. For
example,2

h4,256(t, k) = (t(k − 3) + 22t(k − 2) + 24t(k − 1) + 26t(k))mod 256.

The algorithms that use these hash functions bear the names HAL2, HAL3,
HAL4, and HAL5, respectively. The other contestants were SF, L, ABM
and the Giancarlo-Boyer-Moore algorithm (GBM), which was described in
[HS91] and was considered to be the fastest for DNA pattern matching.

We searched for patterns of size ranging from 20 to 200 in a text of
DNA strings obtained from [DNAsource]. The text is composed of 997,642
characters, and the test set included up to 80 different patterns for each
pattern size—40 strings chosen at evenly spaced positions in the target text
and up to 40 patterns chosen from another file from [DNAsource] (for longer
pattern sizes there were fewer than 40 patterns). Table 2 shows search speeds

2In the C++ coding of this computation we use shifts in place of multiplication and
masking in place of division. The actual C++ versions are shown in an appendix.

27

of the five algorithms with code compiled and executed on the same three
systems as in the English text experiments (the systems described preceding
Table 1).

We see that each of the versions of HAL is significantly faster than
any of the other algorithms, and the speed advantage increases with longer
patterns—for patterns of size 200, HAL5 is over 3.5 to 5.5 times faster than
its closest competitor, GBM, depending on the system. It appears that
HAL4 is slightly faster than HAL5 or HAL3, but further experiments with
different hash functions might yield even better performance.

6 Large Alphabet Case

Suppose the alphabet Σ has 216 = 65, 536 symbols, as in Unicode for ex-
ample. To use the skip loop directly we must initialize a table with 65,536
entries. If we are only going to search, say, for a short pattern in a 10,000
character text, the initialization overhead dominates the rest of the compu-
tation.

One way to eliminate dependency on the alphabet size is to use a large
zero-filled global table skip1(x) = skip(x)−m, so that the algorithm fills at
most m positions with pattern-dependent values at the beginning, performs
a search, and then restores zeroes. This approach makes the algorithm non-
reentrant and therefore not suitable for multi-threaded applications, but it
seems worth investigating for single-threaded applications.

28

Pattern Algorithm System 1 System 2 System 3
Size

20 ABM 16.0893 37.3422 55.6074
GBM 25.8827 62.3888 138.267
HAL 13.1493 32.5853 53.8514

HAL2 28.7208 67.3143 146.168
HAL3 22.8165 63.9486 131.177
HAL4 21.9008 58.135 113.686

L 4.33091 16.3971 18.9477
SF 3.28732 8.31851 16.94

TBM 18.0395 42.6324 63.1591
50 ABM 19.5708 44.693 70.6633

GBM 33.6343 78.046 193.67
HAL 13.6876 33.736 60.8033

HAL2 49.5795 106.716 275.215
HAL3 43.4625 106.716 290.505
HAL4 42.632 96.8349 249.004

L 4.3519 16.6003 19.439
SF 3.28906 8.31333 16.7599

TBM 24.0764 54.4696 87.1514
100 ABM 21.2655 49.6781 73.4371

GBM 36.6439 85.8841 220.311
HAL 12.946 32.0706 56.3018

HAL2 70.4997 163.457 389.782
HAL3 71.2744 187.673 460.651
HAL4 70.4997 168.905 460.651

L 4.24474 16.0862 19.1938
SF 3.24623 8.23929 16.5054

TBM 27.8368 66.6732 105.566
150 ABM 24.2269 56.1366 86.667

GBM 37.6383 86.667 205.834
HAL 14.0205 34.5456 60.9879

HAL2 84.3097 197.601 548.891
HAL3 91.641 247.001 548.891
HAL4 90.3318 235.239 494.002

L 4.33395 16.3037 19.5258
SF 3.28992 8.33056 17.0935

TBM 29.1393 72.6474 107.392
200 ABM 23.9786 55.3853 86.3636

GBM 37.0578 90.9902 212.31
HAL 13.3106 33.3036 57.9028

HAL2 89.3449 221.541 509.545
HAL3 103.527 283.081 636.931
HAL4 105.196 283.081 566.161

L 4.26565 16.2275 19.0841
SF 3.25946 8.28528 16.8167

TBM 28.7321 73.8471 113.232

Table 2: Algorithm Speed (Characters Per Microsecond) in DNA Searches
on Three Systems

29

Another approach is to use HAL with, say,

H(t, k) = t(k) mod 256

as the hash function. In order to compare these two approaches we imple-
mented a non-hashed version of AL using skip1, called NHAL, and bench-
marked it against HAL with H as the hash function. The C++ code for
NHAL is shown in an appendix.

We searched for patterns of size ranging from 2 to 18 in randomly gener-
ated texts of size 1,000,000 characters, with each character being an integer
chosen with uniform distribution from 0 to 65,535. Patterns were chosen
from the text at random positions. The test set included 500 different pat-
terns for each pattern size. Table 3 summarizes the timings obtained using
the same three systems as decribed preceding Table 1. We can see that
HAL demonstrates significantly better performance than NHAL. On sys-
tems 1 and 2 the ratio of HAL’s speed to NHAL’s is much higher than on
system 3, and we attribute this disparity to poor optimization abilities of
the compilers we used on systems 1 and 2.

We conclude that the hashing technique presents a viable and efficient
way to eliminate alphabet-size dependency of search algorithms that use the
skip loop.

30

Pattern Algorithm System 1 System 2 System 3
Size

2 HAL 10.4369 27.3645 39.5632
L 7.11972 28.5543 41.5664

NHAL 6.63479 12.3915 26.4818
SF 4.48334 9.83157 23.125

4 HAL 18.7455 44.375 64.3873
L 7.125 28.3082 41.5665

NHAL 10.9539 21.0497 47.5906
SF 4.48611 9.86112 22.8038

6 HAL 25.3206 54.9243 86.7225
L 7.1179 28.4091 41.7146

NHAL 14.2358 28.1663 63.3741
SF 4.505 9.86663 23.0451

8 HAL 31.1354 67.1919 94.0686
L 7.12946 28.6296 41.676

NHAL 16.9606 33.5959 80.3025
SF 4.49445 9.88709 22.7062

10 HAL 35.7717 72.4895 112.484
L 7.09913 28.3655 41.2915

NHAL 19.1634 38.3768 98.8494
SF 4.49017 9.85507 22.8114

14 HAL 42.9195 78.1701 149.234
L 7.1132 28.5491 41.0393

NHAL 23.5262 47.5818 136.798
SF 4.48911 9.80043 22.7996

18 HAL 47.51862 96.9324 173.458
L 7.144521 28.1684 41.1963

NHAL 26.4274 56.8225 164.785
SF 4.48312 9.80864 22.8868

Table 3: Algorithm Speed (Characters Per Microsecond) in Large Alphabet
Case on Three Systems

31

7 Generic Search Algorithms

As we have seen, the HAL algorithm retains its efficiency advantages in a
wide variety of search problems of practical interest, including traditional
string searching with small or large alphabets, and short or long patterns.
These qualities make it a good candidate for abstraction to searching in
sequences over an arbitrary type T , for inclusion in generic software libraries
such as the C++ Standard Template Library (STL) [StepanovLee, MS96].

By some definitions of genericity, HAL is already a generic algorithm,
since the hash function can be made a parameter and thus the algorithm can
be adapted to work with any type T . In STL, however, another important
issue bearing on the generality of operations on linear sequences is the kind
of access to the sequences assumed—random access or something weaker,
such as forward, single-step advances only. STL generic algorithms are spec-
ified to access sequences via iterators, which are generalizations of ordinary
C/C++ pointers. STL defines five categories of iterators, the most powerful
being random-access iterators, for which computing i + n or i− n, for iter-
ator i and integer n, is a constant time operation. Forward iterators allow
scanning a sequence with only single-step advances and only in a forward
direction. AL and HAL require random access for most efficient operation
of the skip loop, whereas Algorithm L, with only minor modifications to the
expository version, can be made to work efficiently with forward iterators.

The efficiency issue is considered crucial in the STL approach to gener-
icity. STL is not a set of specific software components but a set of require-

32

ments which components must satisfy. By making time complexity part of
the requirements for components, STL ensures that compliant components
not only have the specified interfaces and semantics but also meet certain
computing time bounds. The requirements on most components are stated
in terms of inputs and outputs that are linear sequences over some type T .
The requirements are stated as generally as possible, but balanced against
the goal of using efficient algorithms. In fact, the requirements were gen-
erally chosen based on knowledge of existing efficient concrete algorithms,
by finding the weakest assumptions—about T and about how the sequence
elements are accessed—under which those algorithms could still be used
without losing their efficiency. In most cases, the computing time require-
ments are stated as worst-case bounds, but exceptions are made when the
concrete algorithms with the best worst-case bounds are not as good in
the average case as other algorithms, provided the worst cases occur very
infrequently in practice.

In the case of sequence search algorithms, the concrete algorithms con-
sidered for generalization to include in STL were various string-search algo-
rithms, including BM, KMP, and SF. Although KMP has the lowest worst-
case bound, it was stated in the original STL report [StepanovLee] that SF
was superior in the average case.3 And although BM has excellent average

3The original STL requirements included the following statement (which has been
dropped in more recent versions of the Draft C++ Standard): “. . . The Knuth-Morris-
Pratt algorithm is not used here. While the KMP algorithm guarantees linear time,
it tends to be slower in most practical cases than the naive algorithm with worst-case

33

time behavior, it was evidently ruled out as a generic algorithm because of
its alphabet size dependency. Thus the generic search algorithm require-
ments were written with a O(mn) time bound, to allow its implementation
by SF.4

Thus in the Draft C++ Standard dated December 1996 [DraftCPP], two
sequence search functions are required, with the specifications:

template <typename ForwardIterator1, typename ForwardIterator2>
ForwardIterator1 search(ForwardIterator1 first1,

ForwardIterator1 last1,
ForwardIterator2 first2,
ForwardIterator2 last2);

template <typename ForwardIterator1, typename ForwardIterator2,
typename BinaryPredicate>

ForwardIterator1 search(ForwardIterator1 first1,
ForwardIterator1 last1,
ForwardIterator2 first2,

quadratic behavior” As we have already seen from Table 1, however, a suitably
optimized version of KMP—Algorithm L—is significantly faster than SF.

4This did not preclude library implementors from also supplying a specialization of the
search operation for the string search case, implemented with BM. The original require-
ments statement for the search operation noted this possibility but more recent drafts fail
to mention it. We are not aware of any currently available STL implementations that do
provide such a specialization.

34

ForwardIterator2 last2,
BinaryPredicate pred);

Effects: Finds a subsequence of equal values in a sequence.

Returns: The first iterator i in the range [first1, last1−(last2−first2)) such
that for any non-negative integer n less than last2−first2 the following
corresponding conditions hold: ∗(i + n) = ∗(first2 + n), pred(∗(i +
n), ∗(first2 + n)) 6= false. Returns last1 if no such iterator is found.

Complexity: At most (last1 − first1) ∗ (last2 − first2) applications of the
corresponding predicate.

Before going further, we note that the results of the present article would
allow the complexity requirement to be replaced with the much stronger
requirement that the computing time be O((last1−first1)+(last2−first2)).

We will base our discussion on the first interface, which assumes opera-
tor== is used for testing sameness of two sequence elements; the only added
issue for the binary predicate case is the requirement mentioned earlier, that
for HAL we must choose a hash function compatible with the binary pred-
icate, in the sense that any two values that are equivalent according to the
predicate must be mapped to the same value by the hash function. For-
tunately, for a given predicate it is usually rather easy to choose a hash
function that guarantees this property. (A heuristic guide is to choose a
hash function that uses less information than the predicate.)

35

The fact that this standard interface only assumes forward iterators
would seem to preclude HAL, since the skip loop requires random access.
There are however many cases of sequence searching in which we do have
random access, and we do not want to miss the speedup afforded by the skip
loop in those cases. Fortunately, it is possible to provide for easy selection of
the most appropriate algorithm under different actual circumstances, includ-
ing whether random access or only forward access is available, and whether
type T has a small or large number of distinct values. For this purpose we
use traits, a programming device for compile-time selection of alternative
type and code definitions. Traits are supported in C++ by the ability to
give definitions of function templates or class templates for specializations
of their template parameters.5

Algorithm L is not difficult to adapt to work with iterators instead of
array indexing. The most straightforward translation would require random
access iterators, but with a few adjustments we can express the algorithm
entirely with forward iterator operations, making it fit the STL search
function interface.

5Limited forms of the trait device were used in defining some iterator operations in
the first implementations of STL. More recently the trait device has been adopted more
broadly in other parts of the library, particularly to provide different definitions of floating
point and other parameters used in numeric algorithms. The most elaborate uses of the
device employ the recently added C++ feature of partial specialization, in which new
definitions can be given with some template parameters specialized while others are left
unspecialized. Few C++ compilers currently support partial specialization, but we do not
need it here anyway.

36

〈User level search function 37a〉 ≡
template <typename ForwardIterator1, typename ForwardIterator2>
inline ForwardIterator1 search(ForwardIterator1 text,

ForwardIterator1 textEnd,
ForwardIterator2 pattern,
ForwardIterator2 patternEnd)

{
typedef iterator_traits<ForwardIterator1> T;
return __search(text, textEnd, pattern, patternEnd, T::iterator_category());

}

Used in part 77.

When we only have forward iterators, we use Algorithm L.

〈Forward iterator case 37b〉 ≡
template <typename ForwardIterator1, typename ForwardIterator2>
inline ForwardIterator1 __search(ForwardIterator1 text,

ForwardIterator1 textEnd,
ForwardIterator2 pattern,
ForwardIterator2 patternEnd,
forward_iterator_tag)

{
return __search_L(text, textEnd, pattern, patternEnd);

}

37

template <typename ForwardIterator1, typename ForwardIterator2>
ForwardIterator1 __search_L(ForwardIterator1 text,

ForwardIterator1 textEnd,
ForwardIterator2 pattern,
ForwardIterator2 patternEnd)

{
typedef typename iterator_traits<ForwardIterator2>::difference_type Distance2;
ForwardIterator1 advance, hold;
ForwardIterator2 p, p1;
Distance2 j, m;
vector<Distance2> next;
vector<ForwardIterator2> pattern_iterator;

〈Compute next table (C++ forward) 39a〉
m = next.size();
〈Algorithm L, optimized linear pattern search (C++) 40〉

}

Used in part 77.

We store the next table in an STL vector, which provides random access
to the integral next values; to be able to get from them back to the correct
positions in the pattern sequence we also store iterators in another vector,
pattern_iterator.

38

〈Compute next table (C++ forward) 39a〉 ≡
compute_next(pattern, patternEnd, next, pattern_iterator);

Used in part 37b.

〈Define procedure to compute next table (C++ forward) 39b〉 ≡
template <typename ForwardIterator, typename Distance>
void compute_next(ForwardIterator pattern,

ForwardIterator patternEnd,
vector<Distance>& next,
vector<ForwardIterator>& pattern_iterator)

{
Distance t = -1;
next.reserve(32);
pattern_iterator.reserve(32);
next.push_back(-1);
pattern_iterator.push_back(pattern);
for (;;) {
ForwardIterator advance = pattern;
++advance;
if (advance == patternEnd)
break;

while (t >= 0 && *pattern != *pattern_iterator[t])
t = next[t];

++pattern; ++t;
if (*pattern == *pattern_iterator[t])

39

next.push_back(next[t]);
else
next.push_back(t);

pattern_iterator.push_back(pattern);
}

}

Used in part 77.

Returning to the search algorithm itself, the details are as follows:

〈Algorithm L, optimized linear pattern search (C++) 40〉 ≡

〈Handle pattern size = 1 as a special case (C++) 41a〉
p1 = pattern; ++p1;
while (text != textEnd) {

〈Scan the text for a possible match (C++) 41b〉
〈Verify whether a match is possible at the position found (C++) 42〉
〈Recover from a mismatch using the next table (C++ forward) 43〉

}
return textEnd;

Used in part 37b.

For the case of pattern size 1, we use the STL generic linear search algorithm,
find.

40

〈Handle pattern size = 1 as a special case (C++) 41a〉 ≡
if (next.size() == 1)
return find(text, textEnd, *pattern);

Used in parts 40, 84, 93.

The three parts of the body of the main loop are direct translations from
the Ada versions given earlier, using pointer manipulation in place of array
indexing.

〈Scan the text for a possible match (C++) 41b〉 ≡
while (*text != *pattern)
if (++text == textEnd)
return textEnd;

Used in part 40.

41

〈Verify whether a match is possible at the position found (C++) 42〉 ≡
p = p1; j = 1;
hold = text;
if (++text == textEnd)
return textEnd;

while (*text == *p) {
if (++p == patternEnd)
return hold;

if (++text == textEnd)
return textEnd;

++j;
}

Used in part 40.

42

〈Recover from a mismatch using the next table (C++ forward) 43〉 ≡
for (;;) {
j = next[j];
if (j < 0) {
++text;
break;

}
if (j == 0)
break;

p = pattern_iterator[j];
while (*text == *p) {
++text; ++p; ++j;
if (p == patternEnd) {

〈Compute and return position of match 44〉
}
if (text == textEnd)
return textEnd;

}
}

Used in part 40.

Returning the match position requires use of the hold iterator saved for that
purpose.

43

〈Compute and return position of match 44〉 ≡
advance = hold;
for (int i = m; --i >= 0;)
++advance;

while (advance != text)
++advance, ++hold;

return hold;

Used in part 43.

Through the use of traits, we provide for automatic selection of either the
above version of algorithm L in the case of forward or bidirectional itera-
tors, or the faster HAL algorithm when random access to the sequences is
available. STL random access iterators permit the use of either array in-
dex notation very similar that in the expository version of the algorithm, or
pointer notation as shown above for algorithm L, but with additional oper-
ations such as p + k. Although it is commonplace to use pointer notation
for efficiency reasons, we avoid it in this case because the calculation of the
large value cannot be guaranteed to be valid in pointer arithmetic. The
advantage of the single-test skip loop outweighs any disadvantage due to
array notation calculations.

The trait interface also allows the user to supply the hash function, but
various useful default hash functions can be provided. The full details, in-
cluding complete source code, are shown in an appendix. The code is avail-

44

able from http://www.cs.rpi.edu/˜musser/gp. The code supplied includes
a set of operation counting components [Mu96] that permit easy gathering
of statistics on many different kinds of operations, including data element
accesses and comparisons, iterator operations, and “distance operations,”
which are arithmetic operations on integer results of iterator subtractions.
These counts are obtained without modifying the source code of the al-
gorithms at all, by specializing their type parameters with classes whose
operations have counters built into them. Table 4 shows counts of data
comparisons and other data accesses, iterator “big jumps” and other itera-
tor operations, and distance operations. In each case the counts are divided
by the number of characters searched. These statistics come from searches
of the same English text, Through the Looking Glass, with the same selec-
tion of patterns, as discussed earlier. For ABM and TBM, not all operations
were counted because the algorithms are from Hume and Sunday’s original
C code and therefore could not be specialized with the counting compo-
nents. For these algorithms a manually instrumented version (supplied as
part of the code distribution [HS91]) kept count of data comparisons and
accesses. The table shows that HAL, like ABM and TBM, does remarkably
few equality comparison operations on sequence elements—only about 1 per
100 elements for the longer patterns, no more than twice that for the shorter
ones. They do access the elements substantially more often than that, in
their respective skip loops, but still always sublinearly. With string match-
ing, the comparisons and accesses are inexpensive, but in other applications
of sequence matching they might cost substantially more than iterator or

45

distance operations. In such applications the savings in execution time over
SF or L could be even greater.

For example, an appendix shows one experiment in which the text of
Through the Looking Glass was stored as a sequence of words, each word
being a character string, and the patterns were word sequences of different
lengths chosen from evenly spaced positions in the target word sequence.
In this case, element comparisons were word comparisons, which could be
significantly more costly than iterator or distance operations. HAL was
again substantially faster than the other contestants, SF and L. The ABM
and TBM algorithms from [HS91] were not considered because they are
only applicable to string matching, but it was easy to specialize the three
generic algorithms to this case of sequence matching, just by plugging in the
appropriate types and, in the case of HAL, defining a suitable hash function.
(We used a function that returns the first character of a word.)

8 How to Obtain the Appendices and Code

An expanded version of this paper, including appendices that contain and
document the complete source code for all benchmark experiments described
in the paper, will be maintained indefinitely for public access on the Internet
at http://www.cs.rpi.edu/˜musser/gp/. By downloading the Nuweb source

46

file, gensearch.w, and using Briggs’ Nuweb tool [Briggs],6 readers can also
easily generate all of the source code described in the paper and appendices.

9 Conclusion

When we began this research, our main goal was to develop a generic se-
quence search algorithm with a linear worst-case time bound and with bet-
ter average case performance than KMP and SF, so that it could be used in
generic software libraries such as the C++ Standard Template Library. We
expected that for most of the useful special cases, such as English text or
DNA substring matching, it would probably be better to provide separate al-
gorithms tailored to those cases. It was therefore surprising to discover that
for the substring matching problem itself a new, superior algorithm could be
obtained by combining Boyer and Moore’s skip loop with the Knuth-Morris-
Pratt algorithm. By also developing a hashed version of the skip loop and
providing for selection of different variants of the technique using traits, we
obtained a generic algorithm, HAL, with all of the attributes we originally
sought. Moreover, when specialized to the usual string matching cases of

6We started with a version of the Nuweb tool previously modified by Ramsdell and
Mengel and made additional small changes in terminology in the LATEX file the tool pro-
duces: “part” is used in place of “scrap” and “definition” in place of “macro.” This
version, called Nuweb 0.91, is available from http://www.cs.rpi.edu/˜musser/gp/. The
new version does not differ from previous versions in the way it produces code files from
Nuweb source files.

47

the most practical interest, such as English text matching and DNA string
matching, the new algorithm beats most of the existing string matching
algorithms.

Since HAL has a linear upper bound on the number of comparisons, it
can be used even in mission-critical applications where the potential O(mn)
behavior of the straightforward algorithm or Hume and Sunday’s TBM al-
gorithm would be a serious concern. In such applications, as well as in
less-critical applications, HAL’s performance in the average case is not only
linear, but sublinear, beating even the best versions of the Boyer Moore
algorithm. Since we have provided it in a generic form—in particular, in
the framework of the C++ Standard Template Library—the new algorithm
is easily reusable in many different contexts.

Acknowledgement: This work was partially supported by a grant from
IBM Corporation.

References

[BM77] R. Boyer and S. Moore. A fast string matching algorithm. CACM,
20(1977),762–772. 1, 1, 3

[Briggs] P. Briggs, Nuweb, a simple literate programming tool, Version
0.87, 1989. 1, 8

48

[Cole96] R. Cole. Tight bounds on the complexity of the Boyer-Moore
string matching algorithm, SIAM Journal on Computing 5
(1994): 1075–1091. 1

[CGG90] L. Colussi, Z. Galil, R. Giancarlo. On the Exact Complexity of
String Matching. Proceedings of the Thirty First Annual IEEE
Symposium on the Foundations of Computer Science, 1990, 135–
143.

[DNAsource] H.S. Bilofsky, C. Burks, The GenBank(r) genetic sequence
data bank. Nucl. Acids Res. 16 (1988), 1861–1864. 2

[Ga79] Z. Galil. On Improving the worst case running time of the Boyer-
Moore string matching algorithm. CACM 22 (1979), 505–508.

[GS83] Z. Galil, J. Seiferas. Time space optimal string matching. JCSS
26 (1983), 280–294.

[DraftCPP] Accredited Standards Committee X3 (American National Stan-
dards Institute), Information Processing Systems, Working pa-
per for draft proposed international standard for information
systems—programming language C++. Doc No. X3J16/95-0185,
WG21/N0785.[[Check for most recent version.]] 4

[GO77] L.J. Guibas, A.M. Odlyzko, A new proof of the linearity of the
Boyer-Moore string searching algorithm. Proc. 18th Ann. IEEE
Symp. Foundations of Comp. Sci., 1977, 189–195

49

[Horspool88] R.N. Horspool. Practical fast searching in strings Soft.-Prac.
and Exp., 10 (March 1980), 501–506 1

[Hume88] A. Hume. A tale of two greps. Soft.-Prac. and Exp. 18 (November
1988), 1063–1072.

[HS91] A. Hume, S. Sunday. Fast string searching. Soft.-Prac. and Exp.
21 (November 1991), 1221–1248. 1, 3, 2, 5, 5

[Knuth84] D.E. Knuth, Literate programming. Computer Journal 27 (1984),
97–111. 1

[KMP77] D.E. Knuth, J. Morris, V. Pratt. Fast pattern matching in strings.
SIAM Journal on Computing 6 (1977), 323–350. 1, 2

[Mu96] D.R. Musser. Measuring Computing Times and Operation
Counts, http://www.cs.rpi.edu/musser/gp/timing.html. 5

[MS96] D.R. Musser, A. Saini. STL Tutorial and Reference Guide: C++

Programming with Standard Template Library. Addison-Wesley,
Reading, MA, 1996. 7

[SGI96] Silicon Graphics Standard Template Library Programming
Guide, online guide, http://www.sgi.com/Technology/STL/.

[Sm82] G.V. Smit. A comparison of three string matching algorithms.
Soft.-Prac. and Exp. 12, 1 (Jan 1982), 57–66. 1

50

[StepanovLee] A.A. Stepanov, M. Lee, The Standard Template Library,
Tech. Report HPL-94-34, April 1994, revised October 31, 1995.
7

[Su90] D.M. Sunday. A very fast substring search algorithm. CACM 33
(August 1990), 132–142. 1

51

A Tests of Expository Versions of the Algorithms

To help ensure against errors in the expository versions of the algorithms in
this paper, we compiled them as part of several Ada test programs, using
both the GNAT Ada 95 compiler, version 3.09, and the Aonix ObjectAda
compiler, Special Edition, version 7.1.

A.1 Algorithm Declarations

We have not attempted to develop Ada generic subprograms based on the
expository versions of the algorithms; instead we encapsulate them here with
non-generic interfaces we can use in simple test programs based on string
(Ada character array) searches.

〈Sequence declarations 52〉 ≡
type Character_Sequence is array(Integer range <>) of Character;
type Integer_Sequence is array(Integer range <>) of Integer;
type Skip_Sequence is array(Character range <>) of Integer;

Used in parts 60, 68b, 72c.

52

〈Algorithm subprogram declarations 53a〉 ≡

〈Define procedure to compute next table 58〉
〈Non-hashed algorithms 53b〉
〈Simple hash function declarations 55〉
〈HAL declaration 56a〉

Used in parts 60, 68b, 72c.

〈Non-hashed algorithms 53b〉 ≡
function KMP(text, pattern: Character_Sequence;

b, n, a, m: Integer) return Integer is
pattern_size, j, k: Integer;
next: Integer_Sequence(a .. m - 1);

begin

〈Compute next table 59〉
〈Basic KMP 5〉

end KMP;

function L(text, pattern: Character_Sequence;
b, n, a, m: Integer) return Integer is

pattern_size, j, k: Integer;
next: Integer_Sequence(a .. m - 1);

begin

53

pattern_size := m - a;

〈Compute next table 59〉
〈Algorithm L, optimized linear pattern search 6〉

end L;

function SF(text, pattern: Character_Sequence;
b, n, a, m: Integer) return Integer is

pattern_size, j, k: Integer;
begin
pattern_size := m - a; k := b;

〈Handle pattern size = 1 as a special case 7a〉
while k <= n - pattern_size loop

〈Scan the text for a possible match 7b〉
〈Verify whether a match is possible at the position found 8〉
k := k - (j - a) + 1;

end loop;
return n;

end SF;

function AL(text, pattern: Character_Sequence;
b, n, a, m: Integer) return Integer is

pattern_size, text_size, j, k, large, adjustment, mismatch_shift: Integer;
next: Integer_Sequence(a .. m - 1);
skip: Skip_Sequence(Character’Range);

begin

54

〈Accelerated Linear algorithm 16〉
end AL;

Used in part 53a.

The following is a sample hash function definition that makes HAL essen-
tially equivalent to AL.

〈Simple hash function declarations 55〉 ≡
subtype hash_range is Integer range 0..255;

function hash(text: Character_Sequence; k: Integer) return hash_range;
pragma inline(hash);

function hash(text: Character_Sequence; k: Integer) return hash_range is
begin
return hash_range(character’pos(text(k)));

end hash;

suffix_size: constant Integer := 1;

Used in part 53a.

55

〈HAL declaration 56a〉 ≡
function HAL(text, pattern: Character_Sequence;

b, n, a, m: Integer) return Integer is
pattern_size, text_size, j, k, large, adjustment, mismatch_shift: Integer;
next: Integer_Sequence(a .. m - 1);
skip: Integer_Sequence(hash_range);

begin

〈Hashed Accelerated Linear algorithm 25〉
end HAL;

Used in part 53a.

For comparison of HAL with other algorithms we also compose the following
declarations:

〈Additional algorithms 56b〉 ≡
function AL0(text, pattern: Character_Sequence;

b, n, a, m: Integer) return Integer is
pattern_size, j, k, d, mismatch_shift: Integer;
next: Integer_Sequence(a .. m - 1);
skip: Skip_Sequence(Character’Range);

begin

〈Accelerated Linear algorithm, preliminary version 12〉
end AL0;

function SF1(text, pattern: Character_Sequence;

56

b, n, a, m: Integer) return Integer is
pattern_size, j, k, k0: Integer;

begin
pattern_size := m - a;
if n < m then
return n;

end if;
j := a; k := b; k0 := k;
while j /= m loop
if text(k) /= pattern(j) then
if k = n - pattern_size then
return n;

else
k0 := k0 + 1; k := k0; j := a;

end if;
else
k := k + 1; j := j + 1;

end if;
end loop;
return k0;

end SF1;

function SF2(text, pattern: Character_Sequence;
b, n, a, m: Integer) return Integer is

pattern_size, j, k, k0, n0: Integer;
begin
pattern_size := m - a;

57

if n - b < pattern_size then
return n;

end if;
j := a; k := b; k0 := k; n0 := n - b;
while j /= m loop
if text(k) = pattern(j) then
k := k + 1; j := j + 1;

else
if n0 = pattern_size then
return n;

else
k0 := k0 + 1; k := k0; j := a; n0 := n0 - 1;

end if;
end if;

end loop;
return k0;

end SF2;

Used in parts 60, 68b, 72c.

For computing the KMP next table we provide the following procedure and
calling code:

〈Define procedure to compute next table 58〉 ≡

procedure Compute_Next(pattern: Character_Sequence; a, m: Integer;

58

next: out Integer_Sequence) is
j: Integer := a;
t: Integer := a - 1;

begin
next(a) := a - 1;
while j < m - 1 loop
while t >= a and then pattern(j) /= pattern(t) loop

t := next(t);
end loop;
j := j + 1; t := t + 1;
if pattern(j) = pattern(t) then
next(j) := next(t);

else
next(j) := t;

end if;
end loop;

end Compute_Next;

Used in part 53a.

〈Compute next table 59〉 ≡
Compute_Next(pattern, a, m, next);

Used in parts 12, 16, 25, 53b.

59

A.2 Simple Tests

The first test program simply reads short test sequences from a file and
reports the results of running the different search algorithms on them.

"Test_Search.adb" 60 ≡
with Text_Io; use Text_Io;
with Ada.Integer_Text_Io; use Ada.Integer_Text_Io;
with Io_Exceptions;
procedure Test_Search is

〈Sequence declarations 52〉
〈Variable declarations 61a〉
〈Algorithm subprogram declarations 53a〉
〈Additional algorithms 56b〉
〈Define procedure to read string into sequence 64〉
〈Define procedure to output sequence 65a〉
〈Define algorithm enumeration type, names, and selector function 61c〉
〈Define Report procedure 65c〉

begin

〈Set file small.txt as input file 61b〉
loop

〈Read test sequences from file 63a〉
〈Run tests and report results 65b〉

end loop;

60

end Test_Search;

〈Variable declarations 61a〉 ≡
Comment, S1, S2: Character_Sequence(1 .. 100);
Base_Line, S1_Length, S2_Length, Last: Integer;
File: Text_Io.File_Type;

Used in part 60.

〈Set file small.txt as input file 61b〉 ≡
Text_Io.Open(File, Text_IO.In_File, "small.txt");
Text_Io.Set_Input(File);

Used in part 60.

〈Define algorithm enumeration type, names, and selector function 61c〉 ≡

type Algorithm_Enumeration is (Dummy, SF, SF1, SF2, L, AL, HAL);

Algorithm_Names: array(Algorithm_Enumeration) of String(1 .. 17) :=
("selection code ",
"SF ",
"HP SF ",
"SGI SF ",

61

"L ",
"AL ",
"HAL ");

function Algorithm(k: Algorithm_Enumeration;
text, pattern: Character_Sequence;
b, n, a, m: Integer) return Integer is

begin
case k is
when Dummy => return b;
when SF => return SF(text, pattern, b, n, a, m);
when SF1 => return SF1(text, pattern, b, n, a, m);
when SF2 => return SF2(text, pattern, b, n, a, m);
when L => return L(text, pattern, b, n, a, m);
when AL => return AL(text, pattern, b, n, a, m);
when HAL => return HAL(text, pattern, b, n, a, m);

end case;
end Algorithm;

Used in parts 60, 68b, 72c.

Test sequences are expected to be found in a file named small.txt. Each
test set is contained on three lines, the first line being a comment or blank,
the second line containing the text string to be searched, and the third the
pattern to search for.

62

〈Read test sequences from file 63a〉 ≡
exit when Text_Io.End_Of_File;
Get(Comment, Last);
Put(Comment, Last); New_Line;
〈Check for unexpected end of file 63b〉

Get(S1, Last);
〈Check for unexpected end of file 63b〉
Put("Text sequence: "); Put(S1, Last);
S1_Length := Last;

Get(S2, Last);
Put("Pattern sequence: "); Put(S2, Last);
S2_Length := Last;

Used in part 60.

〈Check for unexpected end of file 63b〉 ≡
if Text_Io.End_Of_File then
Put_Line("**** Unexpected end of file."); New_Line;
raise Program_Error;

end if;

Used in part 63a.

63

〈Define procedure to read string into sequence 64〉 ≡
procedure Get(S: out Character_Sequence; Last: out Integer) is
Ch: Character;
I : Integer := 0;

begin
while not Text_Io.End_Of_File loop
Text_Io.Get_Immediate(Ch);
I := I + 1;
S(I) := Ch;
exit when Text_Io.End_Of_Line;

end loop;
Last := I;
Text_Io.Get_Immediate(Ch);

end Get;

Used in part 60.

64

〈Define procedure to output sequence 65a〉 ≡
procedure Put(S: Character_Sequence; Last: Integer) is
begin
for I in 1 .. Last loop
Put(S(I));

end loop;
New_Line;

end Put;

Used in part 60.

〈Run tests and report results 65b〉 ≡
Base_Line := 0;
for K in Algorithm_Enumeration’Succ(Algorithm_Enumeration’First) ..

Algorithm_Enumeration’Last loop
Put(" Using "); Put(Algorithm_Names(k)); New_Line;
Report(K, S1, S2, 1, S1_Length + 1, 1, S2_Length + 1);

end loop;
New_Line;

Used in part 60.

〈Define Report procedure 65c〉 ≡
procedure Report(K: Algorithm_Enumeration;

S1, S2: Character_Sequence; b, n, a, m: Integer) is

65

P: Integer;
begin
P := Algorithm(K, S1, S2, b, n, a, m);
Put(" String "); Put(’"’);

〈Output S2 67〉
if P = n then
Put(" not found");
New_Line;

else
Put(’"’); Put(" found at position ");
Put(P);
New_Line;

end if;
if Base_Line = 0 then
Base_Line := P - b;

else
if P - b /= Base_Line then
Put("*****Incorrect result!"); New_Line;

end if;
end if;

end Report;

Used in parts 60, 68b.

66

〈Output S2 67〉 ≡
for I in a .. m - 1 loop
Put(S2(I));

end loop;

Used in part 65c.

Here are a few small tests.

67

"small.txt" 68a ≡
#
Now’s the time for all good men and women to come to the aid of their country.
time
#
Now’s the time for all good men and women to come to the aid of their country.
timid
#
Now’s the time for all good men and women to come to the aid of their country.
try.
The following example is from the KMP paper.
babcbabcabcaabcabcabcacabc
abcabcacab
#
aaaaaaabcabcadefg
abcad
#
aaaaaaabcabcadefg
ab

A.3 Large Tests

This Ada test program can read a long character sequence from a file and
run extensive search tests on it. Patterns to search for, of a user-specified
length, are selected from evenly-spaced positions in the long sequence.

"Test_Long_Search.adb" 68b ≡

68

with Text_Io; use Text_Io;
with Ada.Integer_Text_Io; use Ada.Integer_Text_Io;
procedure Test_Long_Search is
F: Integer;
Number_Of_Tests: Integer;
Pattern_Size: Integer;
Increment: Integer;

〈Sequence declarations 52〉
〈Data declarations 70a〉
〈Algorithm subprogram declarations 53a〉
〈Additional algorithms 56b〉
〈Define algorithm enumeration type, names, and selector function 61c〉
〈Define Report procedure 65c〉
S2: Character_Sequence(0 .. 100);

begin

〈Read test parameters 70c〉
〈Set file long.txt as input file 70b〉
〈Read character sequence from file 71a〉
Increment := (S1_Length - S2_Length) / Number_Of_Tests;

〈Run tests searching for selected subsequences 71b〉
end Test_Long_Search;

69

〈Data declarations 70a〉 ≡
Max_Size: constant Integer := 200_000;
C: Character;
S1: Character_Sequence(0 .. Max_Size);
Base_Line, I, S1_Length, S2_Length: Integer;
File: Text_Io.File_Type;

Used in parts 68b, 72c.

〈Set file long.txt as input file 70b〉 ≡
Text_Io.Open(File, Text_IO.In_File, "long.txt");
Text_Io.Set_Input(File);

Used in parts 68b, 72c.

〈Read test parameters 70c〉 ≡
Put("Input Number of tests and pattern size: "); Text_Io.Flush;
Get(Number_Of_Tests);
Get(Pattern_Size);
New_Line; Put("Number of tests: "); Put(Number_Of_Tests); New_Line;
Put("Pattern size: "); Put(Pattern_Size); New_Line;
S2_Length := Pattern_Size;

Used in parts 68b, 72c.

70

〈Read character sequence from file 71a〉 ≡
I := 0;
while not Text_Io.End_Of_File loop
Text_Io.Get_Immediate(C);
S1(I) := C;
I := I + 1;

end loop;
S1_Length := I;
Put(S1_Length); Put(" characters read."); New_Line;

Used in parts 68b, 72c.

〈Run tests searching for selected subsequences 71b〉 ≡
F := 0;
for K in 1 .. Number_Of_Tests loop

〈Select sequence S2 to search for in S1 72a〉
〈Run tests 72b〉

end loop;

Used in part 68b.

71

〈Select sequence S2 to search for in S1 72a〉 ≡
for I in 0 .. Pattern_Size - 1 loop
S2(I) := S1(F + I);

end loop;
F := F + Increment;

Used in parts 71b, 74b.

〈Run tests 72b〉 ≡
Base_Line := 0;
for K in Algorithm_Enumeration’Succ(Algorithm_Enumeration’First) ..

Algorithm_Enumeration’Last loop
Put(" Using "); Put(Algorithm_Names(k)); New_Line;
Report(K, S1, S2, 0, S1_Length, 0, S2_Length);

end loop;
New_Line;

Used in part 71b.

A.4 Timed Tests

This Ada test program reads a character sequence from a file and times
searches for selected strings.

"Time_Long_Search.adb" 72c ≡

72

with Text_Io; use Text_Io;
with Ada.Integer_Text_Io; use Ada.Integer_Text_Io;
with Ada.Real_Time;
procedure Time_Long_Search is
use Ada.Real_Time;
package My_Float is new Text_IO.Float_IO(Long_Float);
Base_Time: Long_Float;
Number_Of_Tests, Pattern_Size, Increment: Integer;
pragma Suppress(All_Checks);

〈Sequence declarations 52〉
〈Algorithm subprogram declarations 53a〉
〈Additional algorithms 56b〉
〈Define algorithm enumeration type, names, and selector function 61c〉
〈Data declarations 70a〉
〈Define run procedure 74b〉

begin

〈Read test parameters 70c〉
〈Set file long.txt as input file 70b〉
〈Read character sequence from file 71a〉
Increment := (S1_Length - S2_Length) / Number_Of_Tests;
Base_Time := 0.0;
〈Run and time tests searching for selected subsequences 74a〉

end Time_Long_Search;

73

〈Run and time tests searching for selected subsequences 74a〉 ≡
for K in Algorithm_Enumeration’Range loop
Put("Timing "); Put(Algorithm_Names(K)); New_Line;
Run(K, S1, S1_Length, S2_Length);

end loop;
New_Line;

Used in part 72c.

For a given algorithm, the Run procedure conducts a requested number of
searches in sequence S1 for patterns of a requested size, selecting the patterns
from evenly spaced positions in S1. It reports the total search length, time
taken, and speed (total search length divided by time taken) of the searches.

〈Define run procedure 74b〉 ≡
procedure Run(K: Algorithm_Enumeration;

S1: Character_Sequence; Text_Size, Pattern_Size: Integer) is
P, F: Integer;
Start_Time, Finish_Time: Time;
Total_Search: Integer;
Time_Taken : Long_Float;
S2: Character_Sequence(0 .. Pattern_Size - 1);

begin
F := 0;

74

Total_Search := 0;
Start_Time := Clock;
for I in 1 .. Number_Of_Tests loop

〈Select sequence S2 to search for in S1 72a〉
P := Algorithm(K, S1, S2, 0, Text_Size, 0, Pattern_Size);
Total_Search := Total_Search + P + Pattern_Size;

end loop;
Finish_Time := Clock;
〈Output statistics 75〉

end Run;

Used in part 72c.

〈Output statistics 75〉 ≡

Time_Taken := Long_Float((Finish_Time - Start_Time) / Milliseconds(1))
/ 1000.0 - Base_Time;

Put("Total search length: ");
Put(Total_Search); Put(" bytes."); New_Line;
Put("Time: "); My_Float.Put(Time_Taken, 5, 4, 0);
Put(" seconds."); New_Line;
if K /= Dummy then
Put("Speed: ");
My_Float.Put(Long_Float(Total_Search) / 1_000_000.0 / Time_Taken, 5, 2, 0);
Put(" MBytes/second."); New_Line;

else

75

Base_Time := Time_Taken;
end if;
New_Line;

Used in part 74b.

B C++ Library Versions and Test Programs

The code presented in this section is packaged in files that can be added
to the standard C++ library and included in user programs with #include
directives. (A few adjustments may be necessary depending on how well the
target compiler conforms to the C++ standard.) With only minor changes,
library maintainers should be able to incorporate the code into the stan-
dard library header files, replacing whatever search implementations they
currently contain. The only significant work involved would be to construct
the predicate versions of the search functions, which are not given here.

76

B.1 Generic Library Interfaces

B.1.1 Library Files
"new_search.h" 77 ≡

#ifndef NEW_SEARCH
define NEW_SEARCH
include <vector>
include "search_traits.h"
include <iterator>
using namespace std;

〈Define procedure to compute next table (C++) 88b〉
〈Define procedure to compute next table (C++ forward) 39b〉
〈User level search function 37a〉
〈Forward iterator case 37b〉
〈Bidirectional iterator case 81〉
〈HAL with random access iterators, no trait passed 82〉
〈User level search function with trait argument 83〉
#endif

77

B.1.2 Search Traits
"search_traits.h" 78a ≡

#ifndef SEARCH_HASH_TRAITS
define SEARCH_HASH_TRAITS
〈Generic search trait 78b〉
〈Search traits for character sequences 80〉
#endif

The generic search trait class is used when there is no search trait specifically
defined, either in the library or by the user, for the type of values in the
sequences being searched, and when no search trait is explicitly passed to
the search function.

〈Generic search trait 78b〉 ≡
template <typename T>
struct search_trait {
enum {hash_range_max = 0};
enum {suffix_size = 0};
template <typename RandomAccessIterator>
inline static unsigned int hash(RandomAccessIterator i) {
return 0;

}
};

Used in part 78a.

78

The “hash” function used in this trait maps everything to 0; it would be
a source of poor performance if it were actually used in the HAL algo-
rithm. In fact it is not, because the code in the search function checks for
suffix size = 0 and uses algorithm L in that case. This definition of hash
permits compilation to succeed even if the compiler fails to recognize that
the code segment containing the call of hash is dead code.

For traditional string searches, the following specialized search traits are
provided:

79

〈Search traits for character sequences 80〉 ≡
template <> struct search_trait<signed char> {
enum {hash_range_max = 256};
enum {suffix_size = 1};
template <typename RandomAccessIterator>
inline static unsigned int hash(RandomAccessIterator i) {
return *i;

}
};

typedef unsigned char unsigned_char;
template <> struct search_trait<unsigned char> {
enum {hash_range_max = 256};
enum {suffix_size = 1};
template <typename RandomAccessIterator>
inline static unsigned int hash(RandomAccessIterator i) {
return *i;

}
};

Used in part 78a.

B.1.3 Search Functions

The main user-level search function interface and an auxiliary function
__search_L for the forward iterator case were given in the body of the

80

paper. With bidirectional iterators we again use the forward iterator ver-
sion.

〈Bidirectional iterator case 81〉 ≡
template <typename BidirectionalIterator1, typename BidirectionalIterator2>
inline BidirectionalIterator1 __search(BidirectionalIterator1 text,

BidirectionalIterator1 textEnd,
BidirectionalIterator2 pattern,
BidirectionalIterator2 patternEnd,
bidirectional_iterator_tag)

{
return __search_L(text, textEnd, pattern, patternEnd);

}

Used in part 77.

When we have random access iterators and no search trait is passed as an ar-
gument, we use a search trait associated with V = RandomAccessIterator1::value type
to obtain the hash function and related parameters. Then we use the user-
level search function that takes a search trait argument and uses HAL. If
no search trait has been specifically defined for type V, then the generic
search_hash_trait is used, causing the search_hashed algorithm to re-
sort to algorithm L.

81

〈HAL with random access iterators, no trait passed 82〉 ≡
template <typename RandomAccessIterator1, typename RandomAccessIterator2>
inline RandomAccessIterator1 __search(RandomAccessIterator1 text,

RandomAccessIterator1 textEnd,
RandomAccessIterator2 pattern,
RandomAccessIterator2 patternEnd,
random_access_iterator_tag)

{
typedef iterator_traits<RandomAccessIterator1>::value_type V;
typedef search_trait<V> Trait;
return search_hashed(text, textEnd, pattern, patternEnd,

static_cast<Trait*>(0));
}

Used in part 77.

Finally, we have a user-level search function for the case of random access
iterators and an explicitly passed search trait.

82

〈User level search function with trait argument 83〉 ≡

template <typename RandomAccessIterator1, typename RandomAccessIterator2,
typename Trait>

RandomAccessIterator1 search_hashed(RandomAccessIterator1 text,
RandomAccessIterator1 textEnd,
RandomAccessIterator2 pattern,
RandomAccessIterator2 patternEnd,
Trait*)

{
typedef typename iterator_traits<RandomAccessIterator1>::difference_type

Distance1;
typedef typename iterator_traits<RandomAccessIterator2>::difference_type

Distance2;
if (pattern == patternEnd) return text;
Distance2 pattern_size, j, m;
pattern_size = patternEnd - pattern;
if (Trait::suffix_size == 0 || pattern_size < Trait::suffix_size)
return __search_L(text, textEnd, pattern, patternEnd);

Distance1 i, k, large, adjustment, mismatch_shift, text_size;
vector<Distance1> next, skip;

〈Hashed Accelerated Linear algorithm (C++) 84〉
}

Used in part 77.

83

The C++ version of HAL is built from parts corresponding to those expressed
in Ada in the body of the paper. Note that in place of text(n + k) we can
write textEnd + k for the location and textEnd[k] for the value at that
location.

〈Hashed Accelerated Linear algorithm (C++) 84〉 ≡
k = 0;
text_size = textEnd - text;
〈Compute next table (C++) 89〉
〈Handle pattern size = 1 as a special case (C++) 41a〉
〈Compute skip table and mismatch shift using the hash function (C++) 88a〉
large = text_size + 1;
adjustment = large + pattern_size - 1;
skip[Trait::hash(pattern + pattern_size - 1)] = large;
k -= text_size;
for(;;) {
k += pattern_size - 1;
if (k >= 0) break;
〈Scan the text using a single-test skip loop with hashing (C++) 85a〉
〈Verify match or recover from mismatch (C++) 85b〉

}
return textEnd;

Used in part 83.

84

〈Scan the text using a single-test skip loop with hashing (C++) 85a〉 ≡
do {
k += skip[Trait::hash(textEnd + k)];

} while (k < 0);
if (k < pattern_size)
return textEnd;

k -= adjustment;

Used in part 84.

〈Verify match or recover from mismatch (C++) 85b〉 ≡
if (textEnd[k] != pattern[0])
k += mismatch_shift;

else {
〈Verify the match for positions 1 through pattern size - 1 (C++) 86〉
if (mismatch_shift > j)
k += mismatch_shift - j;

else
〈Recover from a mismatch using the next table (C++) 87〉

}

Used in parts 84, 93.

85

〈Verify the match for positions 1 through pattern size - 1 (C++) 86〉 ≡
j = 1;
for (;;) {
++k;
if (textEnd[k] != pattern[j])
break;

++j;
if (j == pattern_size)
return textEnd + k - pattern_size + 1;

}

Used in part 85b.

86

〈Recover from a mismatch using the next table (C++) 87〉 ≡
for (;;) {
j = next[j];
if (j < 0) {
++k;
break;

}
if (j == 0)
break;

while (textEnd[k] == pattern[j]) {
++k; ++j;
if (j == pattern_size) {
return textEnd + k - pattern_size;

}
if (k == 0)
return textEnd;

}
}

Used in part 85b.

87

B.1.4 Skip Table Computation

〈Compute skip table and mismatch shift using the hash function (C++) 88a〉 ≡
m = next.size();
for (i = 0; i < Trait::hash_range_max; ++i)
skip.push_back(m - Trait::suffix_size + 1);

for (j = Trait::suffix_size - 1; j < m - 1; ++j)
skip[Trait::hash(pattern + j)] = m - 1 - j;

mismatch_shift = skip[Trait::hash(pattern + m - 1)];
skip[Trait::hash(pattern + m - 1)] = 0;

Used in part 84.

B.1.5 Next Table Procedure and Call

When we have random access to the pattern, we take advantage of it in
computing the next table (we do not need to create the pattern_iterator
table used in the forward iterator version).

〈Define procedure to compute next table (C++) 88b〉 ≡
template <typename RandomAccessIterator, typename Distance>
void compute_next(RandomAccessIterator pattern,

RandomAccessIterator patternEnd,
vector<Distance>& next)

{
Distance pattern_size = patternEnd - pattern, j = 0, t = -1;

88

next.reserve(32);
next.push_back(-1);
while (j < pattern_size - 1) {
while (t >= 0 && pattern[j] != pattern[t])

t = next[t];
++j; ++t;
if (pattern[j] == pattern[t])
next.push_back(next[t]);

else
next.push_back(t);

}
}

Used in part 77.

〈Compute next table (C++) 89〉 ≡
compute_next(pattern, patternEnd, next);

Used in parts 84, 93.

B.2 Experimental Version for Large Alphabet Case

For comparison with HAL in the large alphabet case we also implemented
the experimental version that uses a large skip table and no hashing, as
described in the body of the paper.

89

"experimental_search.h" 90a ≡
〈Experimental search function with skip loop without hashing 90b〉

In our experiments, we assume that the element type is a 2-byte unsigned
short.

〈Experimental search function with skip loop without hashing 90b〉 ≡
#include <vector>
using namespace std;

struct large_alphabet_trait {
typedef unsigned short T;
enum {suffix_size = 1};
enum {hash_range_max = (1u << (sizeof(T) * 8)) - 1};

};

template <> struct search_trait<unsigned short> {
enum {hash_range_max = 256};
enum {suffix_size = 1};
template <typename RandomAccessIterator>
inline static unsigned int hash(RandomAccessIterator i) {
return (unsigned char)(*i);

}
};

template <typename T>

90

class skewed_value {
static T skew;
T value;

public:
skewed_value() : value(0) {}
skewed_value(T val) : value(val - skew) {}
operator T () { return value + skew; }
static void setSkew(T askew) { skew = askew; }
void clear() { value = 0; }

};

template <typename T> T skewed_value<T>::skew;

template <typename T, typename RandomAccessIterator, int size>
class skewed_array {
typedef skewed_value<T> value_type;
static value_type array[size];
RandomAccessIterator pattern, patternEnd;

public:
skewed_array(T skew, RandomAccessIterator pat, RandomAccessIterator patEnd):
pattern(pat),patternEnd(patEnd){ value_type::setSkew(skew); }

~skewed_array() {
while (pattern != patternEnd)
array[*pattern++].clear();

}
value_type operator[] (int index) const { return array[index]; }
value_type& operator[] (int index) { return array[index]; }

91

};

template <typename T, typename RandomAccessIterator, int size>
skewed_value<T> skewed_array<T,RandomAccessIterator,size>::array[size];

template <typename RandomAccessIterator1, typename RandomAccessIterator2>
RandomAccessIterator1 search_no_hashing(RandomAccessIterator1 text,

RandomAccessIterator1 textEnd,
RandomAccessIterator2 pattern,
RandomAccessIterator2 patternEnd)

{
typedef typename iterator_traits<RandomAccessIterator1>::difference_type Distance1;
typedef typename iterator_traits<RandomAccessIterator2>::difference_type Distance2;
typedef large_alphabet_trait Trait;
if (pattern == patternEnd)
return text;

Distance1 k, text_size, large, adjustment, mismatch_shift;
Distance2 j, m, pattern_size;
pattern_size = patternEnd - pattern;
if (pattern_size < Trait::suffix_size)
return __search_L(text, textEnd, pattern, patternEnd);

vector<Distance1> next;
skewed_array<Distance1, RandomAccessIterator2, Trait::hash_range_max+1>
skip(pattern_size - Trait::suffix_size + 1, pattern, patternEnd);

〈Accelerated Linear algorithm, no hashing (C++) 93〉
}

92

Used in part 90a.

〈Accelerated Linear algorithm, no hashing (C++) 93〉 ≡
k = 0;
text_size = textEnd - text;
〈Compute next table (C++) 89〉
〈Handle pattern size = 1 as a special case (C++) 41a〉
〈Compute skip table and mismatch shift, no hashing (C++) 94a〉
large = text_size + 1;
adjustment = large + pattern_size - 1;
skip[*(pattern + m - 1)] = large;

k -= text_size;
for (;;) {
k += pattern_size - 1;
if (k >= 0) break;
〈Scan the text using a single-test skip loop, no hashing (C++) 94b〉
〈Verify match or recover from mismatch (C++) 85b〉

}
return textEnd;

Used in part 90b.

93

〈Compute skip table and mismatch shift, no hashing (C++) 94a〉 ≡
m = next.size();
for (j = Trait::suffix_size - 1; j < m - 1; ++j)
skip[*(pattern + j)] = m - 1 - j;

mismatch_shift = skip[*(pattern + m - 1)];
skip[*(pattern + m - 1)] = 0;

Used in part 93.

〈Scan the text using a single-test skip loop, no hashing (C++) 94b〉 ≡
do {
k += skip[*(textEnd + k)];

} while (k < 0);
if (k < pattern_size)
return textEnd;

k -= adjustment;

Used in part 93.

B.3 DNA Search Functions and Traits

The following definitions are for use in DNA search experiments. Four dif-
ferent search functions are defined using 2, 3, 4, or 5 characters as arguments
to hash functions.

94

"DNA_search.h" 94c ≡
〈Define DNA search traits 96〉

template <typename RandomAccessIterator1, typename RandomAccessIterator2>
inline RandomAccessIterator1 hal2(RandomAccessIterator1 text,

RandomAccessIterator1 textEnd,
RandomAccessIterator2 pattern,
RandomAccessIterator2 patternEnd)

{
return search_hashed(text, textEnd, pattern, patternEnd,

static_cast<search_trait_dna2*>(0));
}

template <typename RandomAccessIterator1, typename RandomAccessIterator2>
inline RandomAccessIterator1 hal3(RandomAccessIterator1 text,

RandomAccessIterator1 textEnd,
RandomAccessIterator2 pattern,
RandomAccessIterator2 patternEnd)

{
return search_hashed(text, textEnd, pattern, patternEnd,

static_cast<search_trait_dna3*>(0));
}

template <typename RandomAccessIterator1, typename RandomAccessIterator2>
inline RandomAccessIterator1 hal4(RandomAccessIterator1 text,

RandomAccessIterator1 textEnd,
RandomAccessIterator2 pattern,

95

RandomAccessIterator2 patternEnd)
{
return search_hashed(text, textEnd, pattern, patternEnd,

static_cast<search_trait_dna4*>(0));
}

template <typename RandomAccessIterator1, typename RandomAccessIterator2>
inline RandomAccessIterator1 hal5(RandomAccessIterator1 text,

RandomAccessIterator1 textEnd,
RandomAccessIterator2 pattern,
RandomAccessIterator2 patternEnd)

{
return search_hashed(text, textEnd, pattern, patternEnd,

static_cast<search_trait_dna5*>(0));
}

〈Define DNA search traits 96〉 ≡
struct search_trait_dna2 {
enum {hash_range_max = 64};
enum {suffix_size = 2};
template <typename RAI>
inline static unsigned int hash(RAI i) {
return (*(i-1) + ((*i) << 3)) & 63;

}
};

96

struct search_trait_dna3 {
enum {hash_range_max = 512};
enum {suffix_size = 3};
template <typename RAI>
inline static unsigned int hash(RAI i) {
return (*(i-2) + (*(i-1) << 3) + ((*i) << 6)) & 511;

}
};

struct search_trait_dna4 {
enum {hash_range_max = 256};
enum {suffix_size = 4};
template <typename RAI>
inline static unsigned int hash(RAI i) {
return (*(i-3) + (*(i-2) << 2) + (*(i-1) << 4)

+ ((*i) << 6)) & 255;
}

};

struct search_trait_dna5 {
enum {hash_range_max = 256};
enum {suffix_size = 5};
template <typename RAI>
inline static unsigned int hash(RAI i) {
return (*(i-4) + (*(i-3) << 2) + (*(i-2) << 4)

+ (*(i-1) << 6) + ((*i) << 8)) & 255;
}

97

};

Used in part 94c.

B.4 Simple Tests

In the test programs we want to compare the new search functions with the
existing search function from an STL algorithm library implementation, so
we rename the existing one.

〈Include algorithms header with existing search function renamed 98〉 ≡
#define search stl_search
#define __search __stl_search
#include <algorithm>
#undef search
#undef __search

Used in parts 99, 105, 111b, 117, 121, 128, 132b.

As in the Ada version of the code, the first test program simply reads short
test sequences from a file and reports the results of running the different
search algorithms on them.

98

"test_search.cpp" 99 ≡
〈Include algorithms header with existing search function renamed 98〉
#include <iostream>
#include <fstream>
#include "new_search.h"
#include "hume.hh"
#include "DNA_search.h"
using namespace std;
int Base_Line;
〈Define procedure to read string into sequence (C++) 103b〉
typedef unsigned char data;

〈Define algorithm enumeration type, names, and selector function (C++) 100〉
〈Define Report procedure (C++) 104b〉
int main()
{
ostream_iterator<char> out(cout, "");
ifstream ifs("small.txt");
vector<data> Comment, S1, S2;
const char* separator = "";
for (;;) {

〈Read test sequences from file (C++) 102〉
〈Run tests and report results (C++) 104a〉

}
return 0;}

99

〈Define algorithm enumeration type, names, and selector function (C++) 100〉 ≡

enum algorithm_enumeration {
Dummy, SF, L, HAL, ABM, TBM, GBM, HAL2, HAL3, HAL4, HAL5

};
const char* algorithm_names[] = {

"selection code", "SF", "L", "HAL", "ABM", "TBM", "GBM",
"HAL2", "HAL3", "HAL4", "HAL5"

};

#ifndef DNA_TEST
algorithm_enumeration alg[] = {Dummy, SF, L, HAL, ABM, TBM};
const char textFileName[] = "long.txt";
const char wordFileName[] = "words.txt";

#else
algorithm_enumeration alg[] = {Dummy, SF, L, HAL, ABM, GBM,

HAL2, HAL3, HAL4, HAL5};
const char textFileName[] = "dnatext.txt";
const char wordFileName[] = "dnaword.txt";

#endif

const int number_of_algorithms = sizeof(alg)/sizeof(alg[0]);

template <typename Container, typename Container__const_iterator>
inline void

Algorithm(int k, const Container& x, const Container& y,
Container__const_iterator& result)

100

{
switch (alg[k]) {
case Dummy:

// does nothing, used for timing overhead of test loop
result = x.begin(); return;

case SF:
result = stl_search(x.begin(), x.end(), y.begin(), y.end()); return;

case L:
result = __search_L(x.begin(), x.end(), y.begin(), y.end()); return;

case HAL:
result = search(x.begin(), x.end(), y.begin(), y.end()); return;

case ABM:
result = fbm(x.begin(), x.end(), y.begin(), y.end()); return;

case TBM:
result = hume(x.begin(), x.end(), y.begin(), y.end()); return;

case GBM:
result = gdbm(x.begin(), x.end(), y.begin(), y.end()); return;

case HAL2:
result = hal2(x.begin(), x.end(), y.begin(), y.end()); return;

case HAL3:
result = hal3(x.begin(), x.end(), y.begin(), y.end()); return;

case HAL4:
result = hal4(x.begin(), x.end(), y.begin(), y.end()); return;

case HAL5:
result = hal5(x.begin(), x.end(), y.begin(), y.end()); return;

}
result = x.begin(); return;

101

}

Used in parts 99, 105, 111b.

〈Read test sequences from file (C++) 102〉 ≡
get(ifs, Comment);
if (ifs.eof())
break;

copy(Comment.begin(), Comment.end(), out); cout << endl;

get(ifs, S1);

〈Check for unexpected end of file (C++) 103a〉
cout << "Text string:......";
copy(S1.begin(), S1.end(), out);
cout << endl;

get(ifs, S2);

〈Check for unexpected end of file (C++) 103a〉
cout << "Pattern string:...";
copy(S2.begin(), S2.end(), out); cout << endl;

Used in part 99.

102

〈Check for unexpected end of file (C++) 103a〉 ≡
if (ifs.eof()) {
cout << "**** Unexpected end of file." << endl;
exit(1);

}

Used in part 102.

〈Define procedure to read string into sequence (C++) 103b〉 ≡
template <typename Container>
void get(istream& is, Container& S) {
S.erase(S.begin(), S.end());
char ch;
while (is.get(ch)) {
if (ch == ’\n’)
break;

S.push_back(ch);
}

}

Used in part 99.

103

〈Run tests and report results (C++) 104a〉 ≡
Base_Line = 0;
for (int k = 1; k < number_of_algorithms; ++k) {
cout << "Using " << algorithm_names[k] << ":" << endl;
Report(algorithm_enumeration(k), S1, S2, separator);

}
cout << endl;

Used in parts 99, 110b, 111a.

〈Define Report procedure (C++) 104b〉 ≡
template <typename Container>
void Report(algorithm_enumeration k, const Container& S1,

const Container& S2, const char* separator)
{
typename Container::const_iterator P;
typedef typename Container::value_type value_t;
Algorithm(k, S1, S2, P);
cout << " String " << ’"’;
copy(S2.begin(), S2.end(), ostream_iterator<value_t>(cout, separator));
if (P == S1.end())
cout << ’"’ << " not found" << endl;

else
cout << ’"’ << " found at position " << P - S1.begin() << endl;

if (Base_Line == 0)
Base_Line = P - S1.begin();

104

else
if (P - S1.begin() != Base_Line)
cout << "*****Incorrect result!" << endl;

}

Used in parts 99, 105, 128.

B.5 Large Tests

The following program for conducting tests on a long text sequence performs
the same tests as the Ada version, plus searches for words of the requested
pattern size selected from a given dictionary (which is read from a file).

"test_long_search.cpp" 105 ≡
〈Include algorithms header with existing search function renamed 98〉
#include "new_search.h"
#include "hume.hh"
#include "DNA_search.h"
#include <iterator>
#include <vector>
#include <map>
#include <iostream>
#include <fstream>
#include <string>
using namespace std;

105

typedef unsigned char data;
typedef vector<data> sequence;
sequence S1, S2;

int Base_Line;
unsigned int Number_Of_Tests, Number_Of_Pattern_Sizes, Increment;

〈Define algorithm enumeration type, names, and selector function (C++) 100〉
〈Define Report procedure (C++) 104b〉
int main()
{
unsigned int F, K, j;

〈Read test parameters (C++) 107〉
〈Read dictionary from file, placing words of size j in dictionary[j] 108〉
〈Read character sequence from file (C++) 109b〉
for (j = 0; j < Number_Of_Pattern_Sizes; ++j) {

〈Trim dictionary[Pattern Size[j]] to have at most Number Of Tests words 109a〉
Increment = (S1.size() - Pattern_Size[j]) / Number_Of_Tests;
cerr << Pattern_Size[j] << " " << flush;
const char* separator = "";

〈Output header (C++) 110a〉
〈Run tests searching for selected subsequences (C++) 110b〉
〈Run tests searching for dictionary words (C++) 111a〉

}
}

106

〈Read test parameters (C++) 107〉 ≡
cout << "Input number of tests (for each pattern size): " << flush;
cin >> Number_Of_Tests;
cout << "Input number of pattern sizes: " << flush;
cin >> Number_Of_Pattern_Sizes;
cout << "Input pattern sizes: " << flush;
vector<int> Pattern_Size(Number_Of_Pattern_Sizes);
for (j = 0; j < Number_Of_Pattern_Sizes; ++j)
cin >> Pattern_Size[j];

cout << "\nNumber of tests: " << Number_Of_Tests << endl;
cout << "Pattern sizes: ";
for (j = 0; j < Number_Of_Pattern_Sizes; ++j)
cout << Pattern_Size[j] << " ";

cout << endl;

Used in parts 105, 111b, 117, 121, 128, 132b.

107

〈Read dictionary from file, placing words of size j in dictionary[j] 108〉 ≡
ifstream dictfile(wordFileName);
typedef istream_iterator<string> string_input;
typedef map<int, vector<sequence>, less<int> > map_type;
map_type dictionary;
sequence S;
string S0;
string_input si(dictfile);
while (si != string_input()) {
S0 = *si++;
sequence S(S0.begin(), S0.end());
dictionary[S.size()].push_back(S);

}

Used in parts 105, 111b, 121.

108

〈Trim dictionary[Pattern Size[j]] to have at most Number Of Tests words 109a〉 ≡

vector<sequence>& diction = dictionary[Pattern_Size[j]];
if (diction.size() > Number_Of_Tests) {
vector<sequence> temp;
int Skip_Amount = diction.size() / Number_Of_Tests;
for (unsigned int T = 0; T < Number_Of_Tests; ++T) {

temp.push_back(diction[T * Skip_Amount]);
}
diction = temp;

}

Used in parts 105, 111b, 121.

〈Read character sequence from file (C++) 109b〉 ≡
ifstream ifs(textFileName);
char C;
while (ifs.get(C))
S1.push_back(C);

cout << S1.size() << " characters read." << endl;

Used in parts 105, 111b, 121.

109

〈Output header (C++) 110a〉 ≡
cout << "\n\n---\n"

<< "Searching for patterns of size " << Pattern_Size[j]
<< "..." << endl;

cout << "(" << Number_Of_Tests << " patterns from the text, "
<< dictionary[Pattern_Size[j]].size() << " from the dictionary)" << endl;

Used in parts 105, 111b, 117, 121, 128, 132b.

〈Run tests searching for selected subsequences (C++) 110b〉 ≡
F = 0;
for (K = 1; K <= Number_Of_Tests; ++K) {

〈Select sequence S2 to search for in S1 (C++) 110c〉
〈Run tests and report results (C++) 104a〉

}

Used in parts 105, 128.

〈Select sequence S2 to search for in S1 (C++) 110c〉 ≡
S2.erase(S2.begin(), S2.end());
copy(S1.begin() + F, S1.begin() + F + Pattern_Size[j], back_inserter(S2));
F += Increment;

Used in part 110b.

110

〈Run tests searching for dictionary words (C++) 111a〉 ≡
for (K = 0; K < dictionary[Pattern_Size[j]].size(); ++K) {
S2 = dictionary[Pattern_Size[j]][K];

〈Run tests and report results (C++) 104a〉
}

Used in part 105.

B.6 Timed Tests

Again, the following program for timing searches conducts the same searches
as in the Ada version, plus searches for words of the requested pattern size
selected from a given dictionary.

"time_long_search.cpp" 111b ≡
〈Include algorithms header with existing search function renamed 98〉
#include "new_search.h"
#include "hume.hh"
#include "DNA_search.h"
#include <iterator>
#include <deque>
#include <vector>
#include <map>
#include <iostream>
#include <fstream>
#include <ctime>

111

#include <string>
using namespace std;

typedef unsigned char data;
typedef vector<data> sequence;
sequence S1;
int Base_Line;
unsigned int Number_Of_Tests, Number_Of_Pattern_Sizes, Increment;
double Base_Time = 0.0;
〈Define algorithm enumeration type, names, and selector function (C++) 100〉
〈Define run procedure (C++ forward) 113〉

int main()
{
int j;

〈Read test parameters (C++) 107〉
〈Read character sequence from file (C++) 109b〉
〈Read dictionary from file, placing words of size j in dictionary[j] 108〉
for (j = 0; j < Number_Of_Pattern_Sizes; ++j) {

〈Trim dictionary[Pattern Size[j]] to have at most Number Of Tests words 109a〉
Increment = (S1.size() - Pattern_Size[j]) / Number_Of_Tests;

〈Output header (C++) 110a〉
cerr << Pattern_Size[j] << " " << flush;

〈Run and time tests searching for selected subsequences (C++) 115a〉

112

}
cerr << endl;

}

The following test procedure is programmed using forward iterator opera-
tions only, so that it can be applied to a non-random access container (e.g.,
list), assuming the designated algorithm works with forward iterators.

〈Define run procedure (C++ forward) 113〉 ≡
template <typename Container>
void Run(int k, const Container& S1,

const vector<Container>& dictionary, int Pattern_Size)
{
typename Container::const_iterator P;
int F = 0, d, K;
double Start_Time, Finish_Time, Time_Taken;
long Total_Search = 0;
Start_Time = clock();
Container S2;
for (K = 1; K <= Number_Of_Tests; ++K) {
typename Container::const_iterator u = S1.begin();
advance(u, F);
S2.erase(S2.begin(), S2.end());
for (int I = 0; I < Pattern_Size; ++I)
S2.push_back(*u++);

F += Increment;

113

〈Run algorithm and record search distance 114〉
}
for (K = 0; K < dictionary.size(); ++K) {
S2 = dictionary[K];

〈Run algorithm and record search distance 114〉
}
Finish_Time = clock();
〈Output statistics (C++) 115b〉

}

Used in parts 111b, 117, 132b.

〈Run algorithm and record search distance 114〉 ≡
Algorithm(k, S1, S2, P);
d = 0;
distance(S1.begin(), P, d);
Total_Search += d + Pattern_Size;

Used in parts 113, 125.

114

〈Run and time tests searching for selected subsequences (C++) 115a〉 ≡
Base_Time = 0.0;
for (int k = 0; k < number_of_algorithms; ++k) {
if (k != 0)
cout << "Timing " << algorithm_names[k] << ":" << endl;

Run(k, S1, dictionary[Pattern_Size[j]], Pattern_Size[j]);
}
cout << endl;

Used in parts 111b, 117, 121, 132b.

〈Output statistics (C++) 115b〉 ≡
Time_Taken = (Finish_Time - Start_Time)/CLOCKS_PER_SEC - Base_Time;
if (k == 0)
Base_Time = Time_Taken;

else {
cout << "Total search length: " << Total_Search << " elements" << endl;
cout << "Time: " << Time_Taken << " seconds." << endl;
double Speed = Time_Taken == 0.0 ? 0.0 :
static_cast<double>(Total_Search) / 1000000 / Time_Taken;

cout << "Speed: " << Speed << " elements/microsecond." << endl << endl;
}

Used in part 113.

115

B.7 Timed Tests (Large Alphabet)

Again, the following program for timing searches conducts the same searches
as in the Ada version, plus searches for words of the requested pattern size
selected from a given dictionary.

〈Define algorithm enumeration type, names, and selector function (C++ large alphabet) 116〉 ≡

enum algorithm_enumeration {
Dummy, SF, L, HAL, NHAL

};
const char* algorithm_names[] = {

"selection code", "SF", "L", "HAL", "NHAL"
};

const int number_of_algorithms = 5;

template <typename Container, typename Container__const_iterator>
inline void

Algorithm(int k, const Container& x, const Container& y,
Container__const_iterator& result)

{
switch (algorithm_enumeration(k)) {
case Dummy:

// does nothing, used for timing overhead of test loop
result = x.begin(); return;

116

case SF:
result = stl_search(x.begin(), x.end(), y.begin(), y.end()); return;

case L:
result = __search_L(x.begin(), x.end(), y.begin(), y.end()); return;

case HAL:
result = search(x.begin(), x.end(), y.begin(), y.end()); return;

case NHAL:
result = search_no_hashing(x.begin(), x.end(), y.begin(), y.end()); return;

}
result = x.begin(); return;

}

Used in part 117.

"experimental_search.cpp" 117 ≡
〈Include algorithms header with existing search function renamed 98〉
#include "new_search.h"
#include "experimental_search.h"
#include <iterator>
#include <deque>
#include <vector>
#include <map>
#include <iostream>
#include <fstream>
#include <ctime>
using namespace std;

117

typedef unsigned short data;
typedef vector<data> sequence;

sequence S1;

int Base_Line, Number_Of_Tests, Number_Of_Pattern_Sizes, Increment;
double Base_Time = 0.0;
〈Define algorithm enumeration type, names, and selector function (C++ large alphabet) 116〉
〈Define run procedure (C++ forward) 113〉
〈Define RandomNumberGenerator class 119a〉

int main()
{
int j;

〈Read test parameters (C++) 107〉
〈Generate data sequence 119b〉
〈Generate dictionary 120〉
for (j = 0; j < Number_Of_Pattern_Sizes; ++j) {
Increment = (S1.size() - Pattern_Size[j]) / Number_Of_Tests;

〈Output header (C++) 110a〉
cerr << Pattern_Size[j] << " " << flush;

〈Run and time tests searching for selected subsequences (C++) 115a〉
}
cerr << endl;

118

}

〈Define RandomNumberGenerator class 119a〉 ≡
int random(int max_value) { return rand() % max_value; }

template <int MAX_VALUE> struct RandomNumberGenerator {
int operator() () { return random(MAX_VALUE); }

};

Used in part 117.

〈Generate data sequence 119b〉 ≡
generate_n(back_inserter(S1), 100000, RandomNumberGenerator<65535>());

Used in part 117.

119

〈Generate dictionary 120〉 ≡
typedef map<int, vector<sequence >, less<int> > map_type;
map_type dictionary;

for(int i = 0; i < Number_Of_Pattern_Sizes; ++i) {
int pattern_size = Pattern_Size[i];

for(int j = 0; j < Number_Of_Tests; ++j) {
int position = random(S1.size() - pattern_size);
dictionary[pattern_size].push_back(sequence());
copy(S1.begin() + position, S1.begin() + position + pattern_size,

back_inserter(dictionary[pattern_size].back())) ;
}

}

Used in part 117.

B.8 Counted Tests

The following program runs the same searches as in the timing program, but
in addition to times it records and reports counts of many different types of
operations, including equality comparisons on data, iterator operations, and
“distance operations,” which are arithmetic operations on integer results
of iterator subtractions. These counts are obtained without modifying the
source code of the algorithms at all, by specializing their type parameters

120

with classes whose operations have counters built into them.

"count_long_search.cpp" 121 ≡
〈Include algorithms header with existing search function renamed 98〉
#include "new_search.h"
#include "hume.hh"
#include <iterator>
#include <vector>
#include <map>
#include <iostream>
#include <fstream>
#include <ctime>
#include <string>
using namespace std;

〈Define types needed for counting operations 122〉
typedef vector<data> sequence;
sequence S1;
int Base_Line;
unsigned int Number_Of_Tests, Number_Of_Pattern_Sizes, Increment;
double Base_Time = 0.0;
〈Define algorithm enumeration type, names, and selector function (C++ counter) 123〉
recorder<> stats[number_of_algorithms];

〈Define run procedure (C++ counter) 125〉

int main()
{

121

int j;

〈Read test parameters (C++) 107〉
〈Read character sequence from file (C++) 109b〉
〈Read dictionary from file, placing words of size j in dictionary[j] 108〉
for (j = 0; j < Number_Of_Pattern_Sizes; ++j) {

〈Trim dictionary[Pattern Size[j]] to have at most Number Of Tests words 109a〉
Increment = (S1.size() - Pattern_Size[j]) / Number_Of_Tests;

〈Output header (C++) 110a〉
cerr << Pattern_Size[j] << " " << flush;

〈Run and time tests searching for selected subsequences (C++) 115a〉
}
cerr << endl;

}

〈Define types needed for counting operations 122〉 ≡
#include <utility>
using namespace std;
namespace std { namespace rel_ops {} };
using namespace std::rel_ops;

#include "counters.h"

typedef unsigned char basedata;

122

typedef value_counter<basedata> data;
typedef iterator_counter<vector<data>::iterator> citer;

struct search_trait_for_counting {
enum {hash_range_max = 256};
enum {suffix_size = 1};
inline static unsigned int hash(const citer& i) {return (*i).base();}

};

Used in part 121.

〈Define algorithm enumeration type, names, and selector function (C++ counter) 123〉 ≡

enum algorithm_enumeration {
Dummy, STL_search, L, HAL, ABM, TBM

};
const char* algorithm_names[] = {

"selection code", "SF", "L", "HAL", "ABM", "TBM"
};
#ifndef LIST_TEST
const int number_of_algorithms = 6;
#else
const int number_of_algorithms = 3;
#endif

123

const char textFileName[] = "long.txt";
const char wordFileName[] = "words.txt";

template <typename Container, typename Container__const_iterator>
void Algorithm(int k, const Container& x, const Container& y,

Container__const_iterator& result)
{
switch (algorithm_enumeration(k)) {
case Dummy:

result = x.begin(); // does nothing, used for timing overhead of test loop
return;

case STL_search:
result = stl_search(citer(x.begin()), citer(x.end()),

citer(y.begin()), citer(y.end())).base();
return;

case L:
result = __search_L(citer(x.begin()), citer(x.end()),

citer(y.begin()), citer(y.end())).base();
return;

#ifndef LIST_TEST
case HAL:

result = search_hashed(citer(x.begin()), citer(x.end()),
citer(y.begin()), citer(y.end()),
static_cast<search_trait_for_counting*>(0)).base();

return;
case ABM:

124

fbmprep((const basedata*)y.begin(), y.size());
result = (typename Container::const_iterator)

fbmexec_cnt((const basedata*)x.begin(), x.size());
data::accesses += ::pat.accs;
data::equal_comparisons += ::pat.cmps;
return;

case TBM:
humprep((const basedata*)y.begin(), y.size());
result = (typename Container::const_iterator)

humexec_cnt((const basedata*)x.begin(), x.size());
data::accesses += ::pat.accs;
data::equal_comparisons += ::pat.cmps;
result = result;
return;

#endif
}
result = x.begin();
return;

}

Used in part 121.

〈Define run procedure (C++ counter) 125〉 ≡
template <typename Container>
void Run(int k, const Container& S1,

const vector<Container>& dictionary, int Pattern_Size)
{

125

typename Container::const_iterator P;
int F = 0, K, d;
double Start_Time, Finish_Time, Time_Taken;
long Total_Search = 0;
stats[k].reset();
Start_Time = clock();
Container S2;
for (K = 1; K <= Number_Of_Tests; ++K) {
typename Container::const_iterator u = S1.begin();
advance(u, F);
S2.erase(S2.begin(), S2.end());
for (int I = 0; I < Pattern_Size; ++I)
S2.push_back(*u++);

F += Increment;
〈Run algorithm and record search distance 114〉

}
for (K = 0; K < dictionary.size(); ++K) {
S2 = dictionary[K];

〈Run algorithm and record search distance 114〉
}
stats[k].record();
Finish_Time = clock();
〈Output statistics (C++ counter) 127〉

}

Used in part 121.

126

〈Output statistics (C++ counter) 127〉 ≡
Time_Taken = (Finish_Time - Start_Time)/CLOCKS_PER_SEC - Base_Time;
if (k == 0)
Base_Time = Time_Taken;

else {
// data::report(cout, Total_Search, 4);
// citer::report(cout, Total_Search, 4);
// cdistance::report(cout, Total_Search, 4);
stats[k].hide_all();
stats[k].show(recorder<>::ASSIGNMENT, true);
stats[k].show(recorder<>::LESS_THAN, true);

cout << "Total search length: " << Total_Search << " elements" << endl;
cout << "Time: " << Time_Taken << " seconds." << endl;
double Speed = Time_Taken == 0.0 ? 0.0 :
(double)Total_Search / 1000000 / Time_Taken;

cout << "Speed: " << Speed << " elements/microsecond." << endl << endl;
}

Used in part 125.

127

B.9 Application to Matching Sequences of Words

B.9.1 Large Tests

This C++ program specializes the generic search functions to work with
sequences of words (character strings). It reads a text file in as a sequence
of words, and for each of a specified set of pattern sizes, it searches for word
sequences of that size selected from evenly spaced positions in the target
sequence. These searches are the counterpart of the first kind of searches
done in the previous programs on character sequences; the dictionary word
searches of the previous programs are omitted here.

"test_word_search.cpp" 128 ≡
〈Include algorithms header with existing search function renamed 98〉
#include "new_search.h"
#include <iterator>
#include <vector>
#include <map>
#include <iostream>
#include <fstream>
#include <string>
using namespace std;

typedef string data;
typedef vector<data> sequence;

sequence S1, S2;

128

int Base_Line, Number_Of_Tests, Number_Of_Pattern_Sizes, Increment;
〈Define search trait for word searches 130a〉
〈Define algorithm enumeration type, names, and selector function (C++ word) 130b〉
〈Define Report procedure (C++) 104b〉
int main()
{
int F, K, j;

〈Read test parameters (C++) 107〉
typedef map<int, vector<sequence >, less<int> > map_type;
map_type dictionary;

〈Read word sequence from file (C++) 132a〉
cout << S1.size() << " words read." << endl;
const char* separator = " ";
for (j = 0; j < Number_Of_Pattern_Sizes; ++j) {
Increment = (S1.size() - Pattern_Size[j]) / Number_Of_Tests;

〈Output header (C++) 110a〉
〈Run tests searching for selected subsequences (C++) 110b〉

}
}

For a hash function the program uses a mapping of a word to its first charac-
ter. Although this would not be a good hash function in hashed associative
table lookup, it works satisfactorily here because there is less need for uni-
formity of hash value distribution.

129

〈Define search trait for word searches 130a〉 ≡
struct search_word_trait {
typedef vector<string>::const_iterator RAI;
enum {hash_range_max = 256};
enum {suffix_size = 1};
inline static unsigned int hash(RAI i) {
return (*i)[0];

}
};

Used in parts 128, 132b.

〈Define algorithm enumeration type, names, and selector function (C++ word) 130b〉 ≡

enum algorithm_enumeration {
Dummy, STL_search, L, HAL

};
const char* algorithm_names[] = {

"selection code", "SF", "L", "HAL"
};
#ifndef LIST_TEST
const int number_of_algorithms = 4;
#else
const int number_of_algorithms = 3;
#endif

130

template <typename Container, typename Container__const_iterator>
inline void

Algorithm(int k, const Container& x, const Container& y,
Container__const_iterator& result)

{
switch (algorithm_enumeration(k)) {
case Dummy:

result = x.begin(); return; // does nothing, used for timing overhead of test loop
case STL_search:

result = stl_search(x.begin(), x.end(), y.begin(), y.end()); return;
case L:

result = __search_L(x.begin(), x.end(), y.begin(), y.end()); return;
#ifndef LIST_TEST
case HAL:

result = search_hashed(x.begin(), x.end(), y.begin(), y.end(),
(search_word_trait*)0); return;

#endif
}
result = x.begin(); return;

}

Used in parts 128, 132b.

131

〈Read word sequence from file (C++) 132a〉 ≡
ifstream ifs("long.txt");
typedef istream_iterator<string> string_input;
copy(string_input(ifs), string_input(), back_inserter(S1));

Used in parts 128, 132b.

B.9.2 Timed Tests

We also omit the dictionary searches in the following program which times
searches for selected subsequences, in this case by defining a map from ints
to empty dictionaries (in order to reuse some of the previous code).

"time_word_search.cpp" 132b ≡
〈Include algorithms header with existing search function renamed 98〉
#include "new_search.h"
#include <iterator>
#include <vector>
#include <map>
#include <iostream>
#include <fstream>
#include <string>
#include <ctime>
//#include <list>
//#define LIST_TEST
using namespace std;

132

typedef string data;
typedef vector<data> sequence;

sequence S1, S2;
int Base_Line, Number_Of_Tests, Number_Of_Pattern_Sizes, Increment;
double Base_Time = 0.0;
〈Define search trait for word searches 130a〉
〈Define algorithm enumeration type, names, and selector function (C++ word) 130b〉
〈Define run procedure (C++ forward) 113〉
int main()
{
int j;

〈Read test parameters (C++) 107〉
typedef map<int, vector<sequence >, less<int> > map_type;
map_type dictionary;

〈Read word sequence from file (C++) 132a〉
cout << S1.size() << " words read." << endl;
for (j = 0; j < Number_Of_Pattern_Sizes; ++j) {
Increment = (S1.size() - Pattern_Size[j]) / Number_Of_Tests;

〈Output header (C++) 110a〉
〈Run and time tests searching for selected subsequences (C++) 115a〉

}
}

133

C Index of Part Names

〈Accelerated Linear algorithm, no hashing (C++) 93〉 Referenced in part 90b.

〈Accelerated Linear algorithm, preliminary version 12〉 Referenced in part 56b.

〈Accelerated Linear algorithm 16〉 Referenced in part 53b.

〈Additional algorithms 56b〉 Referenced in parts 60, 68b, 72c.

〈Algorithm L, optimized linear pattern search (C++) 40〉 Referenced in part 37b.

〈Algorithm L, optimized linear pattern search 6〉 Referenced in part 53b.

〈Algorithm subprogram declarations 53a〉 Referenced in parts 60, 68b, 72c.

〈Basic KMP 5〉 Referenced in part 53b.

〈Bidirectional iterator case 81〉 Referenced in part 77.

〈Check for unexpected end of file (C++) 103a〉 Referenced in part 102.

〈Check for unexpected end of file 63b〉 Referenced in part 63a.

〈Compute and return position of match 44〉 Referenced in part 43.

〈Compute next table (C++ forward) 39a〉 Referenced in part 37b.

〈Compute next table (C++) 89〉 Referenced in parts 84, 93.

〈Compute next table 59〉 Referenced in parts 12, 16, 25, 53b.

〈Compute skip table and mismatch shift using the hash function (C++) 88a〉 Ref-

erenced in part 84.

〈Compute skip table and mismatch shift using the hash function 24〉 Referenced in

part 25.

〈Compute skip table and mismatch shift, no hashing (C++) 94a〉 Referenced in part

93.

〈Compute skip table and mismatch shift 13〉 Referenced in parts 12, 16.

〈Data declarations 70a〉 Referenced in parts 68b, 72c.

〈Define DNA search traits 96〉 Referenced in part 94c.

〈Define RandomNumberGenerator class 119a〉 Referenced in part 117.

134

〈Define Report procedure (C++) 104b〉 Referenced in parts 99, 105, 128.

〈Define Report procedure 65c〉 Referenced in parts 60, 68b.

〈Define algorithm enumeration type, names, and selector function (C++ counter)
123〉 Referenced in part 121.

〈Define algorithm enumeration type, names, and selector function (C++ large al-
phabet) 116〉 Referenced in part 117.

〈Define algorithm enumeration type, names, and selector function (C++ word)
130b〉 Referenced in parts 128, 132b.

〈Define algorithm enumeration type, names, and selector function (C++) 100〉 Ref-

erenced in parts 99, 105, 111b.

〈Define algorithm enumeration type, names, and selector function 61c〉 Referenced

in parts 60, 68b, 72c.

〈Define procedure to compute next table (C++ forward) 39b〉 Referenced in part 77.

〈Define procedure to compute next table (C++) 88b〉 Referenced in part 77.

〈Define procedure to compute next table 58〉 Referenced in part 53a.

〈Define procedure to output sequence 65a〉 Referenced in part 60.

〈Define procedure to read string into sequence (C++) 103b〉 Referenced in part 99.

〈Define procedure to read string into sequence 64〉 Referenced in part 60.

〈Define run procedure (C++ counter) 125〉 Referenced in part 121.

〈Define run procedure (C++ forward) 113〉 Referenced in parts 111b, 117, 132b.

〈Define run procedure 74b〉 Referenced in part 72c.

〈Define search trait for word searches 130a〉 Referenced in parts 128, 132b.

〈Define types needed for counting operations 122〉 Referenced in part 121.

〈Experimental search function with skip loop without hashing 90b〉 Referenced in

part 90a.

〈Forward iterator case 37b〉 Referenced in part 77.

〈Generate data sequence 119b〉 Referenced in part 117.

135

〈Generate dictionary 120〉 Referenced in part 117.

〈Generic search trait 78b〉 Referenced in part 78a.

〈HAL declaration 56a〉 Referenced in part 53a.

〈HAL with random access iterators, no trait passed 82〉 Referenced in part 77.

〈Handle pattern size = 1 as a special case (C++) 41a〉 Referenced in parts 40, 84, 93.

〈Handle pattern size = 1 as a special case 7a〉 Referenced in parts 6, 12, 16, 25, 53b.

〈Hashed Accelerated Linear algorithm (C++) 84〉 Referenced in part 83.

〈Hashed Accelerated Linear algorithm 25〉 Referenced in part 56a.

〈Include algorithms header with existing search function renamed 98〉 Referenced in

parts 99, 105, 111b, 117, 121, 128, 132b.

〈Non-hashed algorithms 53b〉 Referenced in part 53a.

〈Output S2 67〉 Referenced in part 65c.

〈Output header (C++) 110a〉 Referenced in parts 105, 111b, 117, 121, 128, 132b.

〈Output statistics (C++ counter) 127〉 Referenced in part 125.

〈Output statistics (C++) 115b〉 Referenced in part 113.

〈Output statistics 75〉 Referenced in part 74b.

〈Read character sequence from file (C++) 109b〉 Referenced in parts 105, 111b, 121.

〈Read character sequence from file 71a〉 Referenced in parts 68b, 72c.

〈Read dictionary from file, placing words of size j in dictionary[j] 108〉 Referenced in

parts 105, 111b, 121.

〈Read test parameters (C++) 107〉 Referenced in parts 105, 111b, 117, 121, 128, 132b.

〈Read test parameters 70c〉 Referenced in parts 68b, 72c.

〈Read test sequences from file (C++) 102〉 Referenced in part 99.

〈Read test sequences from file 63a〉 Referenced in part 60.

〈Read word sequence from file (C++) 132a〉 Referenced in parts 128, 132b.

〈Recover from a mismatch using the next table (C++ forward) 43〉 Referenced in

part 40.

136

〈Recover from a mismatch using the next table (C++) 87〉 Referenced in part 85b.

〈Recover from a mismatch using the next table, with k translated 19〉 Referenced in

part 17.

〈Recover from a mismatch using the next table 9〉 Referenced in parts 6, 12.

〈Run algorithm and record search distance 114〉 Referenced in parts 113, 125.

〈Run and time tests searching for selected subsequences (C++) 115a〉 Referenced in

parts 111b, 117, 121, 132b.

〈Run and time tests searching for selected subsequences 74a〉 Referenced in part 72c.

〈Run tests and report results (C++) 104a〉 Referenced in parts 99, 110b, 111a.

〈Run tests and report results 65b〉 Referenced in part 60.

〈Run tests searching for dictionary words (C++) 111a〉 Referenced in part 105.

〈Run tests searching for selected subsequences (C++) 110b〉 Referenced in parts 105,

128.

〈Run tests searching for selected subsequences 71b〉 Referenced in part 68b.

〈Run tests 72b〉 Referenced in part 71b.

〈Scan the text for a possible match (C++) 41b〉 Referenced in part 40.

〈Scan the text for a possible match 7b〉 Referenced in parts 6, 53b.

〈Scan the text using a single-test skip loop with hashing (C++) 85a〉 Referenced in

part 84.

〈Scan the text using a single-test skip loop with hashing 23〉 Referenced in part 25.

〈Scan the text using a single-test skip loop, no hashing (C++) 94b〉 Referenced in

part 93.

〈Scan the text using a single-test skip loop, with k translated 15〉 Referenced in part

16.

〈Scan the text using a single-test skip loop 14〉 Not referenced.

〈Scan the text using the skip loop 11a〉 Referenced in part 12.

〈Search traits for character sequences 80〉 Referenced in part 78a.

137

〈Select sequence S2 to search for in S1 (C++) 110c〉 Referenced in part 110b.

〈Select sequence S2 to search for in S1 72a〉 Referenced in parts 71b, 74b.

〈Sequence declarations 52〉 Referenced in parts 60, 68b, 72c.

〈Set file long.txt as input file 70b〉 Referenced in parts 68b, 72c.

〈Set file small.txt as input file 61b〉 Referenced in part 60.

〈Simple hash function declarations 55〉 Referenced in part 53a.

〈Trim dictionary[Pattern Size[j]] to have at most Number Of Tests words 109a〉
Referenced in parts 105, 111b, 121.

〈User level search function with trait argument 83〉 Referenced in part 77.

〈User level search function 37a〉 Referenced in part 77.

〈Variable declarations 61a〉 Referenced in part 60.

〈Verify match or recover from mismatch (C++) 85b〉 Referenced in parts 84, 93.

〈Verify match or recover from mismatch 17〉 Referenced in parts 16, 25.

〈Verify the match for positions 1 through pattern size - 1 (C++) 86〉 Referenced in

part 85b.

〈Verify the match for positions a + 1 through m - 1, with k translated 18〉 Referenced

in part 17.

〈Verify the match for positions a through m - 2 11b〉 Referenced in part 12.

〈Verify whether a match is possible at the position found (C++) 42〉 Referenced in

part 40.

〈Verify whether a match is possible at the position found 8〉 Referenced in parts 6,

53b.

138

Pattern Algorithm Comparisons Other Big Other Distance Total
Size Accesses Jumps Iter Ops Ops Ops

2 SF 1.036 0.001 0.000 4.192 2.002 7.231
L 1.028 0.001 0.000 4.095 0.177 5.301
HAL 0.018 0.513 0.551 1.104 2.431 4.617
ABM 0.017 0.528 — — — —
TBM 0.021 0.511 — — — —

4 SF 1.034 0.000 0.000 4.170 2.000 7.203
L 1.031 0.000 0.000 4.098 0.159 5.288
HAL 0.013 0.266 0.291 0.583 0.658 1.811
ABM 0.013 0.277 — — — —
TBM 0.014 0.266 — — — —

6 SF 1.042 0.000 0.000 4.211 2.000 7.254
L 1.037 0.000 0.000 4.119 0.194 5.350
HAL 0.011 0.189 0.211 0.422 0.482 1.315
ABM 0.012 0.198 — — — —
TBM 0.012 0.189 — — — —

8 SF 1.048 0.000 0.000 4.243 2.000 7.291
L 1.042 0.000 0.000 4.135 0.220 5.396
HAL 0.010 0.150 0.170 0.339 0.392 1.060
ABM 0.011 0.157 — — — —
TBM 0.011 0.150 — — — —

10 SF 1.052 0.000 0.000 4.263 2.000 7.315
L 1.044 0.000 0.000 4.142 0.233 5.418
HAL 0.009 0.126 0.144 0.289 0.337 0.905
ABM 0.010 0.132 — — — —
TBM 0.010 0.126 — — — —

14 SF 1.077 0.000 0.000 4.384 2.000 7.460
L 1.060 0.000 0.000 4.197 0.328 5.585
HAL 0.010 0.105 0.125 0.250 0.305 0.796
ABM 0.010 0.109 — — — —
TBM 0.011 0.105 — — — —

18 SF 1.105 0.000 0.000 4.525 2.000 7.629
L 1.077 0.000 0.000 4.257 0.436 5.770
HAL 0.011 0.096 0.117 0.234 0.295 0.753
ABM 0.010 0.099 — — — —
TBM 0.011 0.096 — — — —

Table 4: Average Number of Operations Per Character in English Text
Searches

139

	Introduction
	Linear and Accelerated Linear Algorithms
	Benchmarking with English Texts
	Hashed Accelerated Linear Algorithm
	Searching for DNA Patterns
	Large Alphabet Case
	Generic Search Algorithms
	How to Obtain the Appendices and Code
	Conclusion
	Tests of Expository Versions of the Algorithms
	Algorithm Declarations
	Simple Tests
	Large Tests
	Timed Tests

	C++ Library Versions and Test Programs
	Generic Library Interfaces
	Library Files
	Search Traits
	Search Functions
	Skip Table Computation
	Next Table Procedure and Call

	Experimental Version for Large Alphabet Case
	DNA Search Functions and Traits
	Simple Tests
	Large Tests
	Timed Tests
	Timed Tests (Large Alphabet)
	Counted Tests
	Application to Matching Sequences of Words
	Large Tests
	Timed Tests

	Index of Part Names

